Impact of Lowering TSH Cut-Off on Neonatal Screening for Congenital Hypothyroidism in Minas Gerais, Brazil
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trotsenburg, P.V.; Stoupa, A.; Léger, J.; Rohrer, T.; Peters, C.; Fugazzola, L.; Cassio, A.; Heinrichs, C.; Beauloye, V.; Pohlenz, J.; et al. Congenital Hypothyroidism: A 2020–2021 Consensus Guidelines Update—An ENDO-European Reference Network (ERN) initiative endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid 2021, 31, 387–419. [Google Scholar] [CrossRef] [PubMed]
- Wassner, A.J.; Brown, R.S. Congenital hypothyroidism: Recent advances. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, K.; Minamitani, K.; Anzo, M.; Adachi, M.; Ishii, T.; Onigata, K.; Kusuda, S.; Harada, S.; Horikawa, R.; Minagawa, M.; et al. Guidelines for Mass Screening of Congenital Hypothyroidism (2014 revision) Mass Screening Committee, Japanese Society for Pediatric Endocrinology, and Japanese Society for Mass Screening. Clin. Pediatr. Endocrinol. 2015, 24, 107–133. [Google Scholar] [PubMed]
- Chiesa, A.; Prieto, L.; Mendez, V.; Papendieck, P.; Calcagno, M.D.L.; Gruñeiro-Papendieck, L. Prevalence and etiology of congenital hypothyroidism detected through an argentine neonatal screening program (1997–2010). Horm. Res. Paediatr. 2013, 80, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Barry, Y.; Bonaldi, C.; Goulet, V.; Coutant, R.; Léger, J.; Paty, A.C.; Delmas, D.; Cheillan, D.; Roussey, M. Increased incidence of congenital hypothyroidism in France from 1982 to 2012: A nationwide multicenter analysis. Ann Epidemiol 2016, 26, 100–105.e4. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.; Brooke, I.; Heales, S.; Ifederu, A.; Langham, S.; Hindmarsh, P.; Cole, T.J. Defining the newborn blood spot screening reference interval for TSH: Impact of ethnicity. J. Clin. Endocrinol. Metab. 2016, 101, 3445–3449. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.H.; Kato, T.; Harada, S.; Inomata, H.; Aoki, K. Time Trend and Geographic Distribution of Treated Patients with Congenital Hypothyroidism Relative to the Number of Available Endocrinologists in Japan. J. Pediatr. 2010, 157, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Heather, N.L.; Derraik, J.G.B.; Webster, D.; Hofman, P.L. The impact of demographic factors on newborn TSH levels and congenital hypothyroidism screening. Clin. Endocrinol. 2019, 91, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Albert, B.B.; Cutfield, W.S.; Webster, D.; Carll, J.; Derraik, J.G.B.; Jefferies, C.; Gunn, A.J.; Hofman, P.L. Etiology of increasing incidence of congenital hypothyroidism in New Zealand from 1993–2010. J. Clin. Endocrinol. Metab. 2012, 97, 3155–3160. [Google Scholar] [CrossRef]
- Harris, K.B.; Pass, K.A. Increase in congenital hypothyroidism in New York State and in the United States. Mol. Genet. Metab. 2007, 91, 268–277. [Google Scholar] [CrossRef]
