CDC’s Laboratory Activities to Support Newborn Screening for Spinal Muscular Atrophy
Abstract
:1. Introduction
2. Materials and Methods
2.1. SMA NBS Assay Development
2.2. Dried Blood Spot (DBS) Quality Assurance (QA) Material Development
2.3. Establishment of SMA Proficiency Testing Program
2.4. Implementation of an SMA External Quality Control Program
3. Results
3.1. Phase 1: Development of Real-Time PCR Newborn Screening Assay for SMA
3.2. Phase 2: Development of Quality Assurance DBS Materials
3.3. Phase 3: Establishment of SMA PT Program
3.4. Phase 4: External QC Program
3.5. Ongoing CDC Technical Assistance
4. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phan, H.C.; Taylor, J.L.; Hannon, H.; Howell, R. Newborn screening for spinal muscular atrophy: Anticipating an imminent need. Semin. Perinatol. 2015, 39, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Brzustowicz, L.M.; Lehner, T.; Castilla, L.H.; Penchaszadeh, G.K.; Wilhelmsen, K.C.; Daniels, R.; Davies, K.E.; Leppert, M.; Ziter, F.; Wood, D.; et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature 1990, 344, 540–541. [Google Scholar] [CrossRef] [PubMed]
- Zerres, K.; Rudnik-Schoneborn, S. Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch. Neurol. 1995, 52, 518–523. [Google Scholar] [CrossRef]
- Mercuri, E.; Sumner, C.J.; Muntoni, F.; Darras, B.T.; Finkel, R.S. Spinal muscular atrophy. Nat. Rev. Dis. Primers 2022, 8, 52. [Google Scholar] [CrossRef]
- Wurster, C.D.; Winter, B.; Wollinsky, K.; Ludolph, A.C.; Uzelac, Z.; Witzel, S.; Schocke, M.; Schneider, R.; Kocak, T. Intrathecal administration of nusinersen in adolescent and adult SMA type 2 and 3 patients. J. Neurol. 2019, 266, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Risdiplam: First Approval. Drugs 2020, 80, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Ogbonmide, T.; Rathore, R.; Rangrej, S.B.; Hutchinson, S.; Lewis, M.; Ojilere, S.; Carvalho, V.; Kelly, I. Gene Therapy for Spinal Muscular Atrophy (SMA): A Review of current challenges and safety considerations for Onasemnogene Abeparvovec (Zolgensma). Cureus 2023, 15, e36197. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Ojodu, J.; Kemper, A.R.; Lam, W.K.K.; Grosse, S.D. Implementation of newborn screening for conditions in the United States first recommended during 2010–2018. Int. J. Neonatal Screen. 2023, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Cure_SMA. 100%-of-states-now-screening- newborns for SMA. Available online: https://www.curesma.org/100-of-states-now-screening-newborns-for-sma/ (accessed on 29 April 2024).
- Vester, B.; Wengel, J. LNA (locked nucleic acid): High-affinity targeting of complementary RNA and DNA. Biochemistry 2004, 43, 13233–13241. [Google Scholar] [CrossRef] [PubMed]
- Ugozzoli, L.A.; Latorra, D.; Puckett, R.; Arar, K.; Hamby, K. Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Anal. Biochem. 2004, 324, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Tosato, G.; Cohen, J.I. Generation of Epstein-Barr Virus (EBV)-immortalized B cell lines. Curr. Protoc. Immunol. 2007, 76, 7.22.1–7.22.4. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sanchis-Juan, A.; French, C.E.; Connell, A.J.; Delon, I.; Kingsbury, Z.; Chawla, A.; Halpern, A.L.; Taft, R.J.; NIHR BioResource; et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet. Med. 2020, 22, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Lorson, C.L.; Hahnen, E.; Androphy, E.J.; Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 1999, 96, 6307–6311. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Lee, F.K.; Yazdanpanah, G.K.; Staropoli, J.F.; Liu, M.; Carulli, J.P.; Sun, C.; Dobrowolski, S.F.; Hannon, W.H.; Vogt, R.F. Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency. Clin. Chem. 2015, 61, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.H.; Chiang, S.C.; Weng, W.C.; Lee, N.C.; Lin, C.J.; Hsieh, W.S.; Lee, W.T.; Jong, Y.J.; Ko, T.M.; Hwu, W.L. Presymptomatic diagnosis of spinal muscular atrophy through newborn screening. J. Pediatr. 2017, 190, 124–129.e1. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Clinical and Laboratory Standards Institute (CLSI). Available online: https://clsi.org/ (accessed on 29 April 2024).
