Interplay of Magnetic Interaction and Electronic Structure in New Structure RE-12442 Type Hybrid Fe-Based Superconductors
Abstract
:1. Introduction
2. Computational Methods
3. Magnetic Ground State and Structural Phase Transition
4. Electronic Band Structure
5. Tight-Binding Hopping Parameters
6. Calculation of Exchange Parameters
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. 32-Band Tight-Binding Hamiltonian
(a) RbSmFeAsO | |||||
Nearest-Neighbor (NN) | |||||
−0.170 | 0.024 | 0.035 | −0.022 | −0.203 | |
0.024 | 0.110 | −0.184 | 0.120 | 0.071 | |
0.035 | −0.184 | 0.110 | −0.120 | 0.017 | |
−0.022 | 0.120 | −0.120 | 0.302 | −0.022 | |
−0.203 | 0.071 | 0.017 | −0.022 | −0.347 | |
−0.604 | 0.000 | 0.034 | −0.631 | 0.000 | |
0.000 | −0.575 | 0.000 | 0.000 | 0.823 | |
−0.261 | 0.000 | 0.839 | 0.211 | 0.000 | |
(b) RbTbFeAsO | |||||
Nearest-Neighbor (NN) | |||||
−0.182 | 0.021 | 0.028 | −0.021 | −0.208 | |
0.021 | 0.120 | −0.185 | 0.111 | 0.062 | |
0.028 | −0.185 | 0.120 | −0.107 | 0.010 | |
−0.021 | 0.111 | −0.107 | 0.329 | −0.020 | |
−0.208 | 0.063 | 0.010 | −0.020 | −0.355 | |
−0.847 | 0.000 | −0.088 | −0.908 | 0.000 | |
0.000 | −0.550 | 0.000 | 0.000 | 0.765 | |
−0.270 | 0.000 | 0.830 | 0.212 | 0.000 | |
(c) RbDyFeAsO | |||||
Nearest-Neighbor (NN) | |||||
−0.179 | 0.028 | 0.029 | −0.016 | −0.210 | |
0.028 | 0.116 | −0.190 | 0.112 | 0.063 | |
0.029 | −0.190 | 0.116 | −0.115 | 0.014 | |
−0.016 | 0.112 | −0.115 | 0.325 | −0.015 | |
−0.210 | 0.063 | 0.014 | −0.015 | −0.355 | |
−0.850 | 0.000 | −0.064 | −0.624 | 0.000 | |
0.000 | −0.574 | 0.000 | 0.000 | 0.752 | |
−0.307 | 0.000 | 0.802 | 0.172 | 0.000 | |
(d) RbHoFeAsO | |||||
Nearest-Neighbor (NN) | |||||
−0.179 | 0.032 | 0.031 | −0.014 | −0.214 | |
0.032 | 0.117 | −0.189 | 0.117 | 0.065 | |
0.031 | −0.189 | 0.117 | −0.121 | 0.015 | |
−0.014 | 0.117 | −0.121 | 0.317 | −0.015 | |
−0.214 | 0.065 | 0.015 | −0.015 | −0.357 | |
−0.863 | 0.000 | −0.291 | −1.063 | 0.000 | |
0.000 | −0.541 | 0.000 | 0.000 | 0.746 | |
−0.310 | 0.000 | 0.824 | 0.226 | 0.000 |
Appendix A.2. Calculation of Heisenberg Exchange Parameters
Appendix A.3. Electronic Structure in Folded Brillouin Zone
Appendix A.4. Effect of On-Site Electron Correlation
References
- Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 2015, 87, 855. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H.; Wu, G.; Wu, T.; Fang, D.F.; Chen, H.; Li, S.Y.; Liu, K.; Xie, Y.L.; Wang, X.F.; Yang, R.L.; et al. Anomalous Transport Properties and Phase Diagram of the FeAs-Based SmFeAsO1−xFx Superconductors. Phys. Rev. Lett. 2008, 101, 087001. [Google Scholar] [CrossRef]
- Sasmal, K.; Lv, B.; Lorenz, B.; Guloy, A.M.; Chen, F.; Xue, Y.-Y.; Chu, C.-W. Superconducting Fe-Based Compounds (A1−xSrx)Fe2As2 with A=K and Cs with Transition Temperatures up to 37 K. Phys. Rev. Lett. 2008, 101, 107007. [Google Scholar] [CrossRef] [Green Version]
