Energy Conversion Associated with Intermittent Currents in the Magnetosheath Downstream of the Quasi-Parallel Shock
Abstract
:1. Introduction
2. Instruments and Event Overview
3. Energy Conversion between Electromagnetic Fields and Particles
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairfield, D.H. Average and Unusual Locations of the Earth’s Magnetopause and Bow Shock. J. Geophys. Res. 1971, 76, 6700–6716. [Google Scholar] [CrossRef]
- Peredo, M.; Slavin, J.; Mazur, E.; Curtis, S. Three-Dimensional Position and Shape of the Bow Shock and Their Variation with Alfvénic, Sonic and Magnetosonic Mach Numbers and Interplanetary Magnetic Field Orientation. J. Geophys. Res. Space Phys. 1995, 100, 7907–7916. [Google Scholar] [CrossRef]
- Jones, F.C.; Ellison, D.C. The Plasma Physics of Shock Acceleration. Space Sci. Rev. 1991, 58, 259–346. [Google Scholar] [CrossRef]
- McKean, M.E.; Winske, D.; Gary, S.P. Mirror and Ion Cyclotron Anisotropy Instabilities in the Magnetosheath. J. Geophys. Res. Space Phys. 1992, 97, 19421–19432. [Google Scholar] [CrossRef]
- Lee, L.C.; Price, C.P.; Wu, C.S.; Mandt, M.E. A Study of Mirror Waves Generated Downstream of a Quasi-Perpendicular Shock. J. Geophys. Res. Space Phys. 1988, 93, 247–250. [Google Scholar] [CrossRef]
- Hao, Y.; Lu, Q.; Gao, X.; Huang, C.; Lu, S.; Shan, L.; Wang, S. He2+ Dynamics and Ion Cyclotron Waves in the Downstream of Quasi-Perpendicular Shocks: 2-D Hybrid Simulations. J. Geophys. Res. Space Phys. 2014, 119, 3225–3236. [Google Scholar] [CrossRef]
- Lu, Q.M.; Wang, S. Electromagnetic Waves Downstream of Quasi-Perpendicular Shocks. J. Geophys. Res. Space Phys. 2006, 111, A05204. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Z.; Lu, Q.; Wang, S. The Nonlinear Evolution of Ion Cyclotron Waves in the Earth’s Magnetosheath. Plasma Sci. Technol. 2009, 11, 274. [Google Scholar]
- Burgess, D.; Lucek, E.; Scholer, M.; Bale, S.; Balikhin, M.; Balogh, A.; Horbury, T.; Krasnoselskikh, V.; Kucharek, H.; Lembège, B. Quasi-Parallel Shock Structure and Processes. Space Sci. Rev. 2005, 118, 205–222. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, H.; Wang, X.; Lu, S.; Wang, R.; Gao, X.; Wang, S. Turbulence-Driven Magnetic Reconnection in the Magnetosheath Downstream of a Quasi-Parallel Shock: A Three-Dimensional Global Hybrid Simulation. Geophys. Res. Lett. 2020, 47, e2019GL085661. [Google Scholar] [CrossRef]
- Ren, J.; Guo, J.; Lu, Q.; Lu, S.; Gao, X.; Ma, J.; Wang, R. Honeycomb-Like Magnetosheath Structure Formed by Jets: Three-Dimensional Global Hybrid Simulations. Geophys. Res. Lett. 2024, 51, e2024GL109925. [Google Scholar] [CrossRef]
- Li, H.; Jiang, W.; Wang, C.; Verscharen, D.; Zeng, C.; Russell, C.; Giles, B.; Burch, J. Evolution of the Earth’s Magnetosheath Turbulence: A Statistical Study Based on Mms Observations. Astrophys. J. Lett. 2020, 898, L43. [Google Scholar] [CrossRef]
