Synergistic Effect of Magnetic Iron Oxide Nanoparticles with Medicinal Plant Extracts against Resistant Bacterial Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MagNPs
2.2. Plant Material Collection
2.3. Methanolic Extract Preparation
2.4. Bacterial Strains
2.5. Antibacterial Assay of Combined MagNPs—Plant Extracts
2.6. The Minimal Inhibitory Concentration (MIC)
2.7. Biofilm Formation Assay
2.8. Anti-Biofilm Formation Assay
2.9. Statistical Analysis
3. Results
3.1. Antibacterial Activity of the Combination of MagNPs + Plants Extract
3.2. Antibiofilm Assay
4. Discussion
5. Conclusions
6. Recommendation and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Plant Name | Plant Type | Part Used | Arabic Common Name |
---|---|---|---|
Rosmarinus officinalis | Bush | Aerial parts | Eklel El-Jabal |
Aloysia triphylla | Bush | Aerial parts | Mallisa |
Anchusa azurea | Herb | Aerial parts | Hamham /Lesan El-Thour |
Quercus infectoria | Tree | Bark | Dbbagh |
Sarcopoterium spinosum | Bush | Roots | Billan |
Urtica pilulifera | Herb | Aerial parts | Qarass |
Bacterial Strain | S. aureus ATCC 29213 | S. aureus ATCC 43300 MRSA | E. coli ATCC 25922 | E. coli BAA 2452 MDR | S. aureus ATCC 33591 Positive Control | Negative Control (TSB) |
---|---|---|---|---|---|---|
OD average | 0.365 | 0.527 | 0.108 | 0.193 | 0.482 | 0.095 ± 0.006 |
Strength of biofilm | M | S | N | W | S | N |
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2017, 12, 908–931. [Google Scholar] [CrossRef]
- Laurent, S.; Bridot, J.L.; Elst, L.V.; Muller, R.N. Magnetic iron oxide nanoparticles for biomedical applications. Future Med. Chem. 2010, 2, 427–449. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthetic Surg. 2010, 3, 32–33. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Webster, T.J. Magnetic nanoparticles: Biomedical applications and challenges. J. Mater. Chem. 2010, 20, 8760–8767. [Google Scholar] [CrossRef]
- Neu, H.C. The crisis in antibiotic resistance. Science 1992, 257, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–896. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.; Gunasekara, T.; Holton, J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan J. Infect. Dis. 2018, 8, 2–11. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Zheng, Y.; Hou, L.; Liu, M.; Newell, S.E.; Yin, G.; Yu, C.; Zhang, H.; Li, X.; Gao, D.; Gao, J.; et al. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. Sci. Adv. 2017, 3, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Prabhune, A.; Perry, C.C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 2010, 20, 6789–6798. [Google Scholar] [CrossRef]
- Lokina, S.; Narayanan, V. Antimicrobial and Anticancer Activity of Gold Nanoparticles Synthesized from Grapes Fruit Extract. Chem. Sci. Trans. 2013, 2, S105–S110. [Google Scholar]
- Fahmy, H.M.; Aly, E.M.; Mohamed, F.F.; Noor, N.A.; Elsayed, A.A. Neurotoxicity of green- synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats. Neurotoxicology 2020, 77, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Prodan, A.M.; Iconaru, S.L.; Ciobanu, C.S.; Chifiriuc, M.C.; Stoicea, M.; Predoi, D. Iron oxide magnetic nanoparticles: Characterization and toxicity evaluation by in vitro and in vivo assays. J. Nanomater. 2013, 2013, 587021. [Google Scholar]
- Valdiglesias, V.; Kilic, G.; Costa, C.; Fernandez-Bertolez, N.; Pasaro, E.; Teixeira, J.P.; Laffon, B. Effects of Iron Oxide Nanoparticles: Cytotoxicity, Genotoxicity, Developmental Toxicity, and Neurotoxicity Vanessa. Environ. Mol. Mutagen. 2014, 56, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, C.A.; Garcia, M.P.; Iocca, D.C.; Rebelo, L.G.; Souza, A.C.O.; Bocca, A.L.; Almeida Santos, M.d.F.M.; Morais, P.C.; Azevedo, R.B. Antifungal Activity of Amphotericin B Conjugated to Nanosized Magnetite in the Treatment of Paracoccidioidomycosis. PLoS Negl. Trop. Dis. 2016, 10, e0004754. [Google Scholar] [CrossRef] [PubMed]
- Pareta, R.A.; Taylor, E.; Webster, T.J. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology 2008, 19, 265101. [Google Scholar] [CrossRef]
- Gupta, A.K.; Naregalkar, R.R.; Vaidya, V.D.; Gupta, M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2007, 2, 23–39. [Google Scholar] [CrossRef]