- Rotundu, C.R.; Keane, D.T.; Freelon, B.; Wilson, S.D.; Kim, A.; Valdivia, P.N.; Bourret-Courchesne, E.; Birgeneau, R.J. Phase diagram of the PrFeAsO1−xFx superconductor. Phys. Rev. B 2009, 80, 144517. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Zhao, J.; Lynn, J.W.; Chen, G.F.; Luo, J.L.; Wang, N.L.; Dai, P. Doping evolution of antiferromagnetic order and structural distortion in LaFeAsO1−xFx. Phys. Rev. B 2008, 78, 054529. [Google Scholar] [CrossRef] [Green Version]
- Kordyuk, A.A. Iron-based superconductors: Magnetism, superconductivity, and electronic structure (Review Article). Low Temp. Phys. 2012, 38, 888. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, T. Frustrated magnetic interactions, giant magneto–elastic coupling, and magnetic phonons in iron–pnictides. Phys. C SC 2009, 469, 425. Available online: https://www.sciencedirect.com/science/article/pii/S092145340900077X (accessed on 15 June 2009). [CrossRef] [Green Version]
- Zhao, J.; Adroja, D.T.; Yao, D.X.; Bewley, R.; Li, S.; Wang, X.F.; Wu, G.; Chen, X.H.; Hu, J.; Dai, P. Spin waves and magnetic exchange interactions in CaFe2As2. Nat. Phys. 2009, 5, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Hoser, A.; Caroca-Canales, N.; Jesche, A.; Krellner, C.; Stockert, O.; Geibel, C. Columnar magnetic structure coupled with orthorhombic distortion in the antiferromagnetic iron arsenide SrFe2As2. Phys. Rev. B 2008, 78, 212502. [Google Scholar] [CrossRef] [Green Version]
- Cruz, C.d.; Huang, Q.; Lynn, J.W.; Li, J.; Zarestky, W.R.I.I.L.; Mook, H.A.; Chen, G.F.; Luo, J.L.; Wang, N.L.; Dai, P. Magnetic order close to superconductivity in the iron-based layered LaO1−xFx FeAs systems. Nature 2008, 453, 899. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, H.; Sen, S.; Ghosh, A. Electronic origin of structural transition in 122 Fe based superconductors. J. Phys. Chem. Solids 2017, 102, 157. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Ghosh, H. Nematicity, magnetic fluctuation and ferro-spin-orbital ordering in BaFe2As2 family. J. Alloys Compd. 2016, 675, 416. Available online: https://www.sciencedirect.com/science/article/pii/S0925838816305916 (accessed on 5 August 2016). [CrossRef] [Green Version]
- Fernandes, R.M.; Van Bebber, L.H.; Bhattacharya, S.; Chandra, P.; Keppens, V.; Mandrus, D.; McGuire, M.A.; Sales, B.C.; Sefat, A.S.; Schmalian, J. Effects of Nematic Fluctuations on the Elastic Properties of Iron Arsenide Superconductors. Phys. Rev. Lett. 2010, 105, 157003. [Google Scholar] [CrossRef] [Green Version]
- Nandi, S.; Kim, M.G.; Kreyssig, A.; Fernandes, R.M.; Pratt, D.K.; Thaler, A.; Ni, N.; Bud’ko, S.L.; Canfield, P.C.; Schmalian, J.; et al. Anomalous Suppression of the Orthorhombic Lattice Distortion in Superconducting Ba(Fe1−xCox)2As2 Single Crystals. Phys. Rev. Lett. 2010, 104, 057006. [Google Scholar] [CrossRef] [Green Version]
- Böhmer, A.E.; Chu, J.-H.; Lederer, S.; Yi, M. Nematicity and nematic fluctuations in iron-based superconductors. Nat. Phys. 2022, 18, 1412. [Google Scholar] [CrossRef]