- Lu, Q.M.; Guo, A.; Yang, Z.W.; Wang, R.S.; Lu, S.; Chen, R.; Gao, X.L. Upstream Plasma Waves and Downstream Magnetic Reconnection at a Reforming Quasi-Parallel Shock. Astrophys. J. 2024, 964, 33. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Lu, Q.; Lu, S.; Huang, K. Direct Observation of Magnetic Reconnection Resulting from Interaction between Magnetic Flux Rope and Magnetic Hole in the Earth’s Magnetosheath. Geophys. Res. Lett. 2024, 51, e2023GL107968. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Lu, Q.; Russell, C.; Ergun, R.; Wang, S. Large-Scale Parallel Electric Field Colocated in an Extended Electron Diffusion Region During the Magnetosheath Magnetic Reconnection. Geophys. Res. Lett. 2021, 48, e2021GL094879. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Lu, Q.; Burch, J.; Wang, S. Energy Dissipation Via Magnetic Reconnection within the Coherent Structures of the Magnetosheath Turbulence. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028860. [Google Scholar] [CrossRef]
- Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Le Contel, O.; Deng, X.; Zhou, M.; Fu, H.; Shi, Q. Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma. Astrophys. J. Lett. 2017, 836, L27. [Google Scholar] [CrossRef]
- Yao, S.; Li, J.; Zhou, X.Z.; Shi, Q.; Zong, Q.G.; Zhang, H.; Li, W.; Hamrin, M.; Volwerk, M.; Pitkänen, T. Ion-Vortex Magnetic Hole with Reversed Field Direction in Earth’s Magnetosheath. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031749. [Google Scholar] [CrossRef]
- Schwartz, S.J.; Kucharek, H.; Farrugia, C.J.; Trattner, K.; Gingell, I.; Ergun, R.E.; Strangeway, R.; Gershman, D. Energy Conversion within Current Sheets in the Earth’s Quasi-Parallel Magnetosheath. Geophys. Res. Lett. 2021, 48, e2020GL091859. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, H.; Wang, T.; Cao, D.; Peng, F.; Yang, J.; Xu, Y. Reconstructing the Flux-Rope Topology Using the Fote Method. Sci. China Technol. Sci. 2019, 62, 144–150. [Google Scholar] [CrossRef]
- Xie, Z.-K.; Zong, Q.-G.; Yue, C.; Zhou, X.-Z.; Liu, Z.-Y.; He, J.-S.; Hao, Y.-X.; Ng, C.-S.; Zhang, H.; Yao, S.-T. Electron Scale Coherent Structure as Micro Accelerator in the Earth’s Magnetosheath. Nat. Commun. 2024, 15, 886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, S.; Yuan, Z.; Wei, Y.; Jiang, K.; Xu, S.; Zhang, J.; Lin, R.; Yu, L.; Xiong, Q. Statistical Characteristics of Electron Vortexes in the Terrestrial Magnetosheath. Astrophys. J. 2023, 957, 108. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, M.; Ma, W.; He, J.; Huang, S.; Zhong, Z.; Pang, Y.; Deng, X. Electron Heating in Magnetosheath Turbulence: Dominant Role of the Parallel Electric Field within Coherent Structures. Geophys. Res. Lett. 2023, 50, e2022GL102523. [Google Scholar] [CrossRef]
- Huang, S.; Sahraoui, F.; Retinò, A.; Le Contel, O.; Yuan, Z.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X.; Zhou, M. Mms Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma. Geophys. Res. Lett. 2016, 43, 7850–7858. [Google Scholar] [CrossRef]
- Retino, A.; Sundkvist, D.; Vaivads, A.; Mozer, F.; Andre, M.; Owen, C.J. In Situ Evidence of Magnetic Reconnection in Turbulent Plasma. Nat. Phys. 2007, 3, 235–238. [Google Scholar] [CrossRef]
- Burch, J.L.; Moore, T.E.; Torbert, R.B.; Giles, B.L. Magnetospheric Multiscale Overview and Science Objectives. Space Sci. Rev. 2016, 199, 5–21. [Google Scholar] [CrossRef]
