Magnon Excitation Modes in Ferromagnetic and Antiferromagnetic Systems
Abstract
:1. Introduction
2. Overview Magnetic Resonance Modes
2.1. Resonance Modes in Ferromagnets
2.2. Resonance Modes in Antiferromagnets
2.3. Resonance Modes in Synthetic Antiferromagnets
2.3.1. FMR Modes in SAFs with In-Plane Uniaxial Anisotropy
2.3.2. FMR Modes in SAFs with Perpendicular Magnetic Anisotropy
2.3.3. Magnon-Magnon Coupling
3. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chumak, A.V.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Magnon spintronics. Nat. Phys. 2015, 11, 453–461. [Google Scholar] [CrossRef]
- Barman, A.; Gubbiotti, G.; Ladak, S.; Adeyeye, A.O.; Krawczyk, M.; Gräfe, J.; Adelmann, C.; Cotofana, S.; Naeemi, A.; Vasyuchka, V.I.; et al. The 2021 Magnonics Roadmap. J. Phys. Condens. Matt. 2021, 33, 413001. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.Y.; Cao, Y.; Kamra, A.; Duine, R.A.; Yan, P. Quantum magnonics: When magnon spintronics meets quantum information science. Phys. Rep. 2022, 965, 1–74. [Google Scholar] [CrossRef]
- Li, Z.; Ma, M.; Chen, Z.; Xie, K.; Ma, F. Interaction between magnon and skyrmion: Toward quantum magnonics. J. Appl. Phys. 2022, 132, 210702. [Google Scholar] [CrossRef]
- Khitun, A.; Bao, M.; Wang, K.L. Magnonic logic circuits. J. Phys. D Appl. Phys. 2010, 43, 264005. [Google Scholar] [CrossRef]
- Lenk, B.; Ulrichs, H.; Garbs, F.; Münzenberg, M. The building blocks of magnonics. Phys. Rep. 2011, 507, 107–136. [Google Scholar] [CrossRef]
- Rezende, S.M. Fundamentals of Magnonics; Lecture notes in Physics; Springer: Berlin/Heidelberg, Germany, 2020; Volume 969. [Google Scholar]
- Rameshti, B.Z.; Kusminskiy, S.V.; Haigh, J.A.; Usami, K.; Lachance-Quirion, D.; Nakamura, Y.; Hu, C.M.; Tang, H.X.; Bauer, G.E.W.; Blanter, Y.M.; et al. Cavity magnonics. Phys. Rep. 2022, 979, 1–61. [Google Scholar] [CrossRef]
- Yu, H.; Xiao, J.; Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 2021, 905, 1–59. [Google Scholar] [CrossRef]
- Pirro, P.; Vasyuchka, V.I.; Serga, A.A.; Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 2021, 6, 1114–1135. [Google Scholar] [CrossRef]
- Bloch, F. Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika. Z. Phys. 1932, 74, 295–335. [Google Scholar] [CrossRef]
- Chumak, A.V.; Serga, A.A.; Hillebrands, B. Magnonic crystals for data processing. J. Phys. D Appl. Phys. 2017, 50, 244001. [Google Scholar] [CrossRef]
- Seki, S.; Okamura, Y.; Kondou, K.; Shibata, K.; Kubota, M.; Takagi, R.; Kagawa, F.; Kawasaki, M.; Tatara, G.; Otani, Y.; et al. Magnetochiral nonreciprocity of volume spin wave propagation in chiral-lattice ferromagnets. Phys. Rev. B 2016, 93, 235131. [Google Scholar] [CrossRef]
- Gallardo, R.A.; Alvarado-Seguel, P.; Schneider, T.; Gonzalez-Fuentes, C.; Roldán-Molina, A.; Lenz, K.; Lindner, J.; Landeros, P. Spin-wave non-reciprocity in magnetization-graded ferromagnetic films. New J. Phys. 2019, 21, 033026. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhang, H.W.; Wang, X.R. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design. Phys. Rev. Appl. 2018, 9, 024029. [Google Scholar] [CrossRef]
- Yao, W.; Li, C.; Wang, L.; Xue, S.; Dan, Y.; Iida, K.; Kamazawa, K.; Li, K.K.; Fang, C.; Li, Y. Topological spin excitations in a three-dimensional antiferromagnet. Nat. Phys. 2018, 14, 1011–1015. [Google Scholar] [CrossRef]
- Popov, P.A.; Sharaevskaya, A.Y.; Beginin, E.N.; Sadovnikov, A.V.; Stognij, A.I.; Kalyabin, D.V.; Nikitov, S.A. Spin wave propagation in three-dimensional magnonic crystals and coupled structures. J. Magn. Magn. Mater. 2019, 476, 423–427. [Google Scholar] [CrossRef]
- Demokritov, S.; Demidov, V.; Dzyapko, O.; Melkov, G.; Serga, A.A.; Hillebrands, B.; Slavin, A.N. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 2006, 443, 430–433. [Google Scholar] [CrossRef]
- Serga, A.A.; Tiberkevich, V.S.; Sandweg, C.W.; Vasyuchka, V.I.; Bozhko, D.A.; Chumak, A.V.; Neumann, T.; Obry, B.; Melkov, G.A.; Slavin, A.N.; et al. Bose–Einstein condensation in an ultra-hot gas of pumped magnons. Nat. Commun. 2014, 5, 3452. [Google Scholar] [CrossRef]
- Bozhko, D.A.; Serga, A.A.; Clausen, P.; Vasyuchka, V.I.; Heussner, F.; Melkov, G.A.; Pomyalov, A.; L’vov, V.S.; Hillebrands, B. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nat. Phys. 2016, 12, 1057–1062. [Google Scholar] [CrossRef]
- Safranski, C.; Barsukov, I.; Lee, H.K.; Schneider, T.; Jara, A.A.; Smith, A.; Chang, H.; Lenz, K.; Lindner, J.; Tserkovnyak, Y.; et al. Spin caloritronic nano-oscillator. Nat. Commun. 2017, 8, 117. [Google Scholar] [CrossRef]
- Walowski, J.; Münzenberg, M. Perspective: Ultrafast magnetism and THz spintronics. J. Appl. Phys. 2016, 120, 140901. [Google Scholar] [CrossRef]
- Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005. [Google Scholar] [CrossRef]
- Jungwirth, T.; Sinova, J.; Manchon, A.; Marti, X.; Wunderlich, J.; Felser, C. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 2018, 14, 200–203. [Google Scholar] [CrossRef]
- Gomonay, O.; Baltz, V.; Brataas, A.; Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 2018, 14, 213–216. [Google Scholar] [CrossRef]