- Chu, J.-H.; Kuo, H.-H.; Analytis, J.G.; Fisher, I.R. Divergent Nematic Susceptibility in an Iron Arsenide Superconductor. Science 2012, 337, 710. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.R.; Kong, T.; Kaluarachchi, U.S.; Taufour, V.; Jo, N.H.; Drachuck, G.; Böhmer, A.E.; Saunders, S.M.; Sapkota, A.; Kreyssig, A.; et al. Anisotropic thermodynamic and transport properties of single-crystalline CaKFe4As4. Phys. Rev. B 2016, 94, 064501. [Google Scholar] [CrossRef] [Green Version]
- Wilde, J.M.; Sapkota, A.; Ding, Q.P.; Xu, M.; Tian, W.; Bud’ko, S.L.; Furukawa, Y.; Kreyssig, A.; Canfield, P.C. Antiferromagnetic order and its interplay with superconductivity in CaK(Fe1−xMnx)4As4. arXiv 2023, arXiv:2301.06336. [Google Scholar] [CrossRef]
- Ishida, J.; Iimura, S.; Hosono, H. Effects of disorder on the intrinsically hole-doped iron-based superconductor KCa2Fe4As4F2 by cobalt substitution. Phys. Rev. B 2017, 96, 174522. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Wang, Z.; Cao, G.; Zhang, B.; Pang, H.; Li, F. Study of the Rare Earth Effects on the Magnetic Fluctuations in RbLn2Fe4As4O2 (Ln = Tb, Dy, and Ho) by Mössbauer Spectroscopy. J. Supercond. Nov. Magn. 2019, 32, 361. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, Y.; Furubayashi, T.; Deguchi, K.; Tsuda, S.; Yamaguchi, T.; Takano, Y. Mössbauer studies on FeSe and FeTe. Phys. C Supercond. Its Appl. 2010, 470, S338. Available online: https://www.sciencedirect.com/science/article/pii/S0921453409008594 (accessed on 1 December 2010). [CrossRef] [Green Version]
- Wang, Q.; Shen, Y.; Pan, B.; Zhang, X.; Ikeuchi, K.; Iida, K.; Christianson, A.D.; Walker, H.C.; Adroja, D.T.; Abdel-Hafiez, M.; et al. Magnetic ground state of FeSe. Nat. Commun. 2016, 7, 12182. [Google Scholar] [CrossRef] [Green Version]
- Baum, A.; Ruiz, H.N.; Lazarević, N.; Wang, Y.; Böhm, T.; Ahangharnejhad, R.H.; Adelmann, P.; Wolf, T.; Popović, Z.V.; Moritz, B.; et al. Frustrated spin order and stripe fluctuations in FeSe. Commun. Phys. 2019, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-C.; He, C.-Y.; Wu, S.-Q.; Tang, Z.-T.; Liu, Y.; Cao, G.-H. Synthesis, Crystal Structure and Superconductivity in RbLn2Fe4As4O2 (Ln = Sm, Tb, Dy, and Ho). Chem. Mater. 2017, 29, 1805. [Google Scholar] [CrossRef] [Green Version]
- Christianson, A.D.; Goremychkin, E.A.; Osborn, R.; Rosenkranz, S.; Lumsden, M.D.; Malliakas, C.D.; Todorov, I.S.; Claus, H.; Chung, D.Y.; Kanatzidis, M.G.; et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 2008, 456, 930. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.; Song, L.; Liu, B.; Li, Z.; Zeng, Z.; Li, Y.; Wu, D.; Sui, Q.; Xie, T.; Danilkin, S.; et al. Neutron Spin Resonance in a Quasi-Two-Dimensional Iron-Based Superconductor. Phys. Rev. Lett. 2020, 125, 117002. [Google Scholar] [CrossRef]
- Adroja, D.T.; Kirschner, F.K.K.; Lang, F.; Smidman, M.; Hillier, A.D.; Wang, Z.-C.; Cao, G.-H.; Stenning, G.B.G.; Blundell, S.J. Multigap Superconductivity in RbCa2Fe4As4F2 Investigated Using μSR Measurements. J. Phys. Soc. Jpn. 2018, 87, 124705. [Google Scholar] [CrossRef] [Green Version]