- Olivieri, A.; Fazzini, C.; Medda, E. Multiple factors influencing the incidence of congenital hypothyroidism detected by neonatal screening. Horm. Res. Paediatr. 2015, 83, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Korada, S.M.; Pearce, M.; Ward, M.P.; Avis, E.; Turner, S.; Wastell, H.; Cheetham, T. Difficulties in selecting an appropriate neonatal thyroid stimulating hormone (TSH) screening threshold. Arch. Dis. Child. 2010, 95, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Langham, S.; Hindmarsh, P.; Krywawych, S.; Peters, C. Screening for Congenital Hypothyroidism: Comparison of Borderline Screening Cut-Off Points and the Effect on the Number of Children Treated with Levothyroxine. Eur. Thyroid. J. 2013, 2, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Cherella, C.E.; Wassner, A.J. Congenital hypothyroidism: Insights into pathogenesis and treatment. Int. J. Pediatr. Endocrinol. 2017, 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Deladoëy, J.; Van Vliet, G. The changing epidemiology of congenital hypothyroidism: Fact or artifact? Expert. Rev. Endocrinol. Metab. 2014, 9, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Deladoëy, J.; Ruel, J.; Giguère, Y.; Van Vliet, G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Québec. J. Clin. Endocrinol. Metab. 2011, 96, 2422–2429. [Google Scholar] [CrossRef] [PubMed]
- Connelly, K.J.; Lafranchi, S.H. Detection of neonates with mild congenital hypothyroidism (primary) or isolated hyperthyrotropinemia: An increasingly common management dilemma. Expert. Rev. Endocrinol. Metab. 2014, 9, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Freire, R.; Monte, O.; Tomimori, E.K.; Catarino, R.M.; Sterza, T.; Rocha, T.; Pereira, K.C.C.; Mattos, H.S.; Fagundes, L.B.; Liberato, M.M.; et al. Sonographic evaluation of the thyroid size in neonates. J. Clin. Ultrasound 2015, 43, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde. Protocolo Clínico e Diretrizes Terapêuticas para Hipotireoidismo Congênito; Portaria SAS/MS no. 1161, de 18 de Novembro de 2015; Ministério da Saúde: Brasilia, Brasil, 2015; pp. 1–8. [Google Scholar]
- Barone, B.; Lopes, C.d.L.S.; Tyszler, L.S.; do Amaral, V.B.; Zarur, R.H.C.; Paiva, V.N.; Leite, D.B.; Meirelles, R.M. Avaliação do valor de corte de TSH em amostras de filtro na triagem neonatal para diagnóstico de hipotireoidismo congênito no programa “Primeiros Passos”—IEDE/RJ. Arq. Bras. Endocrinol. Metabol. 2013, 57, 57–61. [Google Scholar] [CrossRef]
- Nascimento, M.L.; Nascimento, A.L.; Dornbusch, P.; Ohira, M.; Simoni, G.; Cechinel, E.; Linhares, R.M.M.; Lee, J.V.D.S.; Silva, P.C.A. Impact of the reduction in TSH cutoff level to 6 mIU/L in neonatal screening for congenital hypothyroidism in Santa Catarina: Final results. Arch. Endocrinol. Metab. 2020, 64, 816–823. [Google Scholar] [CrossRef]
- Matos, D.M.; Ramalho, R.J.R.; Carvalho, B.M.; Almeida, M.A.C.T.; Passos, L.F.D.; Vasconcelos, T.T.S.; Melo, E.V.; Oliveira, C.R.P.; Santos, E.G.; Resende, K.F.; et al. Evolution to permanent or transient conditions in children with positive neonatal TSH screening tests in Sergipe, Brazil. Arch. Endocrinol. Metab. 2016, 60, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, C.; Weber, G.; Cortinovis, F.; Calebiro, D.; Passoni, A.; Vigone, M.C.; Beck-Peccoz, P.; Chiumello, G.; Persani, L. A 7-year experience with low blood TSH cutoff levels for neonatal screening reveals an unsuspected frequency of congenital hypothyroidism (CH). Clin. Endocrinol. 2009, 71, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Mengreli, C.; Kanaka-Gantenbein, C.; Girginoudis, P.; Magiakou, M.A.; Christakopoulou, I.; Giannoulia-Karantana, A.; Chrousos, G.P.; Dacou-Voutetakis, C. Screening for congenital hypothyroidism: The significance of threshold limit in false-negative results. J. Clin. Endocrinol. Metab. 2010, 95, 4283–4290. [Google Scholar] [CrossRef] [PubMed]