- Vörös, Z.; Yordanova, E.; Varsani, A.; Genestreti, K.; Khotyaintsev, Y.V.; Li, W.; Graham, D.B.; Norgren, C.; Nakamura, R.; Narita, Y. Mms Observation of Magnetic Reconnection in the Turbulent Magnetosheath. J. Geophys. Res. Space Phys. 2017, 122, 11442–11467. [Google Scholar] [CrossRef]
- Stawarz, J.E.; Eastwood, J.P.; Phan, T.D.; Gingell, I.L.; Shay, M.A.; Burch, J.L.; Ergun, R.E.; Giles, B.L.; Gershman, D.J.; Le Contel, O.; et al. Properties of the Turbulence Associated with Electron-Only Magnetic Reconnection in Earth’s Magnetosheath. Astrophys. J. Lett. 2019, 877, L37. [Google Scholar] [CrossRef]
- Wilder, F.D.; Conley, M.; Ergun, R.; Newman, D.; Chasapis, A.; Ahmadi, N.; Burch, J.; Torbert, R.; Strangeway, R.; Giles, B. Magnetospheric Multiscale Observations of Waves and Parallel Electric Fields in Reconnecting Current Sheets in the Turbulent Magnetosheath. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030511. [Google Scholar] [CrossRef]
- Phan, T.; Eastwood, J.P.; Shay, M.; Drake, J.; Sonnerup, B.Ö.; Fujimoto, M.; Cassak, P.; Øieroset, M.; Burch, J.; Torbert, R. Electron Magnetic Reconnection without Ion Coupling in Earth’s Turbulent Magnetosheath. Nature 2018, 557, 202–206. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, Q.M.; Lu, S.; Russell, C.T.; Burch, J.L.; Gershman, D.J.; Gonzalez, W.; Wang, S. Physical Implication of Two Types of Reconnection Electron Diffusion Regions with and without Ion-Coupling in the Magnetotail Current Sheet. Geophys. Res. Lett. 2020, 47, e2020GL088761. [Google Scholar] [CrossRef]
- Lu, S.; Lu, Q.; Wang, R.; Pritchett, P.L.; Hubbert, M.; Qi, Y.; Huang, K.; Li, X.; Russell, C. Electron-Only Reconnection as a Transition from Quiet Current Sheet to Standard Reconnection in Earth’s Magnetotail: Particle-in-Cell Simulation and Application to Mms Data. Geophys. Res. Lett. 2022, 49, e2022GL098547. [Google Scholar] [CrossRef]
- Wang, R.; Lu, Q.; Nakamura, R.; Baumjohann, W.; Huang, C.; Russell, C.T.; Burch, J.; Pollock, C.J.; Gershman, D.; Ergun, R. An Electron-Scale Current Sheet without Bursty Reconnection Signatures Observed in the near-Earth Tail. Geophys. Res. Lett. 2018, 45, 4542–4549. [Google Scholar] [CrossRef]
- Lu, S.; Wang, R.S.; Lu, Q.M.; Angelopoulos, V.; Nakamura, R.; Artemyev, A.V.; Pritchett, P.L.; Liu, T.Z.; Zhang, X.J.; Baumjohann, W.; et al. Magnetotail Reconnection Onset Caused by Electron Kinetics with a Strong External Driver. Nat. Commun. 2020, 11, 5049. [Google Scholar] [CrossRef] [PubMed]
- Kropotina, J.A.; Webster, L.; Artemyev, A.V.; Bykov, A.M.; Vainchtein, D.L.; Vasko, I.Y. Solar Wind Discontinuity Transformation at the Bow Shock. Astrophys. J. 2021, 913, 142. [Google Scholar] [CrossRef]
- Wang, S.; Lu, S.; Lu, Q.; Wang, R.; Ren, J.; Gao, X.; Guo, J. Origin of Reconnecting Current Sheets in Shocked Turbulent Plasma. Sci. Adv. 2024, 10, eado4639. [Google Scholar] [CrossRef]
- Wang, S.M.; Wang, R.S.; Lu, Q.M.; Fu, H.S.; Wang, S. Direct Evidence of Secondary Reconnection inside Filamentary Currents of Magnetic Flux Ropes During Magnetic Reconnection. Nat. Commun. 2020, 11, 3964. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Lu, Q. Division of Magnetic Flux Rope Via Magnetic Reconnection Observed in the Magnetotail. Geophys. Res. Lett. 2023, 50, e2022GL101084. [Google Scholar] [CrossRef]