- Mazin, I.I.; Johannes, M.D.; Boeri, L.; Koepernik, K.; Singh, D.J. Problems with reconciling density functional theory calculations with experiment in ferropnictides. Phys. Rev. B 2008, 78, 085104. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Ghosh, H. Interdependence of spin structure, anion height and electronic structure of BaFe2As2. AIP Conf. Proc. 2016, 1728, 020180. [Google Scholar] [CrossRef]
- Bondino, F.; Magnano, E.; Malvestuto, M.; Parmigiani, F.; McGuire, M.A.; Sefat, A.; Sales, B.C.; Jin, R.; Mandrus, D.; Plummer, E.; et al. Evidence for strong itinerant spin fluctuations in the normal state of CeFeAsO0.89 F0.11 iron-oxypnictide superconductors. Phys. Rev. Lett. 2008, 101, 267001. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.267001 (accessed on 23 December 2008). [CrossRef] [Green Version]
- Singh, D.J. ThFeAsN in relation to other iron-based superconductors. J. Alloys Compd. 2016, 687, 786. Available online: https://www.sciencedirect.com/science/article/pii/S0925838816318710 (accessed on 5 December 2016). [CrossRef] [Green Version]
- Pokhriyal, A.; Ghosh, A.; Ghosh, H. Electronic structure, magnetic order and Lifshitz transition in electron doped new structure 12442 type Fe-based superconductors. J. Phys. Chem. Solids 2022, 172, 111085. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Tian, X. Electronic structure and magnetism of RbGd2Fe4As4O2. J. Alloys Compd. 2017, 708, 392. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0925838817307867 (accessed on 25 June 2017). [CrossRef]
- Wang, G.; Wang, Z.; Shi, X. Self-hole-doping–induced superconductivity in KCa2Fe4As4F2. Europhys. Lett. 2016, 116, 37003. [Google Scholar] [CrossRef]
- Chandra, P.; Coleman, P.; Larkin, A.I. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 1990, 64, 88. [Google Scholar] [CrossRef]
- Watson, M.D.; Dudin, P.; Rhodes, L.C.; Evtushinsky, D.V.; Iwasawa, H.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Hoesch, M.; Kim, T.K. Probing the reconstructed Fermi surface of antiferromagnetic BaFe2As2 in one domain. npj Quantum Mater. 2019, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Wang, F.; Zhai, H.; Vishwanath, A.; Lee, D.-H. Nodal spin density wave and band topology of the FeAs-based materials. Phys. Rev. B 2009, 79, 014505. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, G.; Vitale, V.; Arita, R.; Blügel, S.; Freimuth, F.; Géranton, G.; Gibertini, M.; Gresch, D.; Johnson, C.; Koretsune, T.; et al. Wannier90 as a community code: New features and applications. J. Phys. Condens. Matter 2020, 32, 165902. [Google Scholar] [CrossRef]
- Johnston, D.C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 2010, 59, 803. [Google Scholar] [CrossRef] [Green Version]