- Razdolski, I.; Alekhin, A.; Ilin, N.; Meyburg, J.P.; Roddatis, V.; Diesing, D.; Bovensiepen, U.; Melnikov, A. Nanoscale interface confinement of ultrafast spin transfer torque driving non-uniform spin dynamics. Nat. Commun. 2017, 8, 15007. [Google Scholar] [CrossRef] [PubMed]
- Kampfrath, T.; Sell, A.; Klatt, G.; Pashkin, A.; Mährlein, S.; Dekorsy, T.; Wolf, M.; Fiebig, M.; Leitenstorfer, A.; Huber, R. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photo. 2011, 5, 31–34. [Google Scholar] [CrossRef]
- Patil, R.A.; Su, C.-W.; Chuang, C.-J.; Lai, C.-C.; Liou, Y.; Ma, Y.R. Terahertz spin-wave waveguides and optical magnonics in one-dimensional NiO nanorods. Nanoscale 2016, 8, 12970–12976. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Xiao, D.; Brataas, A. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator. Phys. Rev. Lett. 2016, 116, 207603. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, P.; Morley, S.A.; van Tol, J.; Liu, Y.; Cheng, R.; Brataas, A.; Lederman, D.; del Barco, E. Subterahertz spin pumping from an insulating antiferromagnet. Science 2020, 368, 160. [Google Scholar] [CrossRef]
- Olejník, K.; Seifert, T.; Kašpar, Z.; Novák, V.; Wadley, P.; Campion, R.P.; Baumgartner, M.; Gambardella, P.; Nemec, P.; Wunderlich, J. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 2017, 4, eaar3566. [Google Scholar] [CrossRef]
- Yang, Y.; Wilson, R.B.; Gorchon, J.; Lambert, C.-H.; Salahuddin, S.; Bokor, J. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 2017, 3, 1603117. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, J.H.E. Anomalous High-frequency Resistance of Ferromagnetic Metals. Nature 1946, 158, 670. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet 1935, 8, 153–169. [Google Scholar]
- Zhang, S.; Lin, J.; Miao, G.-X.; Li, S.; Zhao, G.; Wang, X.; Li, Q.; Cao, D.; Xu, J.; Yan, S. Ultrahigh Frequency and Anti-Interference Optical-Mode Resonance with Biquadratic Coupled FeCoB/Ru/FeCoB Trilayers. ACS Appl. Mater. Interfaces 2019, 11, 48230–48238. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zheng, C.; Zhou, S.; Liu, Y.; Zhang, Z. Ferromagnetic resonance modes of a synthetic antiferromagnet at low magnetic fields. J. Phys. Condens. Matt. 2021, 34, 015802. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zheng, C.; Zhang, Y.; Zhou, S.; Liu, Y.; Zhang, Z. Identification and manipulation of spin wave polarizations in perpendicularly magnetized synthetic antiferromagnets. New J. Phys. 2021, 23, 113029. [Google Scholar] [CrossRef]
- Slonczewski, J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7. [Google Scholar] [CrossRef]
- Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353–9358. [Google Scholar] [CrossRef]
- Tulapurkar, A.A.; Suzuki, Y.; Fukushima, A.; Kubota, H.; Maehara, H.; Tsunekawa, K.; Djayaprawira, D.D.; Watanabe, N.; Yuasa, S. Spin-torque diode effect in magnetic tunnel junctions. Nature 2005, 438, 339–342. [Google Scholar] [CrossRef]
- Yu, T.; Naganuma, H.; Oogane, M.; Ando, Y. DC Bias Reversal Behavior of Spin-Torque Ferromagnetic Resonance Spectra in CoFeB/MgO/CoFeB Perpendicular Magnetic Tunnel Junction. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Sankey, J.C.; Braganca, P.M.; Garcia, A.G.F.; Krivorotov, I.N.; Buhrman, R.A.; Ralph, D.C. Spin-Transfer-Driven Ferromagnetic Resonance of Individual Nanomagnets. Phys. Rev. Lett. 2006, 96, 227601. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Beaujour, J.M.L.; de Loubens, G.; Kent, A.D.; Sun, J.Z. Spin-torque driven ferromagnetic resonance of Co/Ni synthetic layers in spin valves. Appl. Phys. Lett. 2008, 92, 012507. [Google Scholar] [CrossRef]
- Tsoi, M.; Jansen, A.G.M.; Bass, J.; Chiang, W.C.; Seck, M.; Tsoi, V.; Wyder, P. Excitation of a Magnetic Multilayer by an Electric Current. Phys. Rev. Lett. 1998, 80, 4281–4284. [Google Scholar] [CrossRef]
- Kiselev, S.I.; Sankey, J.C.; Krivorotov, I.N.; Emley, N.C.; Schoelkopf, R.J.; Buhrman, R.A.; Ralph, D.C. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 2003, 425, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, G.D.; Emley, N.C.; Krivorotov, I.N.; Braganca, P.M.; Ryan, E.M.; Kiselev, S.I.; Sankey, J.C.; Ralph, D.C.; Buhrman, R.A.; Katine, J.A. Spin-transfer effects in nanoscale magnetic tunnel junctions. Appl. Phys. Lett. 2004, 85, 1205–1207. [Google Scholar] [CrossRef]
- Rippard, W.H.; Pufall, M.R.; Kaka, S.; Russek, S.E.; Silva, T.J. Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20 Point Contacts. Phys. Rev. Lett. 2004, 92, 027201. [Google Scholar] [CrossRef] [PubMed]
- Houssameddine, D.; Ebels, U.; Delaet, B.; Rodmacq, B.; Firastrau, I.; Ponthenier, F.; Brunet, M.; Thirion, C.; Michel, J.-P.; Prejbeanu-Buda, L.; et al. Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat. Mater. 2007, 6, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Kubota, H.; Fukushima, A.; Yakushiji, K.; Nagahama, T.; Yuasa, S.; Ando, K.; Maehara, H.; Nagamine, Y.; Tsunekawa, K.; Djayaprawira, D.D.; et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nat. Phys. 2008, 4, 37–41. [Google Scholar] [CrossRef]
- Zeng, Z.; Finocchio, G.; Zhang, B.; Amiri, P.K.; Katine, J.A.; Krivorotov, I.N.; Huai, Y.M.; Langer, J.; Azzerboni, B.; Wang, K.L.; et al. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator. Sci. Rep. 2013, 3, 1426. [Google Scholar] [CrossRef]