Method | Number of U.S. Laboratories | Number of Non-U.S. Laboratories | Targets | Total |
---|---|---|---|---|
LDT * Real-Time PCR–SMN1, TREC and reference gene run in a single tube | 21 | 11 | SMN1, TREC, Reference gene * | 32 |
Revvity Eonis™ SCID-SMA kit | 1 | 21 | SMN1, TREC, RPP30 | 22 |
Revvity NeoMDxTM RUO | 9 | 3 | SMN1, TREC, RPP30 | 12 |
ImmunoIVD SPOT-it™ TREC & SMN1 Screening Kit or TREC, KREC, SMN1 Kit | 0 | 13 | SMN1, TREC, beta-actin | 13 |
LDT Real-Time PCR–SMN1 and reference gene run in a single tube | 3 | 2 | SMN1, Reference gene ** | 5 |
ZenTech Targeted qPCR SMA | 0 | 6 | SMN1, RPP30 | 6 |
MRC Holland SALSA MC002 SMA Newborn Screen | 0 | 2 | SMN1 | 2 |
Trimaris SMA qPCR Tarama Kit | 0 | 3 | SMN1, CFTR | 3 |
MALDI-TOF/MicroArray | 0 | 2 | SMN1, H9 | 2 |
Others | 0 | 12 | SMN1, Reference gene *** | 12 |
Year | Number of Reported Results | Number of Misclassifications | Error Type | |
---|---|---|---|---|
False Positive | False Negative | |||
2021 | 270 | 1 (0.3%) | 0 | 1 |
2022 | 1055 | 5 (0.4%) | 0 | 5 |
2023 | 1380 | 10 (0.7%) | 4 | 6 |
2024Q1 | 545 | 9 (1.6%) | 3 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, F.K.; Greene, C.; Mercer, K.; Taylor, J.; Yazdanpanah, G.; Vogt, R.; Lee, R.; Cuthbert, C.; Cordovado, S. CDC’s Laboratory Activities to Support Newborn Screening for Spinal Muscular Atrophy. Int. J. Neonatal Screen. 2024, 10, 51. https://doi.org/10.3390/ijns10030051
Lee FK, Greene C, Mercer K, Taylor J, Yazdanpanah G, Vogt R, Lee R, Cuthbert C, Cordovado S. CDC’s Laboratory Activities to Support Newborn Screening for Spinal Muscular Atrophy. International Journal of Neonatal Screening. 2024; 10(3):51. https://doi.org/10.3390/ijns10030051
Chicago/Turabian StyleLee, Francis K., Christopher Greene, Kristina Mercer, Jennifer Taylor, Golriz Yazdanpanah, Robert Vogt, Rachel Lee, Carla Cuthbert, and Suzanne Cordovado. 2024. "CDC’s Laboratory Activities to Support Newborn Screening for Spinal Muscular Atrophy" International Journal of Neonatal Screening 10, no. 3: 51. https://doi.org/10.3390/ijns10030051
APA StyleLee, F. K., Greene, C., Mercer, K., Taylor, J., Yazdanpanah, G., Vogt, R., Lee, R., Cuthbert, C., & Cordovado, S. (2024). CDC’s Laboratory Activities to Support Newborn Screening for Spinal Muscular Atrophy. International Journal of Neonatal Screening, 10(3), 51. https://doi.org/10.3390/ijns10030051