- Mazin, I.I.; Singh, D.J.; Johannes, M.D.; Du, M.H. Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1−xFx. Phys. Rev. Lett. 2008, 101, 057003. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.J. Electronic structure and doping in BaFe2As2 and LiFeAs: Density functional calculations. Phys. Rev. B 2008, 78, 094511. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Ghosh, H.; Sinha, A.K.; Bharathi, A. Origin of structural and magnetic transitions in BaFe2−xRuxAs2 materials. Supercond. Sci. Technol. 2014, 27, 122003. [Google Scholar] [CrossRef] [Green Version]
- Pokhriyal, A.; Ghosh, A.; Ghosh, H. Electronic structure studies of RbLn2Fe4As4O2 (Ln = Sm, Tb, Dy and Ho) compounds. Mater. Today Commun. 2023, 35, 106210. [Google Scholar] [CrossRef]
- Egami, T.; Fine, B.V.; Parshall, D.; Subedi, A.; Singh, D.J. Spin-Lattice Coupling and Superconductivity in Fe Pnictides. Adv. Condens. Matter Phys. 2010, 2010, 164916. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-C.; Yin, W.-G.; Ku, W. Ferro-Orbital Order and Strong Magnetic Anisotropy in the Parent Compounds of Iron-Pnictide Superconductors. Phys. Rev. Lett. 2009, 103, 267001. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Lu, Z.-Y.; Xiang, T. Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO. Phys. Rev. B 2008, 78, 224517. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, B.; Liu, S.; Liu, M.; Xing, Z.W. Magnetic fluctuation and frustration in new iron-based layered SrFe1−xCoxAsF superconductors. J. Appl. Phys. 2010, 107, 123906. [Google Scholar] [CrossRef]
- Hu, J. Identifying the genes of unconventional high temperature superconductors. Sci. Bull. 2016, 61, 561. [Google Scholar] [CrossRef] [Green Version]
Compound | Spin | Relative Energy | Relative Energy | Magnetic Moment |
---|---|---|---|---|
Configuration | (Before Optimization) | (After Optimization) | (After Optimization) | |
(in eV) | (in eV) | (in ) | ||
RbSmFeAsO | NM | 0.855 | 0.0 | 0.0 |
FM | 0.452 | −0.156 | 0.55 | |
cAFM | −0.527 | −0.717 | 1.83 | |
s-AFM1 | −1.083 | −1.188 | 1.71 | |
s-AFM2 | −1.036 | −1.140 | 1.69 | |
s-AFM3 | −1.156 | E = −1.155, −1.190 | 1.71 | |
RbTbFeAsO | NM | 1.280 | 0.0 | 0.0 |
FM | 0.673 | −0.201 | 0.58 | |
cAFM | −0.293 | −0.570 | 1.79 | |
s-AFM1 | −0.919 | E = −1.072, −1.143 | 1.58 | |
s-AFM2 | −0.871 | −1.094 | 1.56 | |
s-AFM3 | −0.918 | −1.127 | 1.57 | |
RbDyFeAsO | NM | 1.419 | 0.0 | 0.0 |
FM | 0.780 | −0.21 | 0.59 | |
cAFM | −0.095 | −0.480 | 1.76 | |
s-AFM1 | −0.751 | E = −1.028, −1.118 | 1.54 | |
s-AFM2 | −0.748 | −1.116 | 1.54 | |
s-AFM3 | −0.750 | −1.117 | 1.54 | |
RbHoFeAsO | NM | 1.320 | 0.0 | 0.0 |
FM | 0.643 | −0.260 | 0.61 | |
cAFM | −0.112 | −0.443 | 1.75 | |
s-AFM1 | −0.766 | E = −1.042, −1.105 | 1.52 | |
s-AFM2 | −0.757 | −1.100 | 1.51 | |
s-AFM3 | −0.761 | −1.102 | 1.51 |
(a) RbSm2Fe4As4O2 | |||||
Structural Parameters | Expt. | NM | FM | cAFM | sAFM |
= (Å) | 5.545 | 5.521 | 5.494 | 5.586 | 5.586 |
= (Å) | 5.545 | 5.521 | 5.494 | 5.586 | 5.484 |
c (Å) | 31.38 | 30.80 | 31.11 | 31.02 | 31.29 |
(Å) | 1.33 | 1.28 | 1.30 | 1.32 | 1.34 |
(Å) | 1.39 | 1.26 | 1.29 | 1.30 | 1.34 |