- Fuchs, G.D.; Sankey, J.C.; Pribiag, V.S.; Qian, L.; Braganca, P.M.; Garcia, A.G.F.; Ryan, E.M.; Li, Z.P.; Ozatay, O.; Ralph, D.C.; et al. Spin-Torque Ferromagnetic Resonance Measurements of Damping in Nanomagnets. Appl. Phys. Lett. 2007, 91, 062507. [Google Scholar] [CrossRef]
- Kupferschmidt, J.N.; Adam, S.; Brouwer, P.W. Theory of the spin-torque-driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet structure. Phys. Rev. B 2006, 74, 134416. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Bauer, G.E.W.; Brataas, A. Current-driven ferromagnetic resonance, mechanical torques, and rotary motion in magnetic nanostructures. Phys. Rev. B 2007, 75, 014430. [Google Scholar] [CrossRef]
- Tserkovnyak, Y.; Brataas, A.; Bauer, G.E.W. Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 2002, 66, 224403. [Google Scholar] [CrossRef]
- Torres, L.; Finocchio, G.; Lopez-Diaz, L.; Martinez, E.; Carpentieri, M.; Consolo, G.; Azzerboni, B. Micromagnetic modal analysis of spin-transfer-driven ferromagnetic resonance of individual nanomagnets. J. Appl. Phys. 2007, 101, A502–A503. [Google Scholar] [CrossRef]
- Sankey, J.C.; Cui, Y.-T.; Sun, J.Z.; Slonczewski, J.C.; Buhrman, R.A.; Ralph, D.C. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat. Phys. 2008, 4, 67–71. [Google Scholar] [CrossRef]
- Frankowski, M.; Chȩciński, J.; Skowroński, W.; Stobiecki, T. Perpendicular magnetic anisotropy influence on voltage-driven spin-diode effect in magnetic tunnel junctions: A micromagnetic study. J. Magn. Magn. Mater. 2017, 429, 11–15. [Google Scholar] [CrossRef]
- Borlenghi, S.; Mahani, M.R.; Fangohr, H.; Franchin, M.; Delin, A.; Fransson, J. Micromagnetic simulations of spin-torque driven magnetization dynamics with spatially resolved spin transport and magnetization texture. Phys. Rev. B 2017, 96, 094428. [Google Scholar] [CrossRef]
- Chernyshov, A.; Overby, M.; Liu, X.; Furdyna, J.K.; Lyanda-Geller, Y.; Rokhinson, L.P. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 2009, 5, 656. [Google Scholar] [CrossRef]
- Fang, D.; Kurebayashi, H.; Wunderlich, J.; Vyborny, K.; Zarbo, L.P.; Campion, R.P.; Casiraghi, A.; Gallagher, B.L.; Jungwirth, T.; Ferguson, A.J. Spin-orbit-driven ferromagnetic resonance. Nat. Nanotech. 2011, 6, 413–417. [Google Scholar] [CrossRef]
- Miron, I.M.; Garello, K.; Gaudin, G.; Zermatten, P.-J.; Costache, M.V.; Auffret, S.; Bandiera, S.; Rodmacq, B.; Schuhl, A.; Gambardella, P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 2011, 476, 189–193. [Google Scholar] [CrossRef]
- Hirsch, J.E. Spin Hall Effect. Phys. Rev. Lett. 1999, 83, 1834–1837. [Google Scholar] [CrossRef]
- Zhang, S. Spin Hall Effect in the Presence of Spin Diffusion. Phys. Rev. Lett. 2000, 85, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, S.O.; Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 2006, 442, 176. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Moriyama, T.; Ralph, D.C.; Buhrman, R.A. Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect. Phys. Rev. Lett. 2011, 106, 036601. [Google Scholar] [CrossRef] [PubMed]
- Nan, T.; Emori, S.; Boone, C.T.; Wang, X.; Oxholm, T.M.; Jones, J.G.; Howe, B.M.; Brown, G.J.; Sun, N.X. Comparison of spin-orbit torques and spin pumping across NiFe/Pt and NiFe/Cu/Pt interfaces. Phys. Rev. B 2015, 91, 214416. [Google Scholar] [CrossRef]
- Sinova, J.; Valenzuela, S.O.; Wunderlich, J.; Back, C.H.; Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 2015, 87, 1213–1260. [Google Scholar] [CrossRef]
- Fan, Y.; Upadhyaya, P.; Kou, X.; Lang, M.; Takei, S.; Wang, Z.X.; Tang, J.S.; He, L.; Chang, L.T.; Montazeri, M.; et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 2014, 13, 699–704. [Google Scholar] [CrossRef]
- Shiomi, Y.; Nomura, K.; Kajiwara, Y.; Eto, K.; Novak, M.; Segawa, K.; Ando, Y.; Saitoh, E. Spin-electricity conversion induced by spin injection into topological insulators. Phys. Rev. Lett. 2014, 113, 196601. [Google Scholar] [CrossRef]
- Lee, J.S.; Richardella, A.; Hickey, D.R.; Mkhoyan, K.A.; Samarth, N. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator. Phys. Rev. B 2015, 92, 155312. [Google Scholar] [CrossRef]
- Kondou, K.; Yoshimi, R.; Tsukazaki, A.; Fukuma, Y.; Matsuno, J.; Takahashi, K.S.; Kawasaki, M.; Tokura, Y.; Otani, Y. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 2016, 12, 1027–1031. [Google Scholar] [CrossRef]
- Zhang, W.; Jungfleisch, M.B.; Jiang, W.; Pearson, J.E.; Hoffmann, A.; Freimuth, F.; Mokrousov, Y. Spin Hall Effects in Metallic Antiferromagnets. Phys. Rev. Lett. 2014, 113, 196602. [Google Scholar] [CrossRef] [PubMed]
- Kimata, M.; Chen, H.; Kondou, K.; Sugimoto, S.; Muduli, P.K.; Ikhlas, M.; Omori, Y.; Tomita, T.; MacDonald, A.H.; Nakatsuji, S.; et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 2019, 565, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shi, S.; Shi, G.; Fan, X.; Song, C.; Zhou, X.; Bai, H.; Liao, L.; Zhou, Y.; Zhang, H.; et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 2021, 20, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Shao, D.F.; Yang, H.; Pan, C.; Fu, Z.; Tang, M.; Yang, Y.; Fan, W.; Zhou, S.; Tsymbal, E.Y.; et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 2022, 13, 4447. [Google Scholar] [CrossRef] [PubMed]
