Role of Disordered Precursor in L10 Phase Formation in FePt-Based Nanocomposite Magnet
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. As-Cast State
3.2. Isothermal Annealing
3.2.1. XRD Analysis
3.2.2. Mössbauer Analysis
3.2.3. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyubina, J.; Khlopkov, K.; Gutfleisch, O.; Müller, K.-H.; Schultz, L. Intergrain interactions in nanocomposite Fe–Pt powders. J. Appl. Phys. 2006, 99, 08E903. [Google Scholar] [CrossRef]
- Crisan, A.D.; Crisan, O. Direct formation of L10 FePt in as-cast FePt-based magnetic nanocomposite ribbons without post-synthesis annealing. J. Phys. D Appl. Phys. 2011, 44, 365002. [Google Scholar] [CrossRef]
- Von Haeften, K.; Binns, C.; Brewer, A.; Crisan, O.; Howes, P.B.; Lowe, M.P.; Sibbley-Allen, C.; Thornton, S.C. A novel approach towards the production of luminescent silicon nanoparticles: Sputtering, gas aggregation and co-deposition with H2O. Eur. Phys. J. D 2009, 52, 11–14. [Google Scholar] [CrossRef]
- Chrobak, A.; Ziółkowski, G.; Randrianantoandro, N.; Klimontko, J.; Chrobak, D.; Prusik, K.; Rak, J. Ultra-high coercivity of (Fe86−xNbxB14)0.88Tb0.12 bulk nanocrystalline magnets. Acta Mater. 2015, 98, 318. [Google Scholar] [CrossRef]
- Pietrusiewicz, P.; Nabialek, M.; Jez, B. Evolution of the structural and magnetic properties of bulk Fe61Co10B20W1Y8−XPtx alloys through the partial substitution of Pt for Y. Materials 2020, 13, 4962. [Google Scholar] [CrossRef]
- Ma, D.G.; Wang, Y.M.; Li, Y.H.; Umetsu, R.Y.; Ou, S.L.; Yubuta, K.; Zhang, W. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing. J. Mater. Sci. Technol. 2020, 36, 128–133. [Google Scholar] [CrossRef]
- Grabias, A.; Kopcewicz, M.; Latuch, J.; Oleszak, D.; Pekala, M.; Kowalczyk, M. Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B. alloys. J. Magn. Magn. Mater. 2017, 434, 126–134. [Google Scholar] [CrossRef]
- Tsai, J.L.; Huang, J.; Chen, L.H.; Lin, C.S. Magnetic properties and microstructure of exchange coupled FePt-FeB films. Surf. Coat. Technol. 2013, 231, 456–459. [Google Scholar] [CrossRef]
- Choi, G.M.; Min, B.C.; Shin, K.H. L10 ordering of FePtB layers by oxidation-induced stress of capping layer. Appl. Phys. A 2013, 111, 389–394. [Google Scholar] [CrossRef]
- Grabias, A.; Kopcewicz, M.; Oleszak, D.; Latuch, J.; Kowalczyk, M.; Pekala, M. Structural transformations and magnetic properties of Fe60Pt15B25 and Fe60Pt25B15 nanocomposite alloys. J. Magn. Magn. Mater. 2010, 322, 3137–3141. [Google Scholar] [CrossRef]
- Tsai, J.L.; Huang, J.C.; Tai, H.W.; Tsai, W.C.; Lin, Y.C. Magnetic properties and microstructure of FePtB, FePt(B-Ag) granular films. J. Magn. Magn. Mater. 2013, 329, 6–13. [Google Scholar] [CrossRef]