111.67 | 113.54 | 112.09 | 112.35 | 111.11 | |
109.19 | 114.13 | 112.62 | 113.28 | 111.14 | |
(Å) | 8.59 | 8.38 | 8.47 | 8.41 | 8.52 |
(Å) | 7.09 | 7.01 | 7.08 | 7.09 | 7.12 |
0.0 | 0.0 | 0.0 | 0.0 | 9.30 | |
(b) RbTbFeAsO | |||||
Structural parameters | Expt. | NM | FM | cAFM | sAFM |
= (Å) | 5.501 | 5.473 | 5.447 | 5.533 | 5.532 |
= (Å) | 5.501 | 5.473 | 5.447 | 5.533 | 5.420 |
c (Å) | 31.27 | 30.64 | 30.95 | 30.93 | 31.24 |
(Å) | 1.39 | 1.30 | 1.33 | 1.34 | 1.36 |
(Å) | 1.41 | 1.28 | 1.31 | 1.31 | 1.35 |
108.58 | 112.05 | 110.64 | 111.03 | 109.67 | |
107.86 | 112.88 | 111.38 | 112.08 | 110.08 | |
(Å) | 8.47 | 8.25 | 8.35 | 8.28 | 8.38 |
(Å) | 7.16 | 7.06 | 7.12 | 7.18 | 7.23 |
0.0 | 0.0 | 0.0 | 0.0 | 10.2 | |
(c) RbDyFeAsO | |||||
Structural parameters | Expt. | NM | FM | cAFM | sAFM |
= (Å) | 5.485 | 5.453 | 5.432 | 5.511 | 5.511 |
= (Å) | 5.485 | 5.453 | 5.432 | 5.511 | 5.405 |
c (Å) | 31.26 | 30.72 | 30.97 | 30.95 | 31.16 |
(Å) | 1.44 | 1.31 | 1.34 | 1.35 | 1.36 |
(Å) | 1.39 | 1.29 | 1.32 | 1.32 | 1.35 |
106.60 | 111.40 | 110.10 | 110.12 | 109.41 | |
108.69 | 112.40 | 111.07 | 111.06 | 109.80 | |
(Å) | 8.42 | 8.22 | 8.29 | 8.25 | 8.34 |
(Å) | 7.21 | 7.13 | 7.19 | 7.21 | 7.23 |
0.0 | 0.0 | 0.0 | 0.0 | 9.71 | |
(d) RbHoFeAsO | |||||
Structural parameters | Expt. | NM | FM | cAFM | sAFM |
= (Å) | 5.471 | 5.441 | 5.424 | 5.499 | 5.498 |
= (Å) | 5.471 | 5.441 | 5.424 | 5.499 | 5.388 |
c (Å) | 31.24 | 30.64 | 30.93 | 30.90 | 31.12 |
(Å) | 1.43 | 1.32 | 1.34 | 1.35 | 1.37 |
(Å) | 1.39 | 1.29 | 1.32 | 1.33 | 1.36 |
106.67 | 111.01 | 109.72 | 110.01 | 108.88 | |
108.21 | 111.98 | 110.73 | 111.12 | 109.39 | |
(Å) | 8.39 | 8.19 | 8.25 | 8.22 | 8.31 |
(Å) | 7.23 | 7.13 | 7.21 | 7.22 | 7.24 |
0.0 | 0.0 | 0.0 | 0.0 | 10.1 |
xz | yz | xy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
s-AFM | s-AFM | s-AFM | ||||||||
Fe1 | NM | Up | Dn | NM | Up | Dn | NM | Up | Dn | |
Fe2 | z | −0.124 | −0.174 | −0.067 | −0.002 | 0.018 | 0.008 | −0.010 | 0.019 | −0.003 |
xz | −0.346 | −0.445 | −0.303 | −0.029 | −0.107 | −0.032 | −0.026 | −0.045 | −0.015 | |
yz | 0.029 | 0.107 | 0.032 | −0.060 | −0.230 | 0.050 | −0.272 | −0.241 | −0.268 | |
x-y | −0.415 | −0.546 | −0.357 | −0.042 | −0.129 | −0.027 | −0.040 | −0.015 | −0.005 | |
xy | 0.026 | 0.046 | 0.014 | −0.272 | −0.241 | −0.268 | −0.178 | 0.109 | 0.134 | |
Fe4 | z | 0.002 | −0.187 | −0.134 | 0.123 | 0.158 | 0.125 | −0.010 | 0.236 | 0.170 |
xz | −0.060 | 0.257 | 0.256 | 0.029 | −0.105 | −0.118 | 0.272 | −0.010 | 0.058 | |
yz | −0.029 | −0.155 | −0.116 | −0.346 | 0.232 | 0.234 | 0.026 | −0.028 | −0.038 | |
x-y | −0.042 | −0.064 | −0.112 | −0.415 | −0.069 | −0.109 | 0.040 | 0.023 | −0.009 | |
xy | 0.272 | −0.043 | −0.009 | −0.026 | 0.027 | 0.046 | −0.178 | −0.344 | −0.052 | |
Fe3 | z | −0.132 | −0.028 | 0.031 | 0.132 | 0.067 | 0.176 | 0.175 | −0.015 | −0.037 |
xz | 0.227 | −0.120 | −0.106 | −0.086 | 0.033 | −0.002 | 0.045 | 0.334 | 0.250 | |
yz | −0.086 | 0.035 | −0.040 | 0.226 | −0.362 | −0.349 | −0.045 | 0.013 | 0.020 | |