- Auffan, M.; Achouak, W.; Rose, J.; Roncato, M.-A.; Chanéac, C.; Waite, D.T.; Masion, A.; Woicik, J.C.; Wiesner, M.R.; Bottero, J.-Y. Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008, 42, 6730–6735. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Song, J.; Jang, J. One-step fabrication of magnetic γ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties. Chem. Commun. 2010, 46, 6735–6737. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, H.J.; Lee, C.; Nelson, K.L.; Sedlak, D.L.; Yoon, J. Inactivation of escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl. Environ. Microbiol. 2010, 76, 7668–7670. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T.J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomed. 2010, 5, 277–283. [Google Scholar]
- Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 2015, 5, 14813. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, A.K.; Thorat, N.D.; Tandon, A.; Kim, J.; Park, S.H.; Kim, K.K. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci. Rep. 2016, 6, 33662. [Google Scholar] [CrossRef] [PubMed]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar]
- Arokiyaraj, S.; Saravanan, M.; Prakash, N.U.; Arasu, M.V.; Vijayakumar, B.; Vincent, S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: An in vitro study. Mater. Res. Bull. 2013, 48, 3323–3327. [Google Scholar] [CrossRef]
- Shahriary, M.; Veisi, H.; Hekmati, M.; Hemmati, S.; Nemmati, S. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater. Sci. Eng. C 2018, 90, 57–66. [Google Scholar] [CrossRef]
- Yazdani, F.; Seddigh, M. Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Mater. Chem. Phys. 2016, 184, 318–323. [Google Scholar] [CrossRef]
- Dinali, R.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Iron oxide nanoparticles in modern microbiology and biotechnology. Crit. Rev. Microbiol. 2017, 43, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Jubair, N.; Rajagopal, M.; Chinnappan, S.; Abdullah, N.B.; Fatima, A. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evid.-Based Complement. Altern. Med. 2021, 2021, 3663315. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Luo, J.; Deng, F.; Huang, Y.; Zhou, H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front. Pharmacol. 2022, 13, 839808. [Google Scholar] [CrossRef] [PubMed]
- Hamoud, R.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine 2014, 21, 443–447. [Google Scholar] [CrossRef]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Suffredini, I.B.; Paciencia, M.L.B.; Varella, A.D.; Younes, R.N. Antibacterial activity of Brazilian Amazon plant extracts. Braz. J. Infect. Dis. 2006, 10, 400–402. [Google Scholar] [CrossRef]
- Han, S.M.; Kim, J.M.; Hong, I.P.; Woo, S.O.; Kim, S.G.; Jang, H.R.; Pak, S.C. Antibacterial activity and antibiotic-enhancing effects of honeybee venom against methicillin-resistant staphylococcus aureus. Molecules 2016, 21, 79. [Google Scholar] [CrossRef]
- Band, V.I.; Hufnagel, D.A.; Jaggavarapu, S.; Sherman, E.X.; Wozniak, J.E.; Satola, S.W.; Farley, M.M.; Jacob, J.T.; Burd, E.M.; Weiss, D.S. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection. Nat. Microbiol. 2019, 4, 1627–1635. [Google Scholar] [CrossRef]
- Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 2019, 17, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Kandpal, N.D.; Sah, N.; Loshali, R.; Joshi, R.; Prasad, J. Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J. Sci. Ind. Res. 2014, 73, 87–90. [Google Scholar]
- Lee, J.; Isobe, T.; Senna, M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci. 1996, 177, 490–494. [Google Scholar] [CrossRef]
- Karaagac, O.; Kockar, H.; Tanrisever, T. Properties of iron oxide nanoparticles synthesized at different temperatures. J. Supercond. Nov. Magn. 2011, 24, 675–678. [Google Scholar] [CrossRef]
- Sathishkumar, G.; Logeshwaran, V.; Sarathbabu, S.; Jha, P.K.; Jeyaraj, M.; Rajkuberan, C.; Senthilkumar, N.; Sivaramakrishnan, S. Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Mahasneh, A.M. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Molecules 2010, 15, 1811–1824. [Google Scholar] [CrossRef] [PubMed]
- Ali-Shtayeh, M.S.; Yaghmour, R.M.R.; Faidi, Y.R.; Salem, K.; Al-Nuri, M.A. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol. 1998, 60, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2020.
