Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation
2.2. Postharvest Processing
2.3. Essential Oil Extraction and Analysis
2.3.1. Chemicals
2.3.2. Extraction and Sample Preparation
2.3.3. GC-TOF-MS Analysis
2.4. Statistical Analysis
3. Results
3.1. Biomass
3.2. Essential Oil Content
3.3. Essential Oil Composition
4. Discussion
5. Conclusions
- Postharvest processing treatments (separated in dry state (sD); separated in fresh state (sF)) did not significantly affect the EO content and composition of the three Mentha genotypes;
- There was a genotype effect, as significant differences in EO content and composition were detected between the peppermints (‘Multimentha’ and ‘Fränkische Blaue’) and the ‘Apfelminze’;
- There was an increase in EO content on average with each harvest but also an increase in undesired compounds, such as pulegone;
- Further studies should be conducted, for example, on harvesting times and frequency and comparisons between a drying of stem and leaves and leaves only in regard to EO content and composition.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saric-Kundalic, B.; Fialova, S.; Dobes, C.; Ölzant, S.; Tekelova, D.; Grancai, D.; Reznicek, G.; Saukel, J. Multivariate Numerical Taxonomy of Mentha Species, Hybrids, Varieties and Cultivars. Sci. Pharm. 2009, 77, 851–876. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Anwar, F.; Abbas, A.; Mehmood, T.; Gilani, A.-H.; Rehman, N.-U. Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phytother. Res. 2019, 33, 2548–2570. [Google Scholar] [CrossRef]
- Talebi, F.; Misaghi, A.; Khanjari, A.; Kamkar, A.; Gandomi, H.; Rezaeigolestani, M. Incorporation of spice essential oils into poly-lactic acid film matrix with the aim of extending microbiological and sensorial shelf life of ground beef. LWT 2018, 96, 482–490. [Google Scholar] [CrossRef]
- Schuhmacher, A.; Reichling, J.; Schnitzler, P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine 2003, 10, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Maffei, M.; Chialva, F.; Sacco, T. Glandular trichomes and essential oils in developing peppermint leaves. New Phytol. 1989, 111, 707–716. [Google Scholar] [CrossRef]
- Deutscher Apotheker Verlag. Pharmacopoeia Europaea—Europäisches Arzneibuch; Amtliche Deutsche Ausgabe; Deutscher Apotheker Verlag: Stuttgart, Germany, 2020; ISBN 978-3-7692-7515-5. [Google Scholar]
- Gordon, W.P.; Huitric, A.C.; Seth, C.L.; McClanahan, R.H.; Nelson, S.D. The metabolism of the abortifacient terpene, (R)-(+)-pulegone, to a proximate toxin, menthofuran. Drug Metab. Dispos. 1987, 15, 589–594. [Google Scholar] [PubMed]
- Nair, B. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. Int. J. Toxicol. 2001, 20, 61–73. [Google Scholar] [PubMed]