- Kalarickal, S.S.; Krivosik, P.; Wu, M.; Patton, C.E.; Schneider, M.L.; Kabos, P.; Silva, T.J.; Nibarger, J.P. Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods. J. Appl. Phys. 2006, 99, 3060–3645. [Google Scholar] [CrossRef]
- Banholzer, A.; Narkowicz, R.; Hassel, C.; Meckenstock, R.; Stienen, S.; Posth, O.; Suter, D.; Farle, M.; Lindner, J. Visualization of spin dynamics in single nanosized magnetic elements. Nanotechnology 2011, 22, 295713. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.; Santos, O.A.; Guerra, G.A.F.; Cunha, R.O.; Rodriguez-Suarez, R.; Rezende, S.M. Competing spin pumping effects in magnetic hybrid structures. Appl. Phys. Lett. 2014, 104, 117601. [Google Scholar] [CrossRef]
- Freeman, M.R.; Brady, M.J.; Smyth, J. Extremely high frequency pulse magnetic resonance by picosecond magneto-optic sampling. Appl. Phys. Lett. 1992, 60, 2555–2557. [Google Scholar] [CrossRef]
- Neudecker, I.; Perzlmaier, K.; Hoffmann, F.; Woltersdorf, G.; Buess, M.; Weiss, D.; Back, C.H. Modal spectrum of permalloy disks excited by in-plane magnetic fields. Phys. Rev. B 2006, 73, 134426. [Google Scholar] [CrossRef]
- Eschenlohr, A.; Battiato, M.; Maldonado, P.; Pontius, N.; Kachel, T.; Holldack, K.; Mitzner, R.; Foehlisch, A.; Oppeneer, P.M.; Stamm, C. Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater. 2013, 12, 332–336. [Google Scholar] [CrossRef]
- Boone, C.T.; Nembach, H.T.; Shaw, J.M.; Silva, T.J. Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin-pumping. J. Appl. Phys. 2013, 113, 1217–1226. [Google Scholar] [CrossRef]
- Capua, A.; Yang, S.-H.; Phung, T.; Parkin, S.S.P. Determination of intrinsic damping of perpendicularly magnetized ultrathin films from time-resolved precessional magnetization measurements. Phys. Rev. B 2015, 92, 224402. [Google Scholar] [CrossRef]
- Schreiber, F.; Hoffmann, M.; Geisau, O.; Pelzl, J. Investigation of the photothermally modulated ferromagnetic resonance signal from magnetostatic modes in yttrium iron garnet films. Appl. Phys. A 1993, 57, 545–551. [Google Scholar] [CrossRef]
- Meckenstock, R. Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: Resolution in the nanometer range. Rev. Sci. Instrum. 2008, 79, 041101. [Google Scholar] [CrossRef] [PubMed]
- Bilzer, C.; Devolder, T.; Crozat, P.; Chappert, C.; Cardoso, S.; Freitas, P.P. Vector network analyzer ferromagnetic resonance of thin films on coplanar waveguides: Comparison of different evaluation methods. J. Appl. Phys. 2007, 101, 074505. [Google Scholar] [CrossRef]
- Michael, F. Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 1998, 61, 755. [Google Scholar]
- Kittel, C. On the Theory of Ferromagnetic Resonance Absorption. Phys. Rev. 1948, 73, 155–161. [Google Scholar] [CrossRef]
- Smit, J.; Beljers, H.G. Ferromagnetic resonance absorption in BaFe12O19, a highly anisotropic crystal. Philips Res. Rep. 1955, 10, 113. [Google Scholar]
- Phuoc, N.N.; Hung, L.T.; Ong, C.K. Ultra-high ferromagnetic resonance frequency in exchange-biased system. J. Alloys Compd. 2010, 506, 504–507. [Google Scholar] [CrossRef]
- Layadi, A. Ferromagnetic resonance modes in single and coupled layers with oblique anisotropy axis. Phys. Rev. B 2001, 63, 174410. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Qiao, S.; Du, H.; Liu, X.; Sun, R.; Chu, X.; Miao, G.; Dai, Y.; Kang, S.; et al. Dual-mode ferromagnetic resonance in an FeCoB/Ru/FeCoB synthetic antiferromagnet with uniaxial anisotropy. Appl. Phys. Lett. 2018, 112, 192401. [Google Scholar] [CrossRef]
- Castel, V.; Youssef, J.B.; Boust, F.; Weil, R.; Pigeau, B.; De Loubens, G.; Naletov, V.V.; Klein, O.; Vukadinovic, N. Perpendicular ferromagnetic resonance in soft cylindrical elements: Vortex and saturated states. Phys. Rev. B 2012, 85, 184419. [Google Scholar] [CrossRef]
- Nozaki, T.; Shiota, Y.; Miwa, S.; Murakami, S.; Bonell, F.; Ishibashi, S.; Kubota, H.; Yakushiji, K.; Saruya, T.; Fukushima, A. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat. Phys. 2012, 8, 491–496. [Google Scholar] [CrossRef]
- Chen, X.; Qin, J.; Yu, T.; Han, X.-F.; Liu, Y. Micromagnetic simulation of spin torque ferromagnetic resonance in nano-ring-shape confined magnetic tunnel junctions. Appl. Phys. Lett. 2018, 113, 142406. [Google Scholar] [CrossRef]
- Qin, J.; Chen, X.; Yu, T.; Wang, X.; Guo, C.; Wan, C.; Feng, J.; Wei, H.; Liu, Y.; Han, X. Microwave Spin-Torque-Induced Magnetic Resonance in a Nanoring-Shape-Confined Magnetic Tunnel Junction. Phys. Rev. Appl. 2018, 10, 044067. [Google Scholar] [CrossRef]
- Oates, C.J.; Ogrin, F.Y.; Lee, S.L.; Riedi, P.C.; Smith, G.M.; Thomson, T. High field ferromagnetic resonance measurements of the anisotropy field of longitudinal recording thin-film media. J. Appl. Phys. 2002, 91, 1417–1422. [Google Scholar] [CrossRef]
- Stiles, M.D.; Miltat, J. Spin Transfer Torque and Dynamics. In Spin Dynamics in Confined Magnetic Structures III; Hillebrands, B., Thiaville, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ralph, D.C.; Stiles, M.D. Spin transfer torques. J. Magn. Magn. Mater. 2008, 320, 1190–1216. [Google Scholar] [CrossRef]