- Kaushik, N.; Sharma, P.; Nagar, S.; Rao, K.V.; Kimura, H.; Makino, A.; Inoue, A. Exchange-coupled FePtB nano-composite hard magnets produced by pulsed laser deposition. Mater. Sci. Eng. B 2010, 171, 62–68. [Google Scholar] [CrossRef]
- Sharma, P.; Waki, J.; Kaushik, N.; Louzguine-Luzgin, D.V.; Kimura, H.; Inoue, A. High coercivity characteristics of FePtB exchange-coupled nanocomposite thick film spring magnets produced by sputtering. Acta Mater. 2007, 55, 4203–4212. [Google Scholar] [CrossRef]
- Chang, C.W.; Chang, H.W.; Chiu, C.H.; Chen, C.H.; Chang, W.C.; Ouyang, H.; Chang, C.W.; Liu, C.C. The effect of annealing time on the magnetic properties and microstructure of (Fe0.675Pt0.325)84B16 ribbons. J. Magn. Magn. Mater. 2006, 310, 2593–2595. [Google Scholar] [CrossRef]
- Chang, C.W.; Chang, H.W.; Chiu, C.H.; Chang, W.C. Effect of boron on the magnetic properties and exchange-coupling effect of FePtB-type nanocomposite ribbons. J. Appl. Phys. 2005, 97, 10N117. [Google Scholar] [CrossRef]
- Li, N.; Lairson, B.M. Magnetic recording on FePt and FePtB intermetallic compound media. IEEE Trans. Magn. 1999, 35, 1077–1082. [Google Scholar]
- Crisan, A.D.; Nicula, R.; Crisan, O.; Burkel, E. Thermally and pressure activated phase evolution in Fe–Pt–Nb–B melt spun ribbons. Mater. Sci. Eng. C 2007, 27, 1280–1282. [Google Scholar] [CrossRef]
- Crisan, O.; Crisan, A.; Randrianantoandro, D.N.; Nicula, R.; Burkel, E. Crystallization processes and phase evolution in amorphous Fe–Pt–Nb–B alloys. J. Alloys Compd. 2007, 440, L3–L7. [Google Scholar] [CrossRef]
- Crisan, A.D.; Crisan, O.; Randrianantoandro, N.; Valeanu, M.; Morariu, M.; Burkel, E. Crystallization processes in Fe–Pt–Nb–B melt spun ribbons. Mater. Sci. Eng. C 2007, 27, 1283–1285. [Google Scholar] [CrossRef]
- Bruck, E.; Xiao, Q.F.; Thang, P.D.; Toonen, M.J.; de Boer, F.R.; Buschow, K.H.J. Influence of phase transformation on the permanent-magnetic properties of Fe–Pt based alloys. Physica B 2001, 300, 215–229. [Google Scholar] [CrossRef]
- Makino, A.; Bitoh, T. High coercivity of melt-spun (Fe0.55Pt0.45)78Zr2–4B18–20 nanocrystalline alloys with L10 structure. J. Appl. Phys. 2004, 95, 7498–7500. [Google Scholar] [CrossRef]
- Makino, A.; Bitoh, T.; Inoue, A.; Hirotu, Y. Magnetic properties and structure of Fe–Pt–M–B (M = Zr, Nb and Ti) alloys produced by quenching technique. J. Alloys Compd. 2007, 434, 614–617. [Google Scholar] [CrossRef]
- Randrianantoandro, N.; Crisan, A.D.; Crisan, O.; Marcin, J.; Kovac, J.; Hanko, J.; Greneche, J.M.; Svec, P.; Chrobak, A.; Skorvanek, I. The influence of microstructure on magnetic properties of nanocrystalline Fe–Pt–Nb–B permanent magnet ribbons. J. Appl. Phys. 2010, 108, 093910. [Google Scholar] [CrossRef]