- Lawrence, B.M. (Ed.) Mint: The Genus Mentha; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Kizil, S.; Tonçer, Ö. Influence of different harvest times on the yield and oil composition of spearmint (Mentha spicata L. var. spicata). J. Food Agric. Environ. 2006, 4, 135–137. [Google Scholar]
- Rohloff, J.; Dragland, S.; Mordal, R.; Iversen, T.-H. Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha × piperita L.). J. Agric. Food Chem. 2005, 53, 4143–4148. [Google Scholar] [CrossRef]
- Duriyaprapan, S.; Britten, E.J. The Effects of Solar Radiation on Plant Growth, Oil Yield and Oil Quality of Japanese Mint. J. Exp. Biol. 1982, 33, 1319–1324. [Google Scholar] [CrossRef]
- Maffei, M.; Scannerini, S. UV-B Effect on Photomorphogenesis and Essential Oil Composition in Peppermint (Mentha piperita L.). J. Essent. Oil Res. 2000, 12, 523–529. [Google Scholar] [CrossRef]
- Maffei, M.; Canova, D.; Bertea, C.M.; Scannerini, S. UV-A effects on photomorphogenesis and essential-oil composition in Mentha piperita. J. Photochem. Photobiol. B Biol. 1999, 52, 105–110. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Walthall, C.L. Meeting Global Food Needs: Realizing the Potential via Genetics × Environment × Management Interactions. Agron. J. 2015, 107, 1215–1226. [Google Scholar] [CrossRef]
- Mehasen, H.E.D.; Hamouda, A.A.; Soliman, S. Effect of some postharvest treatments on peppermint quality. J. Product. Dev. 2009, 14, 375–390. [Google Scholar] [CrossRef]
- Leibniz Institute for Agicultural Engineering and Bioeconomy. Leitfaden Trocknung von Arznei-und Gewürzpflanzen; Leibniz Institute for Agicultural Engineering and Bioeconomy: Potsdam, Germany, 2017. [Google Scholar]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Vinas, M.A.G.; Cabezudo, M.D. Influence of Drying on the Flavor Quality of Spearmint (Mentha spicata L.). J. Agric. Food Chem. 2023, 51, 1265–1269. [Google Scholar] [CrossRef]
- Shittu, S.K.; Shehu, M.I.; Suleiman, J. Effect of the drying method on the quality and drying characteristic of mint leaves. FJS 2021, 5, 72–78. [Google Scholar] [CrossRef]
- Stanisavljević, D.M.; Đorđević, S.M.; Ristić, M.S.; Veličković, D.T.; Ranđelović, N.V. Effects of different drying methods on the yield and the composition of essential oil from herb Mentha longifolia (L.) Hudson. Biol. Nyssana 2010, 1, 89–93. [Google Scholar]
- Pandey, P.; Upadhyay, R.K.; Padalia, R.C.; Venkatesha, K.T.; Kumar, D.; Chauhan, A.; Tiwari, A.K.; Singh, V.R. Standardization of post-harvest practices for best quality essential oil production of Mentha arvensis L. Environ. Conserv. J. 2023, 24, 232–237. [Google Scholar] [CrossRef]
- Aćimović, M.; Lončar, B.; Kiprovski, B.; Stanković Jeremić, J.; Todosijević, M. Chamomile essential oil quality after postharvest separation treatments. Ratar. Povrt. 2021, 58, 72–78. [Google Scholar] [CrossRef]