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Lade, H.; Park, J.H.; Chung, S.H.; Kim, I.H.; Kim, J.M.; Joo, H.S.; Kim, J.S. Biofilm formation by staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J. Clin. Med. 2019, 8, 1853. [Google Scholar] [CrossRef]
- Singh, A.; Prakash, P.; Achra, A.; Singh, G.; Das, A.; Singh, R. Standardization and classification of in vitro biofilm formation by clinical isolates of Staphylococcus aureus. J. Glob. Infect. Dis. 2017, 9, 93–101. [Google Scholar]
- Datt, G.; Raja, M.M.; Abhyankar, A.C. Steering of Magnetic Interactions in Ni0.5Zn0.5Fe2−x(Mn)xO4 Nanoferrites via Substitution-Induced Cationic Redistribution. J. Phys. Chem. C 2021, 125, 10693–10707. [Google Scholar] [CrossRef]
- Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177, 421–427. [Google Scholar] [CrossRef]
- Alomari, A.; Ghanem, H.M.E.; Lehlooh, A.; Arafa, I.M.; Bsoul, I.; Batra, A. Mössbauer, VSM and X-ray Diffraction Study of Fe3O4 (NP’s)/PVOH for Biosensors Applications. Sens. Transducers 2015, 192, 53–60. [Google Scholar]
- Saqib, S.; Munis, M.F.H.; Zaman, W.; Ullah, F.; Shah, S.N.; Ayaz, A.; Farooq, M.; Bahadur, S. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Wiley Microsc. Res. Tech. 2018, 82, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Chang, T.; Chen, W.; Deng, J.; Li, S.; Zuo, Y.; Kang, L.; Yang, F.; Hostetter, M.; Volinsky, A.A. Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method. J. Alloys Compd. 2019, 773, 605–611. [Google Scholar] [CrossRef]
- Ahn, T.; Kim, J.H.; Yang, H.; Lee, J.W.; Kim, J. Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method. J. Phys. Chemisrty C 2012, 116, 6069–6076. [Google Scholar] [CrossRef]
- Al-Shabib, N.A.; Husain, F.M.; Ahmed, F.; Khan, R.A.; Khan, M.S.; Ansari, F.A.; Alam, M.Z.; Ahmed, M.A.; Khan, M.S.; Baig, M.H.; et al. Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria. Front. Microbiol. 2018, 9, 2567. [Google Scholar] [CrossRef]
- Ali, H.F.M.; El-Beltagi, H.S.; Nasr, N.F. Evaluation of antioxidant and antimicrobial activity of Aloysia triphylla. Electron. J. Environ. Agric. Food Chem. 2011, 10, 2689–2699. [Google Scholar]
- Bataineh, S.M.B.; Tarazi, Y.H.; Ahmad, W.A. Antibacterial Efficacy of Some Medicinal Plants on Multidrug Resistance Bacteria and Their Toxicity on Eukaryotic Cells. Appl. Sci. 2021, 11, 8479. [Google Scholar] [CrossRef]
- Morales, D. Oak trees (Quercus spp.) as a source of extracts with biological activities: A narrative review. Trends Food Sci. Technol. 2021, 109, 116–125. [Google Scholar] [CrossRef]
- Khatami, M.; Aflatoonian, M.R.; Azizi, H.; Mosazade, F.; Hooshmand, A.; Lima Nobre, M.A.; Minab Poodineh, F.; Khatami, M.; Khraazi, S.; Mirzaeei, H. Evaluation of Antibacterial Activity of Iron Oxide Nanoparticles against Escherichia coli. Int. J. Basic Sci. Med. 2017, 2, 166–169. [Google Scholar] [CrossRef]
- Kirdat, P.N.; Dandge, P.B.; Hagwane, R.M.; Nikam, A.S.; Mahadik, S.P.; Jirange, S.T. Synthesis and characterization of ginger (Z. officinale) extract mediated iron oxide nanoparticles and its antibacterial activity. Mater. Today Proc. 2021, 43, 2826–2831. [Google Scholar] [CrossRef]
