Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 
Tomography is published by MDPI from Volume 7 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Grapho, LLC.

Tomography, Volume 3, Issue 3 (September 2017) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1474 KiB  
Article
Vascular Deformation Mapping (VDM) of Thoracic Aortic Enlargement in Aneurysmal Disease and Dissection
by Nicholas S. Burris, Benjamin A. Hoff, Ella A. Kazerooni and Brian D. Ross
Tomography 2017, 3(3), 163-173; https://doi.org/10.18383/j.tom.2017.00015 - 01 Sep 2017
Cited by 21 | Viewed by 912
Abstract
Thoracic aortic aneurysm is a common and lethal disease that requires regular imaging surveillance to determine timing of surgical repair and prevent major complications such as rupture. Current cross-sectional imaging surveillance techniques, largely based on computed tomography angiography, are focused on measurement of [...] Read more.
Thoracic aortic aneurysm is a common and lethal disease that requires regular imaging surveillance to determine timing of surgical repair and prevent major complications such as rupture. Current cross-sectional imaging surveillance techniques, largely based on computed tomography angiography, are focused on measurement of maximal aortic diameter, although this approach is limited to fixed anatomic positions and is prone to significant measurement error. Here we present preliminary results showing the feasibility of a novel technique for assessing change in aortic dimensions, termed vascular deformation mapping (VDM). This technique allows quantification of 3-dimensional changes in the aortic wall geometry through nonrigid coregistration of computed tomography angiography images and spatial Jacobian analysis of aortic deformation. Through several illustrative cases we demonstrate that this method can be used to measure changes in the aortic wall geometry among patients with stable and enlarging thoracic aortic aneurysm and dissection. Furthermore, VDM results yield observations about the presence, distribution, and rate of aortic wall deformation that are not apparent by routine clinical evaluation. Finally, we show the feasibility of superposing patient-specific VDM results on a 3-dimensional aortic model using color 3D printing and discuss future directions and potential applications for the VDM technique. Full article
1564 KiB  
Article
High-Resolution MR Imaging of Muscular Fat Fraction—Comparison of Three T2-Based Methods and Chemical Shift-Encoded Imaging
by Lena Trinh, Emelie Lind, Pernilla Peterson, Jonas Svensson, Lars E. Olsson and Sven Månsson
Tomography 2017, 3(3), 153-162; https://doi.org/10.18383/j.tom.2017.00011 - 01 Sep 2017
Cited by 1 | Viewed by 568
Abstract
Chemical shift-encoded imaging (CSEI) is the most common magnetic resonance imaging fat–water separation method. However, when high spatial resolution fat fraction (FF) images are desired, CSEI might be challenging owing to the increased interecho spacing. Here, 3 T2-based methods have been [...] Read more.
Chemical shift-encoded imaging (CSEI) is the most common magnetic resonance imaging fat–water separation method. However, when high spatial resolution fat fraction (FF) images are desired, CSEI might be challenging owing to the increased interecho spacing. Here, 3 T2-based methods have been assessed as alternative methods for obtaining high-resolution FF images. Images from the calf of 10 healthy volunteers were acquired; FF maps were then estimated using 3 T2-based methods (2- and 3-parameter nonlinear least squares fit and a Bayesian probability method) and CSEI for reference. In addition, simulations were conducted to characterize the performance of various methods. Here, all T2-based methods resulted in qualitatively improved high-resolution FF images compared with high-resolution CSEI. The 2-parameter fit showed best quantitative agreement to low-resolution CSEI, even at low FF. The estimated T2-values of fat and water, and the estimated muscle FF of the calf, agreed well with previously published data. In conclusion, T2-based methods can provide improved high-resolution FF images of the calf compared with the CSEI method. Full article
775 KiB  
Article
Can Hyperpolarized 13C-Urea Be Used to Assess Glomerular Filtration Rate? A Retrospective Study
by Christian Østergaard Mariager, Per Mose Nielsen, Haiyun Qi, Marie Schroeder, Lotte Bonde Bertelsen and Christoffer Laustsen
Tomography 2017, 3(3), 146-152; https://doi.org/10.18383/j.tom.2017.00010 - 01 Sep 2017
Cited by 18 | Viewed by 574
Abstract
This study investigated a simple method for calculating the single-kidney glomerular filtration rate (GFR) using dynamic hyperpolarized 13C-urea magnetic resonance (MR) renography. A retrospective data analysis was applied to renal hyperpolarized 13C-urea MR data acquired from control rats, prediabetic nephropathy rats, [...] Read more.