- Guo, H.L.; Chen, Y.; Xu, W.; Xu, M.-T.; Sun, Y.; Wang, X.-C.; Wang, X.-Y.; Luo, J.; Zhang, H.; Xiong, Y.-K. Assessment of Drying Kinetics, Textural and Aroma Attributes of Mentha haplocalyx Leaves during the Hot Air Thin-Layer Drying Process. Foods 2022, 11, 784. [Google Scholar] [CrossRef]
- Mahanta, B.P.; Bora, P.K.; Kemprai, P.; Borah, G.; Lal, M.; Haldar, S. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Res. Int. 2021, 145, 110404. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarikhah, G.; Ebadi, M.-T.; Ayyari, M. Qualitative changes of spearmint essential oil as affected by drying methods. Ind. Crops Prod. 2020, 153, 112492. [Google Scholar] [CrossRef]
- Tanko, H.; Carrier, D.J.; Duan, L.; Clausen, E. Pre- and post-harvest processing of medicinal plants. Plant Genet. Resour. 2005, 3, 304–313. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I.; Mujumdar, A. A comprehensive review of recent advances in renewable-based drying technologies for a sustainable future. Dry. Technol. 2022, 40, 1029–1050. [Google Scholar] [CrossRef]
- Caser, M.; Falla, N.M.; Demasi, S.; Scariot, V. From Fresh to Dried Lavender Flower: Changes in Phytochemical Profile According to Drying Method. Horticulturae 2023, 9, 700. [Google Scholar] [CrossRef]
- Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar] [CrossRef]
- Giménez-Santamarina, S.; Llorens-Molina, J.A.; Sempere-Ferre, F.; Santamarina, C.; Roselló, J.; Santamarina, M.P. Chemical composition of essential oils of three Mentha species and their antifungal activity against selected phytopathogenic and post-harvest fungi. Life 2022, 15, 64–73. [Google Scholar] [CrossRef]
- Lawrence, B.M. A Study of the Monoterpene Interrelationships in the Genus Mentha with Special Reference to the Origin of Pulegone and Menthofuran; Print Three Inc.: Toronto, ON, Canada, 1978. [Google Scholar]
- Grulova, D.; de Martino, L.; Mancini, E.; Salamon, I.; de Feo, V. Seasonal variability of the main components in essential oil of Mentha × piperita L. J. Sci. Food Agric. 2015, 95, 621–627. [Google Scholar] [CrossRef]
Month | Temperature (°C) | Relative Humidity (%) |
---|---|---|
February | 20.7 | 49.8 |
March | 20.5 | 48.6 |
April | 20.7 | 53.8 |
May | 23.4 | 52.0 |
June | 25.2 | 52.9 |
Genotype | Postharvest Processing | Fresh Matter (g/plant) | Dry Matter (g/plant) | ||||
---|---|---|---|---|---|---|---|
Whole Plant | Leaf | Stem | Whole Plant | Leaf | Stem | ||
‘Multimentha’ | sF | 53.6 ± 18.2 cd | 23.4 ± 8.0 b | 30.1 ± 10.9 b | 5.8 ± 2.3 bc | 3.0 ± 1.2 bc | 2.8 ± 1.2 b |
sD | 47.5 ± 17.9 d | - | - | 5.0 ± 2.2 c | 2.6 ± 1.3 c | 2.4 ± 1.1 b | |
‘Apfelminze’ | sF | 58.8 ± 27.5 cd | 26.5 ± 13.9 b | 32.3 ± 14.0 b | 7.6 ± 4.8 ab | 3.6 ± 2.3 bc | 4.0 ± 2.7 a |
sD | 62.7 ± 26.5 bc | - | - | 8.4 ± 5.1 a | 3.9 ± 2.3 b | 4.4 ± 2.9 a | |
‘Fränkische Blaue’ | sF | 75.8 ± 19.7 a | 36.2 ± 10.9 a | 39.5 ± 10.1 a | 9.4 ± 3.3 a | 5.1 ± 1.9 a | 4.3 ± 1.4 a |