- Huang, C.; Lu, Q.M.; Wang, R.S.; Guo, F.; Wu, M.Y.; Lu, S.; Wang, S. Development of Turbulent Magnetic Reconnection in A. Magnetic Island. Astrophys. J. 2017, 835, 245. [Google Scholar] [CrossRef]
- Hou, C.; He, J.; Duan, D.; Zhu, X.; Li, W.; Verscharen, D.; Liu, T.; Wang, T. Efficient Energy Conversion through Vortex Arrays in the Turbulent Magnetosheath. Astrophys. J. 2023, 946, 13. [Google Scholar] [CrossRef]
- Ergun, R.E.; Tucker, S.; Westfall, J.; Goodrich, K.A.; Malaspina, D.M.; Summers, D.; Wallace, J.; Karlsson, M.; Mack, J.; Brennan, N.; et al. The Axial Double Probe and Fields Signal Processing for the Mms Mission. Space Sci. Rev. 2016, 199, 167–188. [Google Scholar] [CrossRef]
- Lindqvist, P.A.; Olsson, G.; Torbert, R.B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; et al. The Spin-Plane Double Probe Electric Field Instrument for Mms. Space Sci. Rev. 2016, 199, 137–165. [Google Scholar] [CrossRef]
- Pollock, C.; Moore, T.; Jacques, A.; Burch, J.; Gliese, U.; Saito, Y.; Omoto, T.; Avanov, L.; Barrie, A.; Coffey, V.; et al. Fast Plasma Investigation for Magnetospheric Multiscale. Space Sci. Rev. 2016, 199, 331–406. [Google Scholar] [CrossRef]
- Russell, C.T.; Anderson, B.J.; Baumjohann, W.; Bromund, K.R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H.K.; Leneman, D.; Magnes, W.; et al. The Magnetospheric Multiscale Magnetometers. Space Sci. Rev. 2016, 199, 189–256. [Google Scholar] [CrossRef]
- Wang, R.S.; Nakamura, R.; Lu, Q.M.; Baumjohann, W.; Ergun, R.E.; Burch, J.L.; Volwerk, M.; Varsani, A.; Nakamura, T.; Gonzalez, W.; et al. Electron-Scale Quadrants of the Hall Magnetic Field Observed by the Magnetospheric Multiscale Spacecraft During Asymmetric Reconnection. Phys. Rev. Lett. 2017, 118, 175101. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.S.; Lu, Q.M.; Nakamura, R.; Baumjohann, W.; Russell, C.T.; Burch, J.L.; Ergun, R.E.; Lindqvist, P.A.; Wang, S.; Giles, B.; et al. Interaction of Magnetic Flux Ropes Via Magnetic Reconnection Observed at the Magnetopause. J. Geophys. Res.-Space 2017, 122, 10436–10447. [Google Scholar] [CrossRef]
- Burch, J.L.; Torbert, R.B.; Phan, T.D.; Chen, L.J.; Moore, T.E.; Ergun, R.E.; Eastwood, J.P.; Gershman, D.J.; Cassak, P.A.; Argall, M.R.; et al. Electron-Scale Measurements of Magnetic Reconnection in Space. Science 2016, 352, aaf2939. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Huang, C.; Lu, Q.; Lu, S.; Burch, J.; Wang, S. Energy Conversion and Partition in Plasma Turbulence Driven by Magnetotail Reconnection. Astrophys. J. 2022, 936, 34. [Google Scholar] [CrossRef]
- Wan, M.; Matthaeus, W.H.; Karimabadi, H.; Roytershteyn, V.; Shay, M.; Wu, P.; Daughton, W.; Loring, B.; Chapman, S.C. Intermittent Dissipation at Kinetic Scales in Collisionless Plasma Turbulence. Phys. Rev. Lett. 2012, 109, 195001. [Google Scholar] [CrossRef]
- Wan, M.; Matthaeus, W.H.; Roytershteyn, V.; Karimabadi, H.; Parashar, T.; Wu, P.; Shay, M. Intermittent Dissipation and Heating in 3d Kinetic Plasma Turbulence. Phys. Rev. Lett. 2015, 114, 175002. [Google Scholar] [CrossRef]