x-y | −0.091 | 0.019 | −0.050 | −0.091 | −0.494 | −0.399 | 0.000 | 0.019 | 0.018 | |
xy | −0.045 | 0.231 | 0.332 | 0.045 | −0.004 | −0.042 | 0.135 | −0.227 | −0.220 |
xz | yz | xy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
s-AFM | s-AFM | s-AFM | ||||||||
Fe1 | NM | Up | Dn | NM | Up | Dn | NM | Up | Dn | |
Fe2 | z | −0.147 | −0.102 | −0.114 | −0.006 | −0.100 | −0.155 | −0.005 | −0.138 | −0.203 |
xz | −0.340 | −0.250 | 0.252 | −0.035 | 0.112 | 0.170 | 0.013 | −0.038 | 0.009 | |
yz | −0.034 | −0.173 | 0.116 | −0.048 | −0.279 | −0.046 | −0.279 | 0.279 | 0.278 | |
x-y | −0.406 | −0.131 | −0.098 | 0.042 | 0.112 | 0.080 | 0.021 | 0.015 | −0.033 | |
xy | −0.013 | −0.005 | 0.037 | −0.279 | 0.029 | 0.027 | −0.133 | 0.130 | 0.125 | |
Fe4 | z | 0.006 | 0.036 | 0.026 | 0.147 | 0.208 | 0.083 | 0.005 | −0.020 | 0.004 |
xz | −0.048 | −0.176 | −0.075 | −0.034 | 0.005 | −0.004 | 0.279 | 0.258 | 0.344 | |
yz | 0.034 | 0.039 | −0.001 | −0.340 | −0.335 | −0.335 | −0.013 | −0.003 | 0.003 | |
x-y | 0.042 | 0.047 | 0.006 | −0.406 | −0.383 | −0.475 | −0.021 | −0.012 | −0.005 | |
xy | 0.279 | 0.342 | 0.037 | 0.013 | −0.010 | 0.027 | −0.133 | −0.315 | 0.001 | |
Fe3 | z | 0.137 | 0.196 | 0.083 | −0.137 | 0.040 | 0.005 | 0.159 | −0.044 | −0.002 |
xz | 0.226 | −0.430 | −0.291 | −0.076 | 0.076 | 0.040 | −0.065 | −0.026 | −0.005 | |
yz | −0.076 | −0.076 | −0.040 | 0.226 | −0.201 | 0.088 | 0.065 | 0.276 | 0.269 | |
x-y | 0.091 | 0.092 | 0.089 | 0.091 | −0.114 | −0.023 | 0.000 | −0.009 | 0.006 | |
xy | 0.065 | 0.355 | 0.229 | −0.065 | 0.276 | 0.269 | 0.117 | −0.177 | 0.125 |
Compound | J (meV) | J (meV) | J (meV) | J (meV) | T (in K) |
---|---|---|---|---|---|
RbSmFeAsO | 2.777 | 1.606 | 2.450 | 0.767 | 35.8 |
RbTbFeAsO | 2.263 | 0.478 | 2.480 | 0.534 | 34.7 |
RbDyFeAsO | 1.919 | 0.155 | 2.498 | 0.264 | 34.3 |
RbHoFeAsO | 1.626 | −0.260 | 2.490 | 0.098 | 33.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokhriyal, A.; Ghosh, A.; Sen, S.; Ghosh, H. Interplay of Magnetic Interaction and Electronic Structure in New Structure RE-12442 Type Hybrid Fe-Based Superconductors. Magnetochemistry 2023, 9, 164. https://doi.org/10.3390/magnetochemistry9070164
Pokhriyal A, Ghosh A, Sen S, Ghosh H. Interplay of Magnetic Interaction and Electronic Structure in New Structure RE-12442 Type Hybrid Fe-Based Superconductors. Magnetochemistry. 2023; 9(7):164. https://doi.org/10.3390/magnetochemistry9070164
Chicago/Turabian StylePokhriyal, Amit, Abyay Ghosh, Smritijit Sen, and Haranath Ghosh. 2023. "Interplay of Magnetic Interaction and Electronic Structure in New Structure RE-12442 Type Hybrid Fe-Based Superconductors" Magnetochemistry 9, no. 7: 164. https://doi.org/10.3390/magnetochemistry9070164
APA StylePokhriyal, A., Ghosh, A., Sen, S., & Ghosh, H. (2023). Interplay of Magnetic Interaction and Electronic Structure in New Structure RE-12442 Type Hybrid Fe-Based Superconductors. Magnetochemistry, 9(7), 164. https://doi.org/10.3390/magnetochemistry9070164