This study investigated a simple method for calculating the single-kidney glomerular filtration rate (GFR) using dynamic hyperpolarized 13C-urea magnetic resonance (MR) renography. A retrospective data analysis was applied to renal hyperpolarized 13C-urea MR data acquired from control rats, prediabetic nephropathy rats, and rats in which 1 kidney was subjected to ischemia-reperfusion. Renal blood flow was determined by the model-free bolus differentiation method, GFR was determined using the Baumann–Rudin model method. Reference single-kidney and total GFRs were measured by plasma creatinine content and compared to 1H dynamic contrast-enhanced estimated GFR and fluorescein isothiocyanate-inulin clearance GFR estimation. In healthy and prediabetic nephropathy rats, single-kidney hyperpolarized 13C-urea GFR was estimated to be 2.5 ± 0.7 mL/min in good agreement with both gold-standard inulin clearance GFR (2.7 ± 1.2 ml/min) and 1H dynamic contrast-enhanced estimated GFR (1.8 ± 0.8 mL/min), as well as plasma creatinine measurements and literature findings. Following ischemia-reperfusion, hyperpolarized 13C-urea revealed a significant reduction in single-kidney GFR of 57% compared with the contralateral kidney. Hyperpolarized 13C MR could be a promising tool for accurate determination of GFR. The model-free renal blood flow and arterial input function-insensitive GFR estimations are simple to implement and warrant further translational adaptation. Full article
2262 KiB  
Article
Correcting Nonpathological Variation in Longitudinal Parametric Response Maps of CT Scans in COPD Subjects: SPIROMICS
by Antonio Fernández-Baldera, Charles R. Hatt, Susan Murray, Eric A. Hoffman, Ella A. Kazerooni, Fernando J. Martinez, MeiLan K. Han and Craig J. Galbán
Tomography 2017, 3(3), 138-145; https://doi.org/10.18383/j.tom.2017.00013 - 01 Sep 2017
Cited by 3 | Viewed by 699
Abstract
Small airways disease (SAD) is one of the leading causes of airflow limitations in patients diagnosed with chronic obstructive pulmonary disease (COPD). Parametric response mapping (PRM) of computed tomography (CT) scans allows for the quantification of this previously invisible COPD component. Although PRM [...] Read more.
Small airways disease (SAD) is one of the leading causes of airflow limitations in patients diagnosed with chronic obstructive pulmonary disease (COPD). Parametric response mapping (PRM) of computed tomography (CT) scans allows for the quantification of this previously invisible COPD component. Although PRM is being investigated as a diagnostic tool for COPD, variability in the longitudinal measurements of SAD by PRM has been reported. Here, we show a method for correcting longitudinal PRM data because of nonpathological variations in serial CT scans. In this study, serial whole-lung high-resolution CT scans over a 30-day interval were obtained from 90 subjects with and without COPD accrued as part of SPIROMICS. It was assumed in all subjects that the COPD did not progress between examinations. CT scans were acquired at inspiration and expiration, spatially aligned to a single geometric frame, and analyzed using PRM. By modeling variability in longitudinal CT scans, our method could identify, at the voxel-level, shifts in PRM classification over the 30-day interval. In the absence of any correction, PRM generated serial percent volumes of functional SAD with differences as high as 15%. Applying the correction strategy significantly mitigated this effect with differences ∼1%. At the voxel-level, significant differences were found between baseline PRM classifications and the follow-up map computed with and without correction (P < .01 over GOLD). This strategy of accounting for nonpathological sources of variability in longitudinal PRM may improve the quantification of COPD phenotypes transitioning with disease progression. Full article
776 KiB  
Article
Monitoring Radiation Treatment Effects in Glioblastoma: FLAIR Volume as Significant Predictor of Survival
by Matthew D. Garrett, Ted K. Yanagihara, Randy Yeh, Guy M. McKhann, Michael B. Sisti, Jeffrey N. Bruce, Sameer A. Sheth, Adam M. Sonabend and Tony J. C. Wang
Tomography 2017, 3(3), 131-137; https://doi.org/10.18383/j.tom.2017.00009 - 01 Sep 2017
Cited by 12 | Viewed by 754
Abstract
Glioblastoma is the most common adult central nervous system malignancy and carries a poor prognosis. Disease progression and recurrence after chemoradiotherapy are assessed via serial magnetic resonance imaging sequences. T2-weighted fluid-attenuated inversion recovery (FLAIR) signal is presumed to represent edema containing microscopic cancer [...] Read more.