- Wang, S.; Kang, S.S.; Nikles, D.E.; Harrell, J.W.; Wu, X.W. Magnetic properties of self-organized L10 FePtAg nanoparticle arrays. J. Magn. Magn. Mater. 2003, 266, 49–56. [Google Scholar] [CrossRef]
- Seqqat, M.; Nogues, M.; Crisan, O.; Kuncser, V.; Cristea, L.; Jianu, A.; Filoti, G.; Dormann, J.L.; Sayah, D.; Godinho, M. Magnetic properties of Fe100−xSmx thin films and Fe80−xSmxB20 thin films and ribbons. J. Magn. Magn. Mater. 1996, 157, 225. [Google Scholar] [CrossRef]
- Crisan, O.; Angelakeris, M.; Flevaris, N.K.; Filoti, G. Magnetism and Anisotropy in Core-Shell Nanoparticles. J. Optoelectron. Adv. Mater. 2003, 5, 959. [Google Scholar]
- Crisan, O.; Labaye, Y.; Berger, L.; Greneche, J.M.; Coey, M.D. Exchange coupling effects in nanocrystalline alloys studied by Monte Carlo simulation. J. Appl. Phys. 2002, 91, 8727. [Google Scholar] [CrossRef]
- Gonzalez, J.A.; Andres, J.P.; De Toro, J.A.; Muniz, P.; Munoz, T.; Crisan, O.; Binns, C.; Riveiro, J.M. Co–CoO nanoparticles prepared by reactive gas-phase aggregation. J. Nanopart. Res. 2009, 11, 2105–2111. [Google Scholar] [CrossRef]
- Reddy, V.R.; Crisan, O.; Gupta, A.; Kuncser, V. Tuning exchange spring effects in FePt/Fe(Co) magnetic bilayers. Thin Solid Film. 2012, 520, 2184. [Google Scholar] [CrossRef]
- Crisan, A.D. Compositional studies and thermal analysis in amorphous and nanocrystalline FePtNbB melt spun ribbons. J. Optoelectron. Adv. Mater. 2010, 12, 250–256. [Google Scholar]
- Rosenberg, M.; Kuncser, V.; Crisan, O.; Hernando, A.; Navarro, E.; Filoti, G. A Mössbauer spectroscopy and magnetic study of FeRh. J. Magn. Magn. Mater. 1998, 177, 135–136. [Google Scholar] [CrossRef]
- Iwata, S.; Yamashita, S.; Tsunashima, S. Perpendicular magnetic anisotropy and magneto-optical Kerr spectra of MBE-grown PtCo alloy films. IEEE Trans. Magn. 1997, 33, 3670. [Google Scholar] [CrossRef]
- Chang, C.W.; Chang, H.W.; Chiu, C.H.; Hsieh, C.C.; Fang, Y.K.; Chang, W.C. Magnetic property improvement of Pt-lean FePt/Fe–B-type nanocomposites by Co substitution. J. Appl. Phys. 2008, 103, 07E133. [Google Scholar] [CrossRef]
- Makino, A.; Bitoh, T.; Nakagawa, M. Direct synthesis of L10-(Fe,Co)Pt nanocrystallites from (Fe,Co)–Pt–Zr–B liquid phase by melt-spinning. J. Non-Cryst. Sol. 2007, 353, 3655–3660. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W. Nanocrystalline Fe-Pt-B base hard magnets with high coercive force obtained from amorphous precursor. J. Appl. Phys. 2005, 97, 10H308. [Google Scholar] [CrossRef]
- Goto, T.; Utsugi, H.; Watanabe, K. Mössbauer study of permanent magnets Fe-Pt. Hyperfine Interact. 1990, 54, 539. [Google Scholar] [CrossRef]
- BBrzozka, K.; Slawska-Waniewska, A.; Jezuita, K. Mössbauer studies of FeZrB(Cu) amorphous alloys. J. Magn. Magn. Mater. 1996, 160, 255–256. [Google Scholar] [CrossRef]
