Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Mentha rotundifolia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2039 KiB  
Article
Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel D. Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Agronomy 2025, 15(7), 1735; https://doi.org/10.3390/agronomy15071735 - 18 Jul 2025
Viewed by 324
Abstract
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was [...] Read more.
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was conducted to investigate the impact of coloured shading nets on the physiology, essential oil (EO) content, and composition of three Mentha genotypes: Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’, and Mentha rotundifolia ‘Apfelminze’. In addition to an unshaded control, the Mentha plants were grown under red and blue shading nets. Plant height and vegetation indices were collected weekly. Biomass accumulation, EO content, and composition were determined for each harvest. Both red and blue shading were found to influence the physiological responses and EO compositions of the plants, with red shading promoting slightly higher p-menthone levels in ‘Fränkische Blaue’ and ‘Multimentha’, while blue shading slightly increased carvone levels in ‘Apfelminze’. While EO content varied across harvest seasons (spring, summer, and autumn), ‘Fränkische Blaue’ responded to red shading, demonstrating an increased EO content. The findings suggest that targeted use of coloured shading nets can modulate EO quality. However, genotype-specific responses highlight the necessity of further research to define shading applications for different species and genotypes. Full article
(This article belongs to the Special Issue Cultivation and Utilization of Herbal and Aromatic Plants)
Show Figures

Figure 1

8 pages, 2111 KiB  
Proceeding Paper
The Innovative Potential of Key Mentha Species: An Assessment Based on Patent Analysis
by Reda El Boukhari and Ahmed Fatimi
Biol. Life Sci. Forum 2024, 39(1), 5; https://doi.org/10.3390/blsf2024039005 - 7 Feb 2025
Viewed by 704
Abstract
Morocco’s rich biodiversity includes various aromatic and medicinal plants utilized for culinary and medicinal purposes. The genus Mentha, belonging to the Lamiaceae family, is notable for its widespread use in Moroccan culture. This genus encompasses several species with distinct phytochemical profiles, offering [...] Read more.
Morocco’s rich biodiversity includes various aromatic and medicinal plants utilized for culinary and medicinal purposes. The genus Mentha, belonging to the Lamiaceae family, is notable for its widespread use in Moroccan culture. This genus encompasses several species with distinct phytochemical profiles, offering potential applications in cosmetics, medicine, and other sectors. However, understanding the innovation landscape related to Mentha in Morocco requires a comprehensive patent analysis, which can indicate trends, the technological focus, and potential commercial applications. This study identifies the Mentha species commonly used in Morocco and examines patent documents to reveal technological innovations linked to Moroccan Mentha species. Five major Mentha species were identified, namely M. longifolia, M. pulegium, M. gattefossei, M. spicata, and M. suaveolens, in addition to two hybrids (Mentha × piperita and M. rotundifolia). The patent analysis, focusing on the number of documents, jurisdictional distribution, and International Patent Classification (IPC) codes, highlights that China and the United States are leading jurisdictions, with 1113 and 915 patent documents, respectively. The primary IPC code, A61K36/53, corresponds to medicinal preparations containing mint. Among the eight identified species, M. spicata (spearmint) accounted for the highest patent activity, reflecting its widespread cultivation and use both in Morocco and globally. In contrast, M. gattefossei (persian mint), an endemic species, had minimal patent representation, suggesting limited international exploitation and potential opportunities for increased research and commercialization focused on this species. Full article
Show Figures

Figure 1

22 pages, 4280 KiB  
Article
Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel Dieter Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Plants 2024, 13(22), 3155; https://doi.org/10.3390/plants13223155 - 9 Nov 2024
Cited by 1 | Viewed by 2215
Abstract
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of [...] Read more.
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of potentially health-damaging compounds such as menthofuran should be avoided. This study examines the effect of shading on the EO content and composition of three Mentha genotypes (Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’ and Mentha rotundifolia ‘Apfelminze’). The Mentha genotypes were cultivated in field trials for two years (2022–2023). Each genotype was shaded with a shading net (50% photosynthetic active radiation (PAR) reduction), and a control without shading was prepared. EO content was determined by steam distillation and EO composition was characterized by GC-MS analysis. Furthermore, biomass, vegetation indices (VIs) and the electron transport rate (ETR) were analyzed. While shading led to higher plant heights, higher EO content and a slightly reduced amount of undesired EO compounds, the unshaded control yielded a higher biomass accumulation. Significant genotypic differences were determined. In conclusion, the benefits of shading depend on the intended use and genotype selection. Full article
Show Figures