Glioblastoma is the most common adult central nervous system malignancy and carries a poor prognosis. Disease progression and recurrence after chemoradiotherapy are assessed via serial magnetic resonance imaging sequences. T2-weighted fluid-attenuated inversion recovery (FLAIR) signal is presumed to represent edema containing microscopic cancer infiltration. Here we assessed the prognostic impact of computerized volumetry of FLAIR signal in the peri-treatment setting for glioblastoma. We analyzed pre- and posttreatment FLAIR sequences of 40 patients treated at the Columbia University Medical Center between 2011 and 2014, excluding those without high-quality FLAIR imaging within 2 weeks before treatment and 60 to 180 days afterward. We manually contoured regions of FLAIR hyperintensity as per Radiation Therapy Oncology Group guidelines and calculated the volumes of nonenhancing tumor burden. At the time of this study, all but 1 patient had died. Pre- and posttreatment FLAIR volumes were assessed for correlation to overall and progression-free survival. Larger post-treatment FLAIR volumes from sequences taken between 60 and 180 days after conclusion of chemoradiotherapy were negatively correlated with overall survival (P = .048 on Pearson's correlation and P = .017 and P = .043 on univariable and multivariable Cox regression analyses, respectively) and progression-free survival (P = .002 on Pearson's correlation and P = < .001 and P = < .001 on univariable and multivariable Cox regression analyses). This study suggests that higher FLAIR volumes in the 2- to 6-month posttreatment window are associated with worsened survival. Full article
1248 KiB  
Article
Imaging Regional Metabolic Changes in the Ischemic Rat Heart In Vivo Using Hyperpolarized [1-13C]Pyruvate
by Mette Hauge Lauritzen, Peter Magnusson, Christoffer Laustsen, Sadia Asghar Butt, Jan Henrik Ardenkjær-Larsen, Lise Vejby Søgaard, Olaf B. Paulson and Per Åkeson
Tomography 2017, 3(3), 123-130; https://doi.org/10.18383/j.tom.2017.00008 - 01 Sep 2017
Cited by 2 | Viewed by 698
Abstract
We evaluated the use of hyperpolarized 13C magnetic resonance imaging (MRI) in an open-chest rat model of myocardial infarction to image regional changes in myocardial metabolism. In total, 10 rats were examined before and after 30 minutes of occlusion of the left [...] Read more.
We evaluated the use of hyperpolarized 13C magnetic resonance imaging (MRI) in an open-chest rat model of myocardial infarction to image regional changes in myocardial metabolism. In total, 10 rats were examined before and after 30 minutes of occlusion of the left anterior descending coronary artery using hyperpolarized [1-13C]pyruvate. Cardiac metabolic images of [1-13C]pyruvate and its metabolites [1-13C]lactate, [1-13C]alanine, and [13C]bicarbonate were obtained before and after ischemia. Significant reduction in the [1-13C]alanine and [1-13C]lactate signals were observed in the ischemic region post ischemia. The severity of the ischemic insult was verified by increased blood levels of troponin I and by using late contrast-enhanced MRI that showed enhanced signal in the ischemic region. This study shows that hyperpolarized MRI can be used to image regional metabolic changes in the in vivo rat heart in an open-chest model of ischemia reperfusion. Hyperpolarized MRI enables new possibilities for evaluating changes in cardiac metabolism noninvasively and in real time, which potentially could be used for research to evaluate new treatments and metabolic interventions for myocardial ischemia and to apply knowledge to future application of the technique in humans. Full article
Previous Issue
Next Issue
Back to TopTop