sD | 72.5 ± 23.8 ab | - | - | 9.3 ± 3.9 a | 5.3 ± 2.4 a | 4.0 ± 1.6 a |
RT (min) | Compound | ‘Apfelminze’ sD (%) | ‘Apfelminze’ sF (%) | ‘Fränkische Blaue’ sD (%) | ‘Fränkische Blaue’ sF (%) | ‘Multimentha’ sD (%) | ‘Multimentha’ sF (%) |
---|---|---|---|---|---|---|---|
22.09 | Eucalyptol/ Limonene | 11.44 ± 0.68 | 10.41 ± 1.46 | 4.45 ± 0.39 | 4.69 ± 0.12 | 2.91 ± 0.39 | 3.17 ± 0.06 |
23.78 | α-Terpinene | n.d. | n.d. | 1.07 ± 0.07 | 1.32 ± 0.07 | n.d. | n.d. |
27.73 | p-Menthone | n.d. | n.d. | 46.25 ± 1.70 | 44.03 ± 0.65 | 57.02 ± 1.05 | 55.90 ± 1.63 |
28.18 | Isomenthone | n.d. | n.d. | 9.68 ± 0.14 | 9.63 ± 0.43 | 6.71 ± 0.19 | 6.53 ± 0.21 |
28.41 | Menthofuran | n.d. | n.d. | 2.37 ± 0.86 | 1.98 ± 0.20 | 2.93 ± 0.30 | 3.13 ± 0.29 |
28.57 | Menthol isomer A | n.d. | n.d. | 1.70 ± 0.22 | 1.82 ± 0.10 | 1.97 ± 0.09 | 2.24 ± 0.24 |
28.90 | Menthol isomer B | n.d. | n.d. | 24.02 ± 2.03 | 24.18 ± 0.40 | 19.65 ± 0.82 | 20.78 ± 1.99 |
29.57 | cis-Dihydrocarvone | 7.66 ± 1.27 | 8.28 ± 2.39 | n.d. | n.d. | n.d. | n.d. |
29.89 | trans-Dihydrocarvone | 1.41 ±0.19 | 1.45 ± 0.64 | n.d. | n.d. | n.d. | n.d. |
31.69 | Pulegone | n.d. | n.d. | n.d. | n.d. | 1.25 ± 0.49 | n.d. |
31.70 | Carvone | 70.13 ± 0.42 | 69.72 ± 4.97 | n.d. | n.d. | n.d. | n.d. |
32.21 | Piperitone | 1.13 ± 0.10 | n.d. | 2.02 ± 0.09 | 2.23 ± 0.11 | 1.81 ± 1.09 | 1.14 ± 1.29 |
34.46 | Menthyl acetate | n.d. | n.d. | 1.58 ± 0.40 | 2.00 ± 0.22 | 1.52 ± 0.09 | 1.06 ± 0.74 |
40.67 | β-Caryophyllene | n.d. | n.d. | 1.06 ± 0.19 | 1.26 ± 0.17 | n.d. | n.d. |
43.05 | β-Copaene | 3.82 ± 0.48 | 4.51 ± 0.51 | 2.07 ± 0.43 | 2.61 ± 0.48 | n.d. | n.d. |
RT (min) | Compound | ‘Apfelminze’ sD (%) | ‘Apfelminze’ sF (%) | ‘Fränkische Blaue’ sD (%) | ‘Fränkische Blaue’ sF (%) | ‘Multimentha’ sD (%) | ‘Multimentha’ sF (%) |
---|---|---|---|---|---|---|---|
22.09 | Eucalyptol/ Limonene | 13.63 ± 0.54 | 13.07 ± 0.57 | 4.20 ± 0.18 | 3.96 ± 0.33 | 1.91 ± 0.04 | 1.77 ± 0.09 |
27.73 | p-Menthone | n.d. | n.d. | 50. 58 ± 1.22 | 49.52 ± 1.00 | 53.96 ± 0.78 | 52.75 ± 0.05 |
28.18 | Isomenthone | n.d. | n.d. | 11.32 ± 0.43 | 11.28 ± 0.28 | 6.62 ± 0.09 | 6.17 ± 0.18 |
28.41 | Menthofuran | n.d. | n.d. | 4.65 ± 0.54 | 4.36 ± 0.39 | 1.08 ± 1.45 | 1.08 ± 1.45 |
28.57 | Menthol isomer A | n.d. | n.d. | 1.46 ± 0.12 | 1.62 ± 0.06 | 3.61 ± 0.46 | 2.0 ± 0.07 |
28.90 | Menthol isomer B | n.d. | n.d. | 15.93 ± 1.00 | 17.10 ± 0.34 | 9.26 ± 0.22 | 10.34 ± 0.27 |
29.12 | α-Dihydroionone | n.d. | n.d. | n.d. | n.d. | n.d. | 1.14 ± 0.04 |
29.57 | cis-Dihydrocarvone | 3.02 ± 0.47 | 4.15 ± 0.52 | n.d. | n.d. | n.d. | n.d. |
31.69 | Pulegone | n.d. | n.d. | 4.90 ± 0.52 | 3.50 ± 1.43 | 18.55 ± 1.93 | 20.27 ± 1.35 |
31.70 | Carvone | 72.84 ± 1.57 | 70.29 ± 0.72 | n.d. | n.d. | n.d. | n.d. |