# | S. aureus ATCC 29213 | S. aureus ATCC 43300 MRSA | E. coli ATCC 25922 | E. coli BAA 2452 MDR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Conc. mg/mL | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | ||
Agents | ||||||||||
1 | Chloramphenicol (µg/mL) | 4.0 ± 0.0 | 4.0 | 4.0 ± 0.0 | 4.0 | 2.0 ± 0.0 | 2.0 | 2.0 ± 0.0 | 4.0 | |
2 | MagNPs | 14.22 ± 3.33 | N | 14.22 ± 3.33 | N | NE | - | NE | - | |
3 | A. triphylla | 0.5 ± 0.0 | 0.5 | 1.06 ± 0.4 | 1.0 | 32 ± 0.0 | 64.0 | 32 ± 0.0 | 64.0 | |
4 | A. triphylla + MagNPs | 0.22 ± 0.1 | 1.0 | 0.22 ± 0.1 | 1.0 | 16 ± 0.0 | 64 | 16 ± 0.0 | 64 | |
5 | R. officinalis | 0.56 ± 0.2 | 1.0 | 0.47 ± 0.1 | 0.5 | 5.33 ± 1.9 | 16.0 | 4.89 ± 1.7 | N | |
6 | R. officinalis + MagNPs | 0.06 ± 0.0 | 0.25 | 0.06 ± 0.0 | 0.25 | 8 ± 0.0 | 32 | 32 ± 0.0 | 64 | |
7 | A. azurea | 1 ± 0.0 | 2.0 | 0.53 ± 0.2 | 2.0 | 32 ± 0.0 | 64.0 | 32 ± 0.0 | 64.0 | |
8 | A. azurea + MagNPs | 0.26 ± 0.1 | 1.0 | 0.33 ± 0.1 | 1.0 | 28.44 ± 6.7 | N | 32 ± 0.0 | N | |
9 | Q. infectoria | 8 ± 0.0 | 8.0 | 7.11 ± 1.7 | 8.0 | 32 ± 0.0 | N | NE | - | |
10 | Q. infectoria + MagNPs | 2.22 ± 0.6 | 4.0 | 3.78 ± 0.6 | 4.0 | 32 ± 0.0 | 64 | 32 ± 0.0 | 64 | |
11 | S. spinosum | 4.44 ± 1.23 | 8.0 | 0.67 ± 0.2 | 1.0 | 32 ± 0.0 | N | 32 ± 0.0 | N | |
12 | S. spinosum + MagNPs | 0.42 ± 0.1 | 1.0 | 0.13 ± 0.1 | 1.0 | 4.89 ± 1.7 | 16 | 8 ± 0.0 | 16 | |
13 | U. pilulifera | 16 ± 0.0 | 32 | 8 ± 0.0 | 32 | 32 ± 0.0 | N | 32 ± 0.0 | N | |
14 | U. pilulifera + MagNPs | 7.11 ± 1.7 | 16 | 7.11 ± 1.7 | 16 | 19.56 ± 6.7 | N | 30.22 ± 5.0 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bataineh, S.M.B.; Arafa, I.M.; Abu-Zreg, S.M.; Al-Gharaibeh, M.M.; Hammouri, H.M.; Tarazi, Y.H.; Darmani, H. Synergistic Effect of Magnetic Iron Oxide Nanoparticles with Medicinal Plant Extracts against Resistant Bacterial Strains. Magnetochemistry 2024, 10, 49. https://doi.org/10.3390/magnetochemistry10070049
Bataineh SMB, Arafa IM, Abu-Zreg SM, Al-Gharaibeh MM, Hammouri HM, Tarazi YH, Darmani H. Synergistic Effect of Magnetic Iron Oxide Nanoparticles with Medicinal Plant Extracts against Resistant Bacterial Strains. Magnetochemistry. 2024; 10(7):49. https://doi.org/10.3390/magnetochemistry10070049
Chicago/Turabian StyleBataineh, Sereen M.B., Isam M. Arafa, Samya M. Abu-Zreg, Mohammad M. Al-Gharaibeh, Hanan M. Hammouri, Yaser H. Tarazi, and Homa Darmani. 2024. "Synergistic Effect of Magnetic Iron Oxide Nanoparticles with Medicinal Plant Extracts against Resistant Bacterial Strains" Magnetochemistry 10, no. 7: 49. https://doi.org/10.3390/magnetochemistry10070049
APA StyleBataineh, S. M. B., Arafa, I. M., Abu-Zreg, S. M., Al-Gharaibeh, M. M., Hammouri, H. M., Tarazi, Y. H., & Darmani, H. (2024). Synergistic Effect of Magnetic Iron Oxide Nanoparticles with Medicinal Plant Extracts against Resistant Bacterial Strains. Magnetochemistry, 10(7), 49. https://doi.org/10.3390/magnetochemistry10070049