Figure 1

14 pages, 5271 KiB  
Article
Effect of Different Postharvest Methods on Essential Oil Content and Composition of Three Mentha Genotypes
by Charlotte Hubert, Saskia Tsiaparas, Liane Kahlert, Katharina Luhmer, Marcel Dieter Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Horticulturae 2023, 9(9), 960; https://doi.org/10.3390/horticulturae9090960 - 24 Aug 2023
Cited by 10 | Viewed by 2609
Abstract
Mentha sp. is commonly used for essential oil (EO) extraction and incorporated in multiple products of food and pharmaceutical industries. Postharvest management is a key factor in line of production to preserve quality-determining plant ingredients. This study focused on the effects of two [...] Read more.
Mentha sp. is commonly used for essential oil (EO) extraction and incorporated in multiple products of food and pharmaceutical industries. Postharvest management is a key factor in line of production to preserve quality-determining plant ingredients. This study focused on the effects of two different postharvest processes on EO content and the composition of three different Mentha genotypes (Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’ and Mentha rotundifolia ‘Apfelminze’). They were cultivated under greenhouse conditions. One postharvest treatment consisted of drying Mentha as whole plant after harvesting and later separating leaves from stems. In the second treatment, leaves were separated from stems directly after harvesting and then dried. EO content was determined by steam distillation and composition of EO was characterized by GC/MS analysis. Key findings of the study are that the postharvest processing treatments had no significant influence on the content or composition of the EO. Only the genotype ‘Fränkische Blaue’ showed a significantly higher EO content in the dry separated treatment at the third harvest (2.9 ± 0.15 mL/100 g DM (sD)) than separated fresh (2.4 ± 0.24 mL/100 g DM (sF)). However, genotype selection and harvest time had a clear impact on EO content and composition. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Graphical abstract

11 pages, 1856 KiB  
Communication
Examination of Spectral Properties of Medicinal Plant Leaves Grown in Different Lighting Conditions Based on Mint Cultivation
by Mateusz Feldzensztajn, Paweł Wierzba and Adam Mazikowski
Sensors 2021, 21(12), 4122; https://doi.org/10.3390/s21124122 - 15 Jun 2021
Cited by 8 | Viewed by 3563
Abstract
Cultivation in controlled environmental conditions can provide good quality medicinal herbs with consistent properties. A sensing system that can determine the contents of medicinal substances in plants using spectral characteristics of leaves would be a valuable tool. Viability of such sensing approach for [...] Read more.
Cultivation in controlled environmental conditions can provide good quality medicinal herbs with consistent properties. A sensing system that can determine the contents of medicinal substances in plants using spectral characteristics of leaves would be a valuable tool. Viability of such sensing approach for mint had to be confirmed experimentally, as no data correlating contents of medicinal substances with spectral characteristics of leaves are available, to the best of authors’ knowledge. In the first stage, presented in this paper, the influence of lighting on mint (Mentha rotundifolia) grown on a small hydroponic plantation was studied. Spectral characteristics of leaves were recorded by a spectrophotometer and colorimetric analysis was used to investigate the relationship between these characteristics and the spectrum of lighting. Dry mass yield was measured to test its dependence on the lighting. Dependence of chromaticity of leaves on the spectrum of light used in the cultivation was confirmed. Averaged spectra of leaves are distinguishable using a spectrophotometer and—in most cases—by a human observer. A partial correlation is observed between dry mass yield and the spectrum of lighting. Obtained results justify further research into the correlation between lighting and the contents of biological substances in medicinal plants using spectral characteristics of leaves. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Biomedical Sensing Technology)
Show Figures