- Chasapis, A.; Matthaeus, W.H.; Parashar, T.N.; Wan, M.; Haggerty, C.C.; Pollock, C.J.; Giles, B.L.; Paterson, W.R.; Dorelli, J.; Gershman, D.J.; et al. In Situ Observation of Intermittent Dissipation at Kinetic Scales in the Earth’s Magnetosheath. Astrophys. J. Lett. 2018, 856, L19. [Google Scholar] [CrossRef]
- Voros, Z.; Yordanova, E.; Khotyaintsev, Y.V.; Varsani, A.; Narita, Y. Energy Conversion at Kinetic Scales in the Turbulent Magnetosheath. Front. Astron. Space 2019, 6, 60. [Google Scholar] [CrossRef]
- Osman, K.T.; Matthaeus, W.H.; Hnat, B.; Chapman, S.C. Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma. Phys. Rev. Lett. 2012, 108, 261103. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, R.; Matthaeus, W.H.; Parashar, T.N.; Yang, Y.; Chasapis, A.; Giles, B.L.; Gershman, D.J.; Pollock, C.J.; Russell, C.T.; Strangeway, R.J.; et al. Statistics of Kinetic Dissipation in the Earth’s Magnetosheath: Mms Observations. Phys. Rev. Lett. 2020, 124, 255101. [Google Scholar] [CrossRef] [PubMed]
- Northrop, T.G. Adiabatic Charged-Particle Motion. Rev. Geophys. 1963, 1, 283–304. [Google Scholar] [CrossRef]
- Dahlin, J.; Drake, J.; Swisdak, M. The Mechanisms of Electron Heating and Acceleration During Magnetic Reconnection. Phys. Plasmas 2014, 21, 092304. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Gao, X.; Lu, Q.; Chen, H.; Ma, J. Observation of Non-Resonance Interactions between Cold Protons and Emic Waves of Different Polarizations in the Inner Magnetosphere. Geophys. Res. Lett. 2023, 50, e2023GL104431. [Google Scholar] [CrossRef]
- Berchem, J.; Gendrin, R. Nonresonant Interaction of Heavy Ions with Electromagnetic Ion Cyclotron Waves. J. Geophys. Res. Space Phys. 1985, 90, 10945–10960. [Google Scholar] [CrossRef]
- Chen, C.H.K.; Boldyrev, S. Nature of Kinetic Scale Turbulence in the Earth’s Magnetosheath. Astrophys. J. 2017, 842, 122. [Google Scholar] [CrossRef]
- Gary, S.P.; Saito, S.; Li, H. Cascade of Whistler Turbulence: Particle-in-Cell Simulations. Geophys. Res. Lett. 2008, 35, L02104. [Google Scholar] [CrossRef]
- He, J.S.; Tu, C.Y.; Marsch, E.; Yao, S. Do Oblique Alfven/Ion-Cyclotron or Fast-Mode/Whistler Waves Dominate the Dissipation of Solar Wind Turbulence near the Proton Inertial Length? Astrophys. J. Lett. 2012, 745, L8. [Google Scholar] [CrossRef]
- He, J.; Zhu, X.; Verscharen, D.; Duan, D.; Zhao, J.; Wang, T. Spectra of Diffusion, Dispersion, and Dissipation for Kinetic Alfvénic and Compressive Turbulence: Comparison between Kinetic Theory and Measurements from Mms. Astrophys. J. 2020, 898, 43. [Google Scholar] [CrossRef]
- Hesse, M.; Cassak, P.A. Magnetic Reconnection in the Space Sciences: Past, Present, and Future. J. Geophys. Res.-Space 2020, 125, e2018JA025935. [Google Scholar] [CrossRef]
- Dong, C.; Wang, L.; Huang, Y.-M.; Comisso, L.; Sandstrom, T.A.; Bhattacharjee, A. Reconnection-Driven Energy Cascade in Magnetohydrodynamic Turbulence. Sci. Adv. 2022, 8, eabn7627. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Lu, Q.; Hwang, K.J.; Zong, Q.; Russell, C.T.; Wang, S. Observation of Nongyrotropic Electron Distribution across the Electron Diffusion Region in the Magnetotail Reconnection. Geophys. Res. Lett. 2019, 46, 14263–14273. [Google Scholar] [CrossRef]