- Ogrodnik, P.; Wilczyński, M.; Świrkowicz, R.; Barnaś, J. Spin transfer torque and magnetic dynamics in tunnel junctions. Phys. Rev. B 2010, 82, 134412. [Google Scholar] [CrossRef]
- Demidov, V.E.; Urazhdin, S.; Demokritov, S.O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 2010, 9, 984–988. [Google Scholar] [CrossRef]
- Madami, M.; Bonetti, S.; Consolo, G.; Tacchi, S.; Carlotti, G.; Gubbiotti, G.; Mancoff, F.B.; Yar, M.A.; Akerman, J. Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotech. 2011, 6, 635–638. [Google Scholar] [CrossRef]
- Bazaliy, Y.B.; Jones, B.A.; Zhang, S.-C. Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Phys. Rev. B 1998, 57, R3213–R3216. [Google Scholar] [CrossRef]
- Hoefer, M.A.; Silva, T.J.; Keller, M.W. Theory for a dissipative droplet soliton excited by a spin torque nanocontact. Phys. Rev. B 2010, 82, 054432. [Google Scholar] [CrossRef]
- Mohseni, S.M.; Sani, S.R.; Persson, J.; Nguyen, T.N.A.; Chung, S.; Pogoryelov, Y.; Muduli, P.K.; Iacocca, E.; Eklund, A.; Dumas, R.K.; et al. Spin Torque–Generated Magnetic Droplet Solitons. Science 2013, 339, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Macià, F.; Backes, D.; Kent, A.D. Stable magnetic droplet solitons in spin-transfer nanocontacts. Nat. Nanotech. 2014, 9, 992–996. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, Y.; Zhou, Y.; Mohseni, S.M.; Chung, S.; Akerman, J. Merging droplets in double nanocontact spin torque oscillators. Phys. Rev. B 2016, 93, 094431. [Google Scholar] [CrossRef]
- Xiao, D.; Tiberkevich, V.; Liu, Y.H.; Liu, Y.W.; Mohseni, S.M.; Chung, S.; Ahlberg, M.; Slavin, A.N.; Akerman, J.; Zhou, Y. Parametric autoexcitation of magnetic droplet soliton perimeter modes. Phys. Rev. B 2017, 95, 024106. [Google Scholar] [CrossRef]
- Slavin, A.; Tiberkevich, V. Spin Wave Mode Excited by Spin-Polarized Current in a Magnetic Nanocontact is a Standing Self-Localized Wave Bullet. Phys. Rev. Lett. 2005, 95, 237201. [Google Scholar] [CrossRef]
- Bonetti, S.; Tiberkevich, V.; Consolo, G.; Finocchio, G.; Muduli, P.; Mancoff, F.; Slavin, A.; Akerman, J. Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-Driven Nanocontacts. Phys. Rev. Lett. 2010, 105, 217204. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Wang, X.G.; Nie, Y.Z.; Xia, Q.L.; Zeng, Z.M.; Guo, G.H. Left-handed polarized spin waves in ferromagnets induced by spin-transfer torque. Phys. Rev. B 2019, 99, 014420. [Google Scholar] [CrossRef]
- Nishimura, N.; Hirai, T.; Koganei, A.; Ikeda, T.; Okano, K.; Sekiguchi, Y.; Osada, Y. Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J. Appl. Phys. 2002, 91, 5246–5249. [Google Scholar] [CrossRef]
- Falloon, P.E.; Jalabert, R.A.; Weinmann, D.; Stamps, R.L. Circuit model for domain walls in ferromagnetic nanowires: Application to conductance and spin transfer torques. Phys. Rev. B 2004, 70, 174424. [Google Scholar] [CrossRef]
- Xiao, J.; Bauer, G.E.W. Spin-Wave Excitation in Magnetic Insulators by Spin-Transfer Torque. Phys. Rev. Lett. 2012, 108, 217204. [Google Scholar] [CrossRef] [PubMed]
- Ulrichs, H.; Demidov, V.E.; Demokritov, S.O.; Urazhdin, S. Spin-torque nano-emitters for magnonic applications. Appl. Phys. Lett. 2012, 100, 162406. [Google Scholar] [CrossRef]
- Demidov, V.E.; Urazhdin, S.; Liu, R.; Divinskiy, B.; Telegin, A.; Demokritov, S.O. Excitation of coherent propagating spin waves by pure spin currents. Nat. Commun. 2016, 7, 10446. [Google Scholar] [CrossRef] [PubMed]
- Divinskiy, B.; Demidov, V.E.; Urazhdin, S.; Freeman, R.; Rinkevich, A.B.; Demokritov, S.O. Excitation and Amplification of Spin Waves by Spin–Orbit Torque. Adv. Mater. 2018, 30, 1802837. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.G.; Melkov, G.A. Magnetization Oscillations and Waves; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Houshang, A.; Khymyn, R.; Fulara, H.; Gangwar, A.; Haidar, M.; Etesami, S.R.; Ferreira, R.; Freitas, P.P.; Dvornik, M.; Dumas, R.K.; et al. Spin transfer torque driven higher-order propagating spin waves in nano-contact magnetic tunnel junctions. Nat. Commun. 2018, 9, 4374. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, D.; Yang, Y.; Lee, K.; Mishra, R.; Go, G.; Oh, S.H.; Kim, D.H.; Cai, K.M.; Liu, E.L. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 2019, 366, 1125–1128. [Google Scholar] [CrossRef]
- Demidov, V.E.; Urazhdin, S.; Anane, A.; Cros, V.; Demokritov, S.O. Spin–orbit-torque magnonics. J. Appl. Phys. 2020, 127, 170901. [Google Scholar] [CrossRef]
- Wienholdt, S.; Hinzke, D.; Nowak, U. THz Switching of Antiferromagnets and Ferrimagnets. Phys. Rev. Lett. 2012, 108, 247207. [Google Scholar] [CrossRef]
- Wadley, P.; Howells, B.; Zelezny, J.; Andrews, C.; Hills, V.; Campion, R.P.; Novak, V.; Olejnik, K.; Maccherozzi, F.; Dhesi, S.S.; et al. Electrical switching of an antiferromagnet. Science 2016, 351, 587–590. [Google Scholar] [CrossRef]
- Khymyn, R.; Lisenkov, I.; Tiberkevich, V.; Ivanov, B.A.; Slavin, A. Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Sci. Rep. 2017, 7, 43705. [Google Scholar] [CrossRef]