- McGrath, N.; Hawkes, C.P.; Mayne, P.; Murphy, N.P. Permanent Decompensated Congenital Hypothyroidism in Newborns with Whole-Blood Thyroid-Stimulating Hormone Concentrations between 8 and 10 mU/L: The Case for Lowering the Threshold. Horm. Res. Paediatr. 2018, 89, 265–270. [Google Scholar] [CrossRef]
- Rose, S.R.; Wassner, A.J.; Wintergerst, K.A.; Yayah-Jones, N.H.; Hopkin, R.J.; Chuang, J.; Smith, J.R.; Abell, K.; LaFranchi, S.H. American Academy of Pediatrics Section on Endocrinology, AAP Council on Genetics, Pediatric Endocrine Society, American Thyroid Association. Technical report. Congenital hypothyroidism: Screening and management. Pediatrics 2023, 151, e2022060420. [Google Scholar] [CrossRef] [PubMed]
- Danner, E.; Niuro, L.; Huopio, H.; Niinikoski, H.; Viikari, L.; Kero, J.; Jääskeläinen, J. Incidence of primary congenital hypothyroidism over 24 years in Finland. Pediatr. Res. 2022, 93, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Gunnerbeck, A.; Lundholm, C.; von Döbeln, U.; Zetterström, R.H.; Almqvist, C.; Nordenström, A. Neonatal screening for congenital hypothyroidism in Sweden 1980–2013: Effects of lowering the thyroid-stimulating hormone threshold. Eur. J. Endocrinol. 2023, 188, 536–546. [Google Scholar] [CrossRef]
- Mehran, L.; Khalili, D.; Yarahmadi, S.; Amouzegar, A.; Mojarrad, M.; Ajang, N.; Azizi, F. Worldwide recall rate in newborn screening programs for congenital hypothyroidism. Int. J. Endocrinol. Metab. 2017, 15, e55451. [Google Scholar] [CrossRef] [PubMed]
- Anne, R.P.; Rahiman, E.A. Congenital hypothyroidism in India: A systematic review and meta-analysis of prevalence, screen positivity rates, and etiology. Lancet Reg. Health Southeast Asia 2022, 5, 100040. [Google Scholar] [CrossRef]
- Simonetti, S.; D’Amato, G.; Esposito, B.; Chiarito, M.; Dentico, D.; Lorè, T.; Cardinali, R.; Russo, S.; Laforgia, N.; Faienza, M.F. Congenital hypothyroidism after newborn screening program reorganization in the Apulia region. Ital. J. Pediatr. 2022, 48, 131. [Google Scholar] [CrossRef]
- Yu, A.; Alder, N.; Lain, S.J.; Wiley, V.; Nassar, N.; Jack, M. Outcomes of lowered newborn screening thresholds for congenital hypothyroidism. J. Paediatr. Child. Health 2023, 59, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Christensen-Adad, F.C.; Mendes-dos-Santos, C.T.; Goto, M.M.F.; Sewaybricker, L.E.; D’Souza-Li, L.F.R.; Guerra-Junior, G.; Morcillo, A.M.; Lemos-Marini, S.H.V. Neonatal screening: 9% of children with filter paper thyroid-stimulating hormone levels between 5 and 10 μIU/mL have congenital hypothyroidism. J. Pediatr. 2017, 93, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Odenwald, B.; Brockow, I.; Hanauer, M.; Lüders, A.; Nennstiel, U. Is Our Newborn Screening Working Well? A Literature Review of Quality Requirements for Newborn Blood Spot Screening (NBS) Infrastructure and Procedures. Int. J. Neonatal Screen. 2023, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Dorreh, F.; Chaijan, P.Y.; Javaheri, J.; Zeinalzadeh, A.H. Epidemiology of congenital hypothyroidism in Markazi Province, Iran. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 105–110. [Google Scholar] [CrossRef]
