Previous Issue
Volume 11, December
 
 

J. Imaging, Volume 12, Issue 1 (January 2026) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2202 KB  
Article
Development of a Multispectral Image Database in Visible–Near–Infrared for Demosaicking and Machine Learning Applications
by Vahid Mohammadi, Sovi Guillaume Sodjinou and Pierre Gouton
J. Imaging 2026, 12(1), 2; https://doi.org/10.3390/jimaging12010002 (registering DOI) - 20 Dec 2025
Abstract
The use of Multispectral (MS) imaging is growing fast across many research fields. However, one of the obstacles researchers face is the limited availability of multispectral image databases. This arises from two factors: multispectral cameras are a relatively recent technology, and they are [...] Read more.
The use of Multispectral (MS) imaging is growing fast across many research fields. However, one of the obstacles researchers face is the limited availability of multispectral image databases. This arises from two factors: multispectral cameras are a relatively recent technology, and they are not widely available. Hence, the development of an image database is crucial for research on multispectral images. This study takes advantage of two high-end MS cameras in visible and near-infrared based on filter array technology developed in the PImRob platform, the University of Burgundy, to provide a freely accessible database. The database includes high-resolution MS images taken from different plants and weeds, along with annotated images and masks. The original raw images and the demosaicked images have been provided. The database has been developed for research on demosaicking techniques, segmentation algorithms, or deep learning for crop/weed discrimination. Full article
(This article belongs to the Special Issue Imaging Applications in Agriculture)
Show Figures

Figure 1

22 pages, 26190 KB  
Article
Non-Destructive Mangosteen Volume Estimation via Multi-View Instance Segmentation and Hybrid Geometric Modeling
by Wattanapong Kurdthongmee, Arsanchai Sukkuea, Md Eshrat E Alahi and Qi Zeng
J. Imaging 2026, 12(1), 1; https://doi.org/10.3390/jimaging12010001 - 19 Dec 2025
Abstract
In precision agriculture, accurate, non-destructive estimation of fruit volume is crucial for quality grading, yield prediction, and post-harvest management. While vision-based methods provided some usefulness, fruits with complex geometry—such as mangosteen (Garcinia mangostana L.)—are difficult due to their large calyx, which may [...] Read more.
In precision agriculture, accurate, non-destructive estimation of fruit volume is crucial for quality grading, yield prediction, and post-harvest management. While vision-based methods provided some usefulness, fruits with complex geometry—such as mangosteen (Garcinia mangostana L.)—are difficult due to their large calyx, which may lead to difficulties in solving using traditional form-modeling methods. Traditional geometric solutions such as ellipsoid approximations, diameter–height estimation, and shape-from-silhouette reconstruction often fail because the irregular calyx generates asymmetric protrusions that violate their basic form assumptions. We offer a novel study framework employing both multi-view instance segmentation and hybrid geometrical feature modeling to quantitatively model mangosteen volume with traditional 2D imaging. A You Only Look Once (YOLO)-based segmentation model was employed to explicitly separate the fruit body from the calyx. Calyx inclusion resulted in dense geometric noise and reduced model performance (R2<0.40). We trained eight regression models on a curated and augmented 900 image dataset (N=720, test N=180). The models used single-view and multi-view geometric regressors (VA1.5), polynomial hybrid configurations, ellipsoid-based approximations, as well as hybrid feature formulations. Multi-view models consistently outperformed single-view models, and the average predictive accuracy improved from R2=0.6493 to R2=0.7290. The best model is indeed a hybrid linear regression model with side- and bottom-area features—(As1.5, Ab1.5)—combined with ellipsoid-derived volume estimation—(Vellipsoid)—which resulted in R2=0.7290, a Mean Absolute Percentage Error (MAPE) of 16.04%, and a Root Mean Square Error (RMSE) of 31.9 cm3 on the test set. These results confirm the proposed model as a low-cost, interpretable, and flexible model for real-time fruit volume estimation, ready for incorporation into automated sorting and grading systems integrated in post-harvest processing pipelines. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

Previous Issue
Back to TopTop