- Li, J.; Wilson, C.B.; Cheng, R.; Lohmann, M.; Kavand, M.; Yuan, W.; Aldosary, M.; Agladze, N.; Wei, P.; Sherwin, M.S.; et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 2020, 578, 70–74. [Google Scholar] [CrossRef]
- Gomonay, E.V.; Loktev, V.M. Spintronics of antiferromagnetic systems (Review Article). Low Temp. Phys. 2014, 40, 17–35. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Ezawa, M. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation. Sci. Rep. 2016, 6, 24795. [Google Scholar] [CrossRef]
- Gomonay, O.; Jungwirth, T.; Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Status. Solidi-R 2017, 11, 1700022. [Google Scholar] [CrossRef]
- Šmejkal, L.; Mokrousov, Y.; Yan, B.; MacDonald, A.H. Topological antiferromagnetic spintronics. Nat. Phys. 2018, 14, 242–251. [Google Scholar] [CrossRef]
- Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 2018, 14, 220–228. [Google Scholar] [CrossRef]
- Duine, R.A.; Lee, K.-J.; Parkin, S.S.P.; Stiles, M.D. Synthetic antiferromagnetic spintronics. Nat. Phys. 2018, 14, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; You, Y.; Chen, X.; Zhou, X.; Wang, Y.; Pan, F. How to manipulate magnetic states of antiferromagnets. Nanotechnology 2018, 29, 112001. [Google Scholar] [CrossRef]
- Rezende, S.M.; Azevedo, A.; Rodríguez-Suárez, R.L. Introduction to antiferromagnetic magnons. J. Appl. Phys. 2019, 126, 151101. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, Y.C.; Han, L.; Zhou, Y.J.; Pan, F.; Song, C. Antiferromagnetism: An efficient and controllable spin source. Appl. Phys. Rev. 2022, 9, 041316. [Google Scholar] [CrossRef]
- Šmejkal, L.; MacDonald, A.H.; Sinova, J.; Nakatsuji, S.; Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 2022, 7, 482–496. [Google Scholar] [CrossRef]
- Keffer, F.; Kittel, C. Theory of Antiferromagnetic Resonance. Phys. Rev. 1952, 85, 329–337. [Google Scholar] [CrossRef]
- Cheng, R.; Xiao, J.; Niu, Q.; Brataas, A. Spin Pumping and Spin-Transfer Torques in Antiferromagnets. Phys. Rev. Lett. 2014, 113, 057601. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Niu, Q. Dynamics of antiferromagnets driven by spin current. Phys. Rev. B 2014, 89, 081105. [Google Scholar] [CrossRef]
- Cheng, R.; Daniels, M.W.; Zhu, J.G.; Xiao, D. Antiferromagnetic Spin Wave Field-Effect Transistor. Sci. Rep. 2016, 6, 24233. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Xiao, D.; Zhu, J.-G. Antiferromagnet-based magnonic spin-transfer torque. Phys. Rev. B 2018, 98, 020408. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, X.; Zhou, S.; Liu, Y. Terahertz magnetic excitation in antiferromagnets: Atomistic spin simulations versus a coupled pendulum model. J. Phys. Condens. Matt. 2022, 35, 085801. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Cho, S.J.; Iida, R.; Shimura, T.; Kuroda, K.; Ueda, H.; Ueda, Y.; Ivanov, B.A.; Nori, F.; Fiebig, M. Spin Oscillations in Antiferromagnetic NiO Triggered by Circularly Polarized Light. Phys. Rev. Lett. 2010, 105, 077402. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Cogulu, E.; Kent, A.D.; Rakheja, S. Precessional spin-torque dynamics in biaxial antiferromagnets. Phys. Rev. B 2021, 103, 024450. [Google Scholar] [CrossRef]
- Yosida, K. Magnetic Properties of Cu-Mn Alloys. Phys. Rev. 1957, 106, 893–898. [Google Scholar] [CrossRef]
- Grunberg, P.; Schreiber, R.; Pang, Y.; Brodsky, M.B.; Sowers, H. Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 1986, 57, 2442–2445. [Google Scholar] [CrossRef] [PubMed]
- Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828–4830. [Google Scholar] [CrossRef] [PubMed]
- Parkin, S.S.P.; More, N.; Roche, K.P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 1990, 64, 2304–2307. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.C.; Betto, D.; Rode, K.; Coey, J.M.D.; Stamenov, P. Spin-orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotech. 2016, 11, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Bruno, P.; Chappert, C. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys. Rev. Lett. 1991, 67, 1602–1605. [Google Scholar] [CrossRef] [PubMed]
- Parkin, S.S.P.; Mauri, D. Spin engineering: Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium. Phys. Rev. B 1991, 44, 7131–7134. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-H.; Ryu, K.-S.; Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotech. 2015, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Devolder, T. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers. J. Appl. Phys. 2016, 119, 153905. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Chu, X.M.; Miao, G.X.; Xue, Q.; Zou, W.; Liu, M.; Xu, J.; Li, Q.; Dai, Y.; et al. Engineering optical mode ferromagnetic resonance in FeCoB films with ultrathin Ru insertion. Sci. Rep. 2016, 6, 33349. [Google Scholar] [CrossRef]
- Wu, G.; Chen, S.; Lou, S.; Liu, Y.; Jin, Q.Y.; Zhang, Z. Annealing effect on laser-induced magnetization dynamics in Co/Ni-based synthetic antiferromagnets with perpendicular magnetic anisotropy. Appl. Phys. Lett. 2019, 115, 142402. [Google Scholar] [CrossRef]
- Waring, H.J.; Johansson, N.A.B.; Vera-Marun, I.J.; Thomson, T. Zero-field Optic Mode Beyond 20 GHz in a Synthetic Antiferromagnet. Phys. Rev. Appl. 2020, 13, 034035. [Google Scholar] [CrossRef]