- Caiulo, S.; Corbetta, C.; Di Frenna, M.; Medda, E.; De Angelis, S.; Rotondi, D.; Vincenzi, G.; de Filippis, T.; Patricelli, M.G.; Persani, L.; et al. Newborn screening for congenital hypothyroidism: The benefit of using differential TSH cutoffs in a two-screen program. J. Clin. Endocrinol. Metab. 2021, 106, e338–e349. [Google Scholar] [CrossRef]
- Krude, H.; Blankenstein, O. Treating patients not numbers: The benefit and burden of lowering TSH newborn screening cut-offs. Arch. Dis. Child. 2011, 96, 121–122. [Google Scholar] [CrossRef] [PubMed]
- Lain, S.; Trumpff, C.; Grosse, S.D.; Olivieri, A.; Van Vliet, G. Are lower TSH cutoffs in neonatal screening for congenital hypothyroidism warranted? Eur. J. Endocrinol. 2017, 177, D1–D12. [Google Scholar] [CrossRef]
- Trumpff, C.; se Schepper, J.; Vanderfaeillie, J.; Vercruysse, N.; Tafforeau, J.; Van Oyen, H.; Vandevijvere, S. No association between elevated thyroid-stimulating hormone at birth and parent-reported problem behavior at preschool age. Front. Endocrinol. 2016, 7, 161. [Google Scholar] [CrossRef]
- Trumpff, C.; De Schepper, J.; Vanderfaeillie, J.; Vercruysse, N.; Van Oyen, H.; Moreno-Reyes, R.; Tafforeau, J.; Vandevijvere, S. Neonatal thyroid-stimulating hormone concentration and psychomotor development at preschool age. Arch. Dis. Child. 2016, 101, 1100–1106. [Google Scholar] [CrossRef]
- West, R.; Hong, J.; Derraik, J.G.B.; Webster, D.; Heather, N.L.; Hofman, P.L. Newborn Screening TSH Values Less Than 15 mIU/L Are Not Associated with Long-term Hypothyroidism or Cognitive Impairment. J. Clin. Endocrinol. Metab. 2020, 105, dgaa415. [Google Scholar] [CrossRef]
- Freire, C.; Ramos, R.; Amaya, E.; Fernández, M.F.; Santiago-Fernández, P.; Lopez-Espinosa, M.J.; Arrebola, J.P.; Olea, N. Newborn TSH concentration and its association with cognitive development in healthy boys. Eur. J. Endocrinol. 2010, 163, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Lain, S.J.; Wiley, V.; Jack, M.; Martin, A.J.; Wilcken, B.; Nassar, N. Association of elevated neonatal thyroid-stimulating hormone levels with school performance and stimulant prescription for attention deficit hyperactivity disorder in childhood. Eur. J. Pediatr. 2021, 180, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, J.E.; Dias, V.M.A.; Jardim de Paula, J.; Silva, I.N. Socioeconomic aspects are crucial to better intellectual outcome in early-treated adolescents with congenital hypothyroidism. Child. Neuropsychol. 2021, 27, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Pelaez, J.M.; Rojas-Ramos, J.C.R.; Domingos, M.T.; de Lima, M.R.; Kraemer, G.C.; Cardoso-Demartini, A.A.; Pereira, R.M.; Lacerda, L.D.; Nesi-França, S. Cognitive outcome of 458 children over 25 years of neonatal screening for congenital hypothyroidism. J. Pediatr. 2023, 99, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Bongers-Schokking, J.J.; Resing, W.C.M.; Oostdijk, W.; de Rijke, Y.B.; Keizer-Schramaa, S.M.P.d.M. Relation between Early Over- and Undertreatment and Behavioural Problems in Preadolescent Children with Congenital Hypothyroidism. Horm. Res. Paediatr. 2019, 90, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Villanger, G.D.; Ystrom, E.; Engel, S.M.; Longnecker, M.P.; Pettersen, R.; Rowe, A.D.; Reichborn-Kjennerud, T.; Aase, H. Neonatal thyroid-stimulating hormone and association with attention-deficit/hyperactivity disorder. Paediatr. Perinat. Epidemiol. 2020, 34, 590–596. [Google Scholar] [CrossRef]
