Modelling of Magnetic Stray Fields in Multilayer Magnetic Films with In-Plane or Perpendicular Anisotropy
Abstract
:1. Introduction
2. Theoretical Model and Method
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche, K.; Samant, M. Magnetically engineered spintronic sensors and memory. Proc. IEEE 2003, 91, 661–680. [Google Scholar] [CrossRef]
- De Jonge, N.; Lamy, Y.; Schoots, K.; Oosterkamp, T.H. High brightness electron beam from a multi-walled carbon nanotube. Nature 2002, 420, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Norpoth, J.; Dreyer, S.; Jooss, C. Straightforward field calculations for uniaxial hardmagnetic prisms: Stray field distributions and dipolar coupling in regular arrays. J. Phys. D Appl. Phys. 2007, 41, 025001. [Google Scholar] [CrossRef]
- Tantardini, C.; Kvashnin, A.G.; Gatti, C.; Yakobson, B.I.; Gonze, X. Computational Modeling of 2D Materials under High Pressure and Their Chemical Bonding: Silicene as Possible Field-Effect Transistor. ACS Nano 2021, 15, 6861–6871. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Chen, Y.; Liu, F.; Chen, X.; Xu, B.; Lu, P.; Patwari, M.; Xi, H.; Chang, C.; Miller, B.; et al. Commercial TMR heads for hard disk drives: Characterization and extendibility at 300 gbit 2. IEEE Trans. Magn. 2006, 42, 97–102. [Google Scholar]
- Slaughter, J.M.; Rizzo, N.D.; Janesky, J.; Whig, R.; Mancoff, F.B.; Houssameddine, D.; Sun, J.J.; Aggarwal, S.; Nagel, K.; Deshpande, S.; et al. High density ST-MRAM technology (Invited). In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 29.23.21–29.23.24. [Google Scholar]
- Bapna, M.; Piotrowski, S.K.; Oberdick, S.D.; Li, M.; Chien, C.-L.; Majetich, S.A. Magnetostatic effects on switching in small magnetic tunnel junctions. Appl. Phys. Lett. 2016, 108, 022406. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [CrossRef]
- Devolder, T.; Carpenter, R.; Rao, S.; Kim, W.; Couet, S.; Swerts, J.; Kar, G.S. Offset fields in perpendicularly magnetized tunnel junctions. J. Phys. D Appl. Phys. 2019, 52, 274001. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, Z.; Freitas, P.P.; Martins, J.L. Current-induced magnetization switching in magnetic tunnel junctions. Appl. Phys. Lett. 2003, 82, 2871–2873. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Wang, J.; Freitas, P.P.; Martins, J.L. Current-induced switching in low resistance magnetic tunnel junctions. J. Appl. Phys. 2003, 93, 8385–8387. [Google Scholar] [CrossRef]
- Jenkins, S.; Meo, A.; Elliott, L.E.; Piotrowski, S.K.; Bapna, M.; Chantrell, R.W.; Majetich, S.A.; Evans, R.F.L. Magnetic stray fields in nanoscale magnetic tunnel junctions. J. Phys. D Appl. Phys. 2019, 53, 044001. [Google Scholar] [CrossRef]
- Tantardini, C.; Benassi, E. Crystal structure resolution of an insulator due to the cooperative Jahn–Teller effect through Bader’s theory: The challenging case of cobaltite oxide Y114. Dalton Trans. 2018, 47, 5483–5491. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-H.; Zeng, L.; Zhao, W.; Liu, Y. Phase-Locking of Spin-Torque Nano-Oscillator Pairs by Magnetic Dipolar Coupling in Electrical Serial Connection. SPIN 2018, 8, 1850013. [Google Scholar] [CrossRef]