- Gusakova, D.; Houssameddine, D.; Ebels, U.; Dieny, B.; Buda-Prejbeanu, L.; Cyrille, M.C.; Delaet, B. Spin-polarized current-induced excitations in a coupled magnetic layer system. Phys. Rev. B 2009, 79, 104406. [Google Scholar] [CrossRef]
- Houssameddine, D.; Sierra, J.F.; Gusakova, D.; Delaet, B.; Ebels, U.; Buda-Prejbeanu, L.D.; Cyrille, M.C.; Dieny, B.; Ocker, B.; Langer, J.; et al. Spin torque driven excitations in a synthetic antiferromagnet. Appl. Phys. Lett. 2010, 96, 3149. [Google Scholar] [CrossRef]
- Baláž, P.; Barnaś, J. Current-induced dynamics of composite free layer with antiferromagnetic interlayer exchange coupling. Phys. Rev. B 2011, 83, 104422. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Wigen, P.E.; Ounadjela, K. Angular dependence of ferromagnetic resonance in exchange-coupled Co/Ru/Co trilayer structures. Phys. Rev. B 1994, 50, 6094–6112. [Google Scholar] [CrossRef] [PubMed]
- Rezende, S.M.; Chesman, C.; Lucena, M.A.; Azevedo, A.; de Aguiar, F.M.; Parkin, S.S.P. Studies of coupled metallic magnetic thin-film trilayers. J. Appl. Phys. 1998, 84, 958–972. [Google Scholar] [CrossRef]
- Zivieri, R.; Giovannini, L.; Nizzoli, F. Acoustical and optical spin modes of multilayers with ferromagnetic and antiferromagnetic coupling. Phys. Rev. B 2000, 62, 14950–14955. [Google Scholar] [CrossRef]
- Belmeguenai, M.; Martin, T.; Woltersdorf, G.; Maier, M.; Bayreuther, G. Frequency- and time-domain investigation of the dynamic properties of interlayer-exchange-coupled Ni81Fe19/Ru/Ni81Fe19 thin films. Phys. Rev. B 2007, 76, 104414. [Google Scholar] [CrossRef]
- Shiota, Y.; Taniguchi, T.; Ishibashi, M.; Moriyama, T.; Ono, T. Tunable Magnon-Magnon Coupling Mediated by Dynamic Dipolar Interaction in Synthetic Antiferromagnets. Phys. Rev. Lett. 2020, 125, 017203. [Google Scholar] [CrossRef]
- Sud, A.; Zollitsch, C.W.; Kamimaki, A.; Dion, T.; Khan, S.; Iihama, S.; Mizukami, S.; Kurebayashi, H. Tunable magnon-magnon coupling in synthetic antiferromagnets. Phys. Rev. B 2020, 102, 100403. [Google Scholar] [CrossRef]
- Kamimaki, A.; Iihama, S.; Suzuki, K.Z.; Yoshinaga, N.; Mizukami, S. Parametric Amplification of Magnons in Synthetic Antiferromagnets. Phys. Rev. Appl. 2020, 13, 044036. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Amin, V.P.; Zhang, Z.; Vogel, M.; Xiong, Y.; Sklenar, J.; Divan, R.; Pearson, J.; Stiles, M.D.; et al. Phase-resolved electrical detection of coherently coupled magnonic devices. Appl. Phys. Lett. 2021, 118, 202401. [Google Scholar] [CrossRef] [PubMed]
- Wigen, P.E.; Zhang, Z.; Zhou, L.; Ye, M.; Cowen, J.A. The dispersion relation in antiparallel coupled ferromagnetic films. J. Appl. Phys. 1993, 73, 6338–6340. [Google Scholar] [CrossRef]
- MacNeill, D.; Hou, J.T.; Klein, D.R.; Zhang, P.; Jarillo-Herrero, P.; Liu, L. Gigahertz Frequency Antiferromagnetic Resonance and Strong Magnon-Magnon Coupling in the Layered Crystal CrCl3. Phys. Rev. Lett. 2019, 123, 047204. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-G. Spin valve and dual spin valve heads with synthetic antiferromagnets. IEEE Trans. Magn. 1999, 35, 655–660. [Google Scholar]
- Chen, X.; Zheng, C.; Zhou, S.; Liu, Y.; Zhang, Z. Manipulation of Time- and Frequency-Domain Dynamics by Magnon-Magnon Coupling in Synthetic Antiferromagnets. Magnetochemistry 2021, 8, 7. [Google Scholar] [CrossRef]
- Yakata, S.; Kubota, H.; Suzuki, Y.; Yakushiji, K.; Fukushima, A.; Yuasa, S.; Ando, K. Influence of perpendicular magnetic anisotropy on spin-transfer switching current in CoFeB/MgO/CoFeB magnetic tunnel junctions. J. Appl. Phys. 2009, 105, 103. [Google Scholar] [CrossRef]
- Schellekens, A.J.; Kuiper, K.C.; De Wit, R.R.J.C.; Koopmans, B. Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation. Nat. Commun. 2014, 5, 4333. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Z.; Li, L.; Zhang, Z.; Zhao, H.B.; Wang, J.; Ma, B.; Jin, Q.Y. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films. Sci. Rep. 2015, 5, 12352. [Google Scholar] [CrossRef]
- Vemulkar, T.; Mansell, R.; Fernández-Pacheco, A.; Cowburn, R.P. Toward Flexible Spintronics: Perpendicularly Magnetized Synthetic Antiferromagnetic Thin Films and Nanowires on Polyimide Substrates. Adv. Funct. Mater. 2016, 26, 4704–4711. [Google Scholar] [CrossRef]
- Dieny, B.; Chshiev, M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 2017, 89, 025008. [Google Scholar] [CrossRef]
- Yi, L.; Yu, J.; Zhong, H.J.J.O.M.; Materials, M. Strong antiferromagnetic interlayer exchange coupling in [Co/Pt]6/Ru/[Co/Pt]4 structures with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 2018, 473, 381–386. [Google Scholar]
- Shiota, Y.; Arakawa, T.; Hisatomi, R.; Moriyama, T.; Ono, T. Polarization-Selective Excitation of Antiferromagnetic Resonance in Perpendicularly Magnetized Synthetic Antiferromagnets. Phys. Rev. Appl. 2022, 18, 014032. [Google Scholar] [CrossRef]
- Tabuchi, Y.; Ishino, S.; Ishikawa, T.; Yamazaki, R.; Usami, K.; Nakamura, Y. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 2014, 113, 083603. [Google Scholar] [CrossRef]