- Bongers-Schokking, J.J.; Resing, W.C.M.; Oostdijk, W.; De Rijke, Y.B.; De Muinck Keizer-Schrama, S.M.P.F. Individualized treatment to optimize eventual cognitive outcome in congenital hypothyroidism. Pediatr. Res. 2016, 80, 816–823. [Google Scholar] [CrossRef]
b-TSH Cut-Off (mIU/L) for the 1st Sample (n = 159,659) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Recall Rate for 2nd Sample |
---|---|---|---|---|---|
6 | 100% (100–100) | 99.50% (99.46–99.53) | 11.87% (11.71–12.03) | 100.00% (100–100) | 0.57% |
7 | 85.30% (85.15–85.49) | 99.70% (99.67–99.73) | 16.88% (16.69–17.06) | 99.99% (99.99–99.99) | 0.35% |
8 | 78.90% (78.7–79.1) | 99.80% (99.82–99.86) | 24.93% (24.72–25.14) | 99.99% (99.98–99.99) | 0.22% |
9 | 70.60% (70.42–70.87) | 99.90% (99.89–99.92) | 34.69% (34.45–34.92) | 99.98% (99.97–99.99) | 0.14% |
10 | 64.20% (63.99–64.46) | 99.90% (99.93–99.95) | 41.42% (41.18–41.66) | 99.98% (99.97–99.98) | 0.11% |
b-TSH cut-off (mIU/L) for the 2nd sample (n = 793) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Recall Rate for Appointment |
6 | 98.20% (97.33–99.16) | 98.10% (97.15–99.05) | 80.00% (77.22–82.78) | 99.86% (99.60–100) | 0.08% |
7 | 80.70% (77.95–83.45) | 98.10% (97.15–99.05) | 76.67% (73.72–79.61) | 98.50% (97.65–99.35) | 0.07% |
8 | 73.70% (68.80–75.06) | 98.40% (97.49–99.25) | 77.36% (74.45–80.27) | 97.84% (96.83–98.85) | 0.07% |
9 | 64.90% (61.59–68.23) | 98.90% (98.19–99.63) | 82.22% (79.56–84.88) | 97.33% (96.20–98.45) | 0.06% |
10 | 59.60% (56.23–63.06) | 99.20% (98.56–99.81) | 85.00% (82.51–87.49) | 96.95% (95.75–98.14) | 0.06% |
Serum TSH | Free T4 | |||
---|---|---|---|---|
Group 1 (b-TSH 6–9.9 mIU/L) | Group 2 (b-TSH >= 10 mIU/L) | Group 1 (b-TSH 6–9.9 mIU/L) | Group 2 (b-TSH >= 10 mIU/L) | |
Median | 14.52 * | 177.7 * | 1.14 * | 0.56 * |
Minimum | 10.08 | 10.4 | 0.40 | 0.10 |
Maximum | 193.65 | 1370.0 | 2.54 | 1.68 |
25th percentile | 11.72 | 47.81 | 0.93 | 0.27 |
75th percentile | 27.62 | 394.55 | 1.37 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira Palla Braga, N.; Vilela Antunes, J.M.; Colosimo, E.A.; Alves Dias, V.M.; Januário, J.N.; Novato Silva, I. Impact of Lowering TSH Cut-Off on Neonatal Screening for Congenital Hypothyroidism in Minas Gerais, Brazil. Int. J. Neonatal Screen. 2024, 10, 52. https://doi.org/10.3390/ijns10030052
Teixeira Palla Braga N, Vilela Antunes JM, Colosimo EA, Alves Dias VM, Januário JN, Novato Silva I. Impact of Lowering TSH Cut-Off on Neonatal Screening for Congenital Hypothyroidism in Minas Gerais, Brazil. International Journal of Neonatal Screening. 2024; 10(3):52. https://doi.org/10.3390/ijns10030052
Chicago/Turabian StyleTeixeira Palla Braga, Nathalia, Jáderson Mateus Vilela Antunes, Enrico Antônio Colosimo, Vera Maria Alves Dias, José Nélio Januário, and Ivani Novato Silva. 2024. "Impact of Lowering TSH Cut-Off on Neonatal Screening for Congenital Hypothyroidism in Minas Gerais, Brazil" International Journal of Neonatal Screening 10, no. 3: 52. https://doi.org/10.3390/ijns10030052
APA StyleTeixeira Palla Braga, N., Vilela Antunes, J. M., Colosimo, E. A., Alves Dias, V. M., Januário, J. N., & Novato Silva, I. (2024). Impact of Lowering TSH Cut-Off on Neonatal Screening for Congenital Hypothyroidism in Minas Gerais, Brazil. International Journal of Neonatal Screening, 10(3), 52. https://doi.org/10.3390/ijns10030052