- Belanovsky, A.D.; Locatelli, N.; Skirdkov, P.N.; Araujo, F.A.; Grollier, J.; Zvezdin, K.A.; Cros, V.; Zvezdin, A.K. Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators. Phys. Rev. B 2012, 85, 100409. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Pirro, P.; Verba, R.; Slavin, A.; Hillebrands, B.; Chumak, A.V. Reconfigurable nanoscale spin-wave directional coupler. Sci. Adv. 2018, 4, e1701517. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Kewenig, M.; Schneider, M.; Verba, R.; Kohl, F.; Heinz, B.; Geilen, M.; Mohseni, M.; Lägel, B.; Ciubotaru, F.; et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 2020, 3, 765–774. [Google Scholar] [CrossRef]
- Sasaki, H.; Mikoshiba, N. Directional coupling of magnetostatic surface waves in a layered structure of YIG films. J. Appl. Phys. 1981, 52, 3546–3552. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamic, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Donahue, M.J.; Porter, D.G. User’s Guide; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [Google Scholar]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef] [Green Version]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chen, S.; Liu, J.; Zhou, D.; Zhuang, B.; Chen, S.; Zhao, Y. The longitudinal inhomogeneity of applied magnetic field above PMG. Phys. C Supercond. 2019, 569, 1353561. [Google Scholar] [CrossRef]
- Fidler, J.; Schrefl, T.; Tsiantos, V.D.; Scholz, W.; Suess, D.; Forster, H. Ultrafast switching of magnetic nanoelements using a rotating field. J. Appl. Phys. 2002, 91, 7974. [Google Scholar] [CrossRef]
- Seki, T.; Mitani, S.; Yakushiji, K.; Takanashi, K. Spin-polarized current-induced magnetization reversal in perpendicularly magnetized L 1 0-Fe Pt layers. Appl. Phys. Lett. 2006, 88, 172504. [Google Scholar] [CrossRef]
- Park, J.-H.; Moneck, M.T.; Park, C.; Zhu, J.-G. Spin-transfer induced switching in nanomagnetoresistive devices composed of Co/Pt multilayers with perpendicular magnetic anisotropy. J. Appl. Phys. 2009, 105, 07D129. [Google Scholar] [CrossRef]
- Kazantseva, N.; Hinzke, D.; Nowak, U.; Chantrell, R.W.; Atxitia, U.; Chubykalo-Fesenko, O. Towards multiscale modeling of magnetic materials: Simulations of FePt. Phys. Rev. B 2008, 77, 184428. [Google Scholar] [CrossRef] [Green Version]
- Zha, C.L.; Ma, B.; Zhang, Z.Z.; Gao, T.R.; Gan, F.X.; Jin, Q.Y. L 1 0 FePt films deposited on pyramid-type Si substrate for perpendicular magnetic recording media. Appl. Phys. Lett. 2006, 89, 022506. [Google Scholar] [CrossRef]
- Xiao-Fan, G.; Yong, Y.; Xiao-Jing, Z. Analytic expression of magnetic field distribution of rectangular permanent magnets. Appl. Math. Mech. 2004, 25, 297–306. [Google Scholar] [CrossRef]
- He, Y. Inhomogeneity of external magnetic field for permanent magnet. Acta Phys. Sin. 2013, 62, 084105. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Wang, Y.; Liu, Y. Modelling of Magnetic Stray Fields in Multilayer Magnetic Films with In-Plane or Perpendicular Anisotropy. Magnetochemistry 2022, 8, 159. https://doi.org/10.3390/magnetochemistry8110159
Zhou S, Wang Y, Liu Y. Modelling of Magnetic Stray Fields in Multilayer Magnetic Films with In-Plane or Perpendicular Anisotropy. Magnetochemistry. 2022; 8(11):159. https://doi.org/10.3390/magnetochemistry8110159
Chicago/Turabian StyleZhou, Sai, Yiyue Wang, and Yaowen Liu. 2022. "Modelling of Magnetic Stray Fields in Multilayer Magnetic Films with In-Plane or Perpendicular Anisotropy" Magnetochemistry 8, no. 11: 159. https://doi.org/10.3390/magnetochemistry8110159
APA StyleZhou, S., Wang, Y., & Liu, Y. (2022). Modelling of Magnetic Stray Fields in Multilayer Magnetic Films with In-Plane or Perpendicular Anisotropy. Magnetochemistry, 8(11), 159. https://doi.org/10.3390/magnetochemistry8110159