32.21 | Piperitone | 1.17 ± 0.03 | 1.26 ± 0.16 | 1.96 ± 0.16 | 2.21 ± 0.10 | 1.79 ± 0.24 | 1.72 ± 0.06 |
34.46 | Menthyl acetate | n.d. | n.d. | 1.16 ± 0.24 | 1.53 ± 0.19 | n.d. | n.d. |
40.67 | β-Caryophyllene | n.d. | n.d. | 1.26 ± 0.28 | 1.09 ± 0.21 | n.d. | n.d. |
43.05 | β-Copaene | 4.28 ± 0.92 | 4.87 ± 0.86 | n.d. | 1.67 ± 0.32 | n.d. | n.d. |
RT (min) | Compound | ‘Apfelminze’ sD (%) | ‘Apfelminze’ sF (%) | ‘Fränkische Blaue’ sD (%) | ‘Fränkische Blaue’ sF (%) | ‘Multimentha’ sD (%) | ‘Multimentha’ sF (%) |
---|---|---|---|---|---|---|---|
19.38 | β-Phellandrene | n.d. | 1.10 ± 0.08 | n.d. | n.d. | n.d. | n.d. |
22.09 | Eucalyptol/ Limonene | 14.38 ± 0.27 | 14.32 ± 0.35 | 4.13 ± 0.34 | 2.97 ± 1.90 | 3.00 ± 0.40 | 3.06 ± 0.52 |
27.73 | p-Menthone | n.d. | n.d. | 48.52 ± 1.02 | 44.92 ± 0.92 | 46.11± 3.62 | 44.23 ± 4.34 |
28.18 | Isomenthone | n.d. | n.d. | 10.74 ± 0.58 | 9.81 ±0.32 | 5.56 ± 0.84 | 5.71 ± 0.21 |
28.41 | Menthofuran | n.d. | n.d. | 4.30 ± 0.73 | 3.14 ± 1.49 | 1.35 ± 0.40 | 1.73 ± 0.47 |
28.57 | Menthol isomer A | n.d. | n.d. | 1.28 ± 0.07 | 1.45 ± 0.29 | 2.61 ± 0.59 | 2.08 ± 0.84 |
28.90 | Menthol isomer B | n.d. | n.d. | 11.10 ± 1.32 | 12.74 ± 1.87 | 3.42 ± 0.70 | 3.44 ± 0.76 |
29.12 | α-Dihydroionone | n.d. | n.d. | n.d. | n.d. | n.d. | 1.11 ± 0.17 |
29.57 | cis-Dihydrocarvone | 2.48 ± 0.81 | 2.69 ± 0.65 | n.d. | n.d. | n.d. | n.d. |
31.69 | Pulegone | n.d. | n.d. | 14.27 ± 2.18 | 19.48 ± 2.89 | 33.44 ± 4.56 | 34.06 ± 1.12 |
31.70 | Carvone | 71.13 ± 0.86 | 69.41 ± 1.11 | n.d. | n.d. | n.d. | n.d. |
32.21 | Piperitone | 1.59 ± 0.06 | 1.72 ± 0.22 | 1.72 ± 0.17 | 1.03 ± 0.68 | 0.98 ± 0.14 | 1.06 ± 0.17 |
40.67 | β-Caryophyllene | 1.24 ± 0.06 | 1.04 ± 0.64 | 1.26 ± 0.28 | n.d. | n.d. | n.d. |
43.05 | β-Copaene | 5.12 ± 0.17 | 5.26 ± 0.35 | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubert, C.; Tsiaparas, S.; Kahlert, L.; Luhmer, K.; Moll, M.D.; Passon, M.; Wüst, M.; Schieber, A.; Pude, R. Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes. Horticulturae 2023, 9, 960. https://doi.org/10.3390/horticulturae9090960
Hubert C, Tsiaparas S, Kahlert L, Luhmer K, Moll MD, Passon M, Wüst M, Schieber A, Pude R. Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes. Horticulturae. 2023; 9(9):960. https://doi.org/10.3390/horticulturae9090960
Chicago/Turabian StyleHubert, Charlotte, Saskia Tsiaparas, Liane Kahlert, Katharina Luhmer, Marcel Dieter Moll, Maike Passon, Matthias Wüst, Andreas Schieber, and Ralf Pude. 2023. "Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes" Horticulturae 9, no. 9: 960. https://doi.org/10.3390/horticulturae9090960
APA StyleHubert, C., Tsiaparas, S., Kahlert, L., Luhmer, K., Moll, M. D., Passon, M., Wüst, M., Schieber, A., & Pude, R. (2023). Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes. Horticulturae, 9(9), 960. https://doi.org/10.3390/horticulturae9090960