- Wang, R.; Lu, S.; Wang, S.; Li, X.; Lu, Q. Recent Progress on Magnetic Reconnection by in Situ Measurements. Rev. Mod. Plasma Phys. 2023, 7, 27. [Google Scholar] [CrossRef]
- Fu, H.S.; Vaivads, A.; Khotyaintsev, Y.V.; Andre, M.; Cao, J.B.; Olshevsky, V.; Eastwood, J.P.; Retino, A. Intermittent Energy Dissipation by Turbulent Reconnection. Geophys. Res. Lett. 2017, 44, 37–43. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Lu, Q.; Russell, C.T.; Lu, S.; Cohen, I.J.; Ergun, R.; Wang, S. Three-Dimensional Network of Filamentary Currents and Super-Thermal Electrons During Magnetotail Magnetic Reconnection. Nat. Commun. 2022, 13, 3241. [Google Scholar] [CrossRef]
- Lu, S.; Lu, Q.; Wang, R.; Li, X.; Gao, X.; Huang, K.; Sun, H.; Yang, Y.; Artemyev, A.V.; An, X. Kinetic Scale Magnetic Reconnection with a Turbulent Forcing: Particle-in-Cell Simulations. Astrophys. J. 2023, 943, 100. [Google Scholar] [CrossRef]
- Wang, R.; Wang, S.; Lu, Q.; Li, X.; Lu, S.; Gonzalez, W. Direct Observation of Turbulent Magnetic Reconnection in the Solar Wind. Nat. Astron. 2023, 7, 18–28. [Google Scholar] [CrossRef]
- Ergun, R.; Ahmadi, N.; Kromyda, L.; Schwartz, S.; Chasapis, A.; Hoilijoki, S.; Wilder, F.; Stawarz, J.; Goodrich, K.; Turner, D. Observations of Particle Acceleration in Magnetic Reconnection–Driven Turbulence. Astrophys. J. 2020, 898, 154. [Google Scholar] [CrossRef]
- Wang, R.S.; Lu, Q.M.; Nakamura, R.; Huang, C.; Du, A.M.; Guo, F.; Teh, W.; Wu, M.Y.; Lu, S.; Wang, S. Coalescence of Magnetic Flux Ropes in the Ion Diffusion Region of Magnetic Reconnection. Nat. Phys. 2016, 12, 263–267. [Google Scholar] [CrossRef]
- Wang, R.; Cheng, Z.; Slavin, J.A.; Lu, Q.; Raines, J.; Lu, S.; Guo, J.; Gonzalez, W. Direct Detection of Ongoing Magnetic Reconnection at Mercury’s High-Latitude Magnetopause. Geophys. Res. Lett. 2024, 51, e2023GL106282. [Google Scholar] [CrossRef]
- Available online: https://lasp.colorado.edu/mms/sdc/public/about/browse-wrapper/ (accessed on 1 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, R.; Lu, S.; Guo, A.; Zhang, Z. Energy Conversion Associated with Intermittent Currents in the Magnetosheath Downstream of the Quasi-Parallel Shock. Magnetochemistry 2024, 10, 67. https://doi.org/10.3390/magnetochemistry10090067
Li X, Wang R, Lu S, Guo A, Zhang Z. Energy Conversion Associated with Intermittent Currents in the Magnetosheath Downstream of the Quasi-Parallel Shock. Magnetochemistry. 2024; 10(9):67. https://doi.org/10.3390/magnetochemistry10090067
Chicago/Turabian StyleLi, Xinmin, Rongsheng Wang, San Lu, Ao Guo, and Zhijian Zhang. 2024. "Energy Conversion Associated with Intermittent Currents in the Magnetosheath Downstream of the Quasi-Parallel Shock" Magnetochemistry 10, no. 9: 67. https://doi.org/10.3390/magnetochemistry10090067
APA StyleLi, X., Wang, R., Lu, S., Guo, A., & Zhang, Z. (2024). Energy Conversion Associated with Intermittent Currents in the Magnetosheath Downstream of the Quasi-Parallel Shock. Magnetochemistry, 10(9), 67. https://doi.org/10.3390/magnetochemistry10090067