Sample | Anneal. | L10 FePt | A1 FePt | Grain Size L10 FePt (nm) | Grain Size A FePt (nm) | ||
---|---|---|---|---|---|---|---|
a (Å) | c (Å) | c/a | a (Å) | ||||
Fe65Pt15Zr3B17 | As-cast | - | - | - | 3.8411 ± 0.02416 | - | 3.8 ± 1.4 |
500 °C | 3.8542 ± 0.0043 | 3.7127 ± 0.0067 | 0.9632 | 3.8315 ± 0.0308 | 15 ± 2 | 17 ± 3 | |
600 °C | 3.8537 ± 0.0027 | 3.7134 ± 0.0042 | 0.9636 | 3.8268 ± 0.0284 | 30 ± 3 | 36 ± 4 | |
700 °C | 3.8524 ± 0.0049 | 3.7147 ± 0.0071 | 0.9642 | 3.8379 ± 0.0247 | 46 ± 5 | 49 ± 5 | |
800 °C | 3.8516 ± 0.0052 | 3.7166 ± 0.0051 | 0.9649 | 3.8292 ± 0.0303 | 57 ± 3 | 54 ± 3 |
Annealing T | Profile R-Factor Rp | Weighted Profile Rwp | Goodness-of-Fit χ2 |
---|---|---|---|
500 °C | 4.89 | 2.11 | 1.37 |
600 °C | 4.31 | 2.24 | 1.23 |
700 °C | 3.78 | 2.19 | 1.31 |
800 °C | 3.54 | 2.05 | 1.29 |
Samples | IS (mm/s) | Γ/2 (mm/s) | QS (mm/s) | Bhf (T) | % | Phase |
---|---|---|---|---|---|---|
500 °C | 0.21 | 0.18 | −0.1 | 30.5 | 8 | A1(FePt) |
0.30 | 0.18 | 0.1 | 29.2 | 10 | A1(FePt) | |
0.27 | 0.18 | 0.27 | 27.6 | 28 | L10(FePt) | |
0.23 | 0.18 | 0.1 | 25.8 | 7 | Fe3B | |
0.12 | 0.18 | 0 | 22.1 | 7 | Fe2B | |
0.26 | 0.18 | 0.03 | 9.9 | 40 | Disordered Fe-Zr-B | |
600 °C | 0.20 | 0.18 | 0 | 28 | 13 | A1(FePt) |
0.28 | 0.18 | 0.33 | 27.6 | 43 | L10(FePt) | |
0.12 | 0.18 | 0 | 22.8 | 5 | Fe2B | |
0.28 | 0.18 | 0.06 | 9.5 | 39 | Disordered Fe-Zr-B | |
700 °C | 0.17 | 0.18 | 0.06 | 28.1 | 12 | A1(FePt) |
0.28 | 0.18 | 0.33 | 27.5 | 44 | L10(FePt) | |
0.11 | 0.18 | 0 | 22 | 6 | Fe2B | |
0.29 | 0.18 | 0.1 | 9.5 | 38 | Disordered Fe-Zr-B |
Annealing Conditions | Hc (kA/m) | μ0MS (T) | μ0Mr (T) | Mr/Ms | (BH)max (kJ/m3) |
---|---|---|---|---|---|
As-cast | 2.94 | 1.26 | 1.2 | 0.95 | - |
500 °C | 194 | 1.1 | 0.85 | 0.77 | 61 |
600 °C | 847 | 0.9 | 0.63 | 0.70 | 64 |
700 °C | 877 | 0.9 | 0.63 | 0.70 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisan, A.D.; Dan, I.; Crisan, O. Role of Disordered Precursor in L10 Phase Formation in FePt-Based Nanocomposite Magnet. Magnetochemistry 2021, 7, 149. https://doi.org/10.3390/magnetochemistry7110149
Crisan AD, Dan I, Crisan O. Role of Disordered Precursor in L10 Phase Formation in FePt-Based Nanocomposite Magnet. Magnetochemistry. 2021; 7(11):149. https://doi.org/10.3390/magnetochemistry7110149
Chicago/Turabian StyleCrisan, Alina Daniela, Ioan Dan, and Ovidiu Crisan. 2021. "Role of Disordered Precursor in L10 Phase Formation in FePt-Based Nanocomposite Magnet" Magnetochemistry 7, no. 11: 149. https://doi.org/10.3390/magnetochemistry7110149
APA StyleCrisan, A. D., Dan, I., & Crisan, O. (2021). Role of Disordered Precursor in L10 Phase Formation in FePt-Based Nanocomposite Magnet. Magnetochemistry, 7(11), 149. https://doi.org/10.3390/magnetochemistry7110149