- Lachance-Quirion, D.; Tabuchi, Y.; Gloppe, A.; Usami, K.; Nakamura, Y. Hybrid quantum systems based on magnonics. Appl. Phys. Express 2019, 12, 070101. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Tyberkevych, V.; Kwok, W.-K.; Hoffmann, A.; Novosad, V. Hybrid magnonics: Physics, circuits, and applications for coherent information processing. J. Appl. Phys. 2020, 128, 130902. [Google Scholar] [CrossRef]
- Hu, B.; Xie, Z.-K.; Lu, J.; He, W. Mapping the magnon–magnon hybrid state onto the Bloch sphere. Appl. Phys. Lett. 2024, 124, 232402. [Google Scholar] [CrossRef]
- Kruglyak, V.V.; Demokritov, S.O.; Grundler, D. Magnonics. J. Phys. D Appl. Phys. 2010, 43, 264001. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, C.L.; Jiang, L.; Tang, H.X. Strongly Coupled Magnons and Cavity Microwave Photons. Phys. Rev. Lett. 2014, 113, 156401. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, C.; Wei, J.; He, B.; Xu, H.; Xia, J.; Luo, X.; Li, J.; Dong, J.; et al. Ultrastrong to nearly deep-strong magnon-magnon coupling with a high degree of freedom in synthetic antiferromagnets. Nat. Commun. 2024, 15, 2077. [Google Scholar] [CrossRef] [PubMed]
- Chumak, A.V.; Serga, A.A.; Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 2014, 5, 4700. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, C.; Liu, T.; Xiao, Y.; Xia, K.; Bauer, G.E.W.; Wu, M.; Yu, H. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures. Phys. Rev. Lett. 2018, 120, 217202. [Google Scholar] [CrossRef] [PubMed]
- Dieny, B.; Prejbeanu, I.L.; Garello, K.; Gambardella, P.; Freitas, P.; Lehndorff, R.; Raberg, W.; Ebels, U.; Demokritov, S.O.; Akerman, J.; et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020, 3, 446–459. [Google Scholar] [CrossRef]
- Mahmoud, A.; Ciubotaru, F.; Vanderveken, F.; Chumak, A.V.; Hamdioui, S.; Adelmann, C.; Cotofana, S. Introduction to spin wave computing. J. Appl. Phys. 2020, 128, 161101. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, Z.; Dai, C.; Ma, F. Magnon mode transition in synthetic antiferromagnets induced by perpendicular magnetic anisotropy. J. Appl. Phys. 2022, 131, 093905. [Google Scholar] [CrossRef]
- Li, Z.; Sun, J.; Ma, F. Floquet engineering of selective magnon–magnon coupling in synthetic antiferromagnets. Appl. Phys. Lett. 2023, 123, 232406. [Google Scholar] [CrossRef]
- Comstock, A.H.; Chou, C.T.; Wang, Z.; Wang, T.; Song, R.; Sklenar, J.; Amassian, A.; Zhang, W.; Lu, H.; Liu, L.; et al. Hybrid magnonics in hybrid perovskite antiferromagnets. Nat. Commun. 2023, 14, 1834. [Google Scholar] [CrossRef]
- Hayashi, D.; Shiota, Y.; Ishibashi, M.; Hisatomi, R.; Moriyama, T.; Ono, T. Observation of mode splitting by magnon–magnon coupling in synthetic antiferromagnets. Appl. Phys. Express 2023, 16, 053004. [Google Scholar] [CrossRef]
- Rong, Y.; Jiang, C.; Wang, H.; Sun, L.; Liu, F.; Lu, J.; Wu, T.; Zhang, Y.; Zhao, Y.; Ma, F.; et al. Layer-dependent magnon-magnon coupling in a synthetic antiferromagnet. Phys. Rev. Appl. 2024, 21, 054050. [Google Scholar] [CrossRef]
- Liensberger, L.; Kamra, A.; Maier-Flaig, H.; Geprags, S.; Erb, A.; Goennenwein, S.T.B.; Gross, R.; Belzig, W.; Huebl, H.; Weiler, M. Exchange-Enhanced Ultrastrong Magnon-Magnon Coupling in a Compensated Ferrimagnet. Phys. Rev. Lett. 2019, 123, 117204. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Ma, F. Strong magnon–magnon coupling in synthetic antiferromagnets. Appl. Phys. Lett. 2021, 118, 112405. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; He, W. Symmetry breaking induced magnon-magnon coupling in synthetic antiferromagnets. Phys. Rev. B 2021, 103, 064429. [Google Scholar] [CrossRef]
- He, W.; Xie, Z.K.; Sun, R.; Yang, M.; Li, Y.; Zhao, X.T.; Liu, W.; Zhang, Z.D.; Cai, J.W.; Cheng, Z.H.; et al. Anisotropic Magnon–Magnon Coupling in Synthetic Antiferromagnets. Chin. Phys. Lett. 2021, 38, 057502. [Google Scholar] [CrossRef]
- Hu, B.; He, W. Tunable magnon-magnon coupling mediated by in-plane magnetic anisotropy in synthetic antiferromagnets. J. Magn. Magn. Mater. 2023, 565, 170283. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, J.; Wan, C.; Han, X.; Yu, G. Ultrastrong magnon-magnon coupling in synthetic antiferromagnets induced by interlayer Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2024, 109, 054416. [Google Scholar] [CrossRef]
- Sklenar, J.; Zhang, W. Self-Hybridization and Tunable Magnon-Magnon Coupling in van der Waals Synthetic Magnets. Phys. Rev. Appl. 2021, 15, 044008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zheng, C.; Liu, Y. Magnon Excitation Modes in Ferromagnetic and Antiferromagnetic Systems. Magnetochemistry 2024, 10, 50. https://doi.org/10.3390/magnetochemistry10070050
Chen X, Zheng C, Liu Y. Magnon Excitation Modes in Ferromagnetic and Antiferromagnetic Systems. Magnetochemistry. 2024; 10(7):50. https://doi.org/10.3390/magnetochemistry10070050
Chicago/Turabian StyleChen, Xing, Cuixiu Zheng, and Yaowen Liu. 2024. "Magnon Excitation Modes in Ferromagnetic and Antiferromagnetic Systems" Magnetochemistry 10, no. 7: 50. https://doi.org/10.3390/magnetochemistry10070050
APA StyleChen, X., Zheng, C., & Liu, Y. (2024). Magnon Excitation Modes in Ferromagnetic and Antiferromagnetic Systems. Magnetochemistry, 10(7), 50. https://doi.org/10.3390/magnetochemistry10070050