Graphical abstract

13 pages, 406 KiB  
Article
Estimation of Energy and Emissions Properties of Waste from Various Species of Mint in the Herbal Products Industry
by Grzegorz Maj, Agnieszka Najda, Kamila Klimek and Sebastian Balant
Energies 2020, 13(1), 55; https://doi.org/10.3390/en13010055 - 20 Dec 2019
Cited by 25 | Viewed by 2750
Abstract
The paper presents the results of research on the physicochemical properties of plant biomass consisting of four mint species, these being Mentha × piperita L. var. citrata Ehrh.—‘Bergamot’, Mentha × rotundifolia L., Mentha spicata L., and Mentha crispa L. The research conducted consisted [...] Read more.
The paper presents the results of research on the physicochemical properties of plant biomass consisting of four mint species, these being Mentha × piperita L. var. citrata Ehrh.—‘Bergamot’, Mentha × rotundifolia L., Mentha spicata L., and Mentha crispa L. The research conducted consisted of the technical analysis of biofuels—determining the heat of combustion and the calorific value of the material under study, and the content of ash, volatile compounds, and humidity. In addition, elemental analysis was carried out for the biomass under study by determining the content of carbon, hydrogen, nitrogen, and sulfur. The research demonstrated that Mentha × piperita L. var. citrata Ehrh.—‘Bergamot’ had the highest energy potential with a gross calorific value of 16.96 MJ·kg−1, and a net calorific value of 15.60 MJ·kg−1. Among the tested materials, Mentha × rotundifolia L. had the lowest content of ash at 7.23%, nitrogen at 0.23%, and sulfur at 0.03%, and at the same time had the highest content of volatile fraction at 70.36%. When compared to hard coal, the estimated emission factors indicated a CO reduction of 29–32%, CO2 reduction of 28–31%, NOx reduction of 40–80%, SO2 reduction of 92–98%, and dust reduction of 45–61%, depending on the type of biomass used. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

19 pages, 2093 KiB  
Article
Polyphenolic Profiling, Quantitative Assessment and Biological Activities of Tunisian Native Mentha rotundifolia (L.) Huds.
by Imen Ben Haj Yahia, Yosr Zaouali, Maria Letizia Ciavatta, Alessia Ligresti, Rym Jaouadi, Mohamed Boussaid and Adele Cutignano
Molecules 2019, 24(13), 2351; https://doi.org/10.3390/molecules24132351 - 26 Jun 2019
Cited by 22 | Viewed by 4469
Abstract
Phenolic profiling of ten plant samples of Mentha rotundifolia (L.) Huds. collected from different bioclimatic areas of Tunisia, was for the first time carried out by using a fast ultra-high-performance liquid chromatography (UHPLC)-high resolution tandem mass spectrometry (HRMS/MS) method on a Q Exactive [...] Read more.
Phenolic profiling of ten plant samples of Mentha rotundifolia (L.) Huds. collected from different bioclimatic areas of Tunisia, was for the first time carried out by using a fast ultra-high-performance liquid chromatography (UHPLC)-high resolution tandem mass spectrometry (HRMS/MS) method on a Q Exactive platform equipped with an electrospray ionization (ESI) source. An intraspecific, interpopulation variability was evidenced and a total of 17 polyphenolic metabolites were identified and quantified by using the UHPLC-HRESIMS/MS method, here validated for specificity, linearity, limit of detection, limit of quantitation, accuracy and precision. The quantitative method resulted sensitive at the nM level and reliable for rapid polyphenol quantification in vegetal matrices. The metabolomic study allowed us to identify a new compound, named salvianolic acid W, which was isolated and characterized mainly by NMR and MS analysis. A statistical correlation of the phenolic composition with antioxidant and anti-acetylcholinesterase activities was provided. Full article
Show Figures

Figure 1

15 pages, 812 KiB  
Article
Evaluation of Antioxidant, Anti-Inflammatory and Cytoprotective Properties of Ethanolic Mint Extracts from Algeria on 7-Ketocholesterol-Treated Murine RAW 264.7 Macrophages
by Fatiha Brahmi, Thomas Nury, Meryam Debbabi, Samia Hadj-Ahmed, Amira Zarrouk, Michel Prost, Khodir Madani, Lila Boulekbache-Makhlouf and Gérard Lizard
Antioxidants 2018, 7(12), 184; https://doi.org/10.3390/antiox7120184 - 6 Dec 2018
Cited by 37 | Viewed by 6394
Abstract
The present study consisted in evaluating the antioxidant, anti-inflammatory and cytoprotective properties of ethanolic extracts from three mint species (Mentha spicata L. (MS), Mentha pulegium L. (MP) and Mentha rotundifolia (L.) Huds (MR)) with biochemical methods on murine RAW 264.7 macrophages (a [...] Read more.
The present study consisted in evaluating the antioxidant, anti-inflammatory and cytoprotective properties of ethanolic extracts from three mint species (Mentha spicata L. (MS), Mentha pulegium L. (MP) and Mentha rotundifolia (L.) Huds (MR)) with biochemical methods on murine RAW 264.7 macrophages (a transformed macrophage cell line isolated from ascites of BALB/c mice infected by the Abelson leukemia virus). The total phenolic, flavonoid and carotenoid contents were determined with spectrophotometric methods. The antioxidant activities were quantified with the Kit Radicaux Libres (KRLTM), the ferric reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The MS extract showed the highest total phenolic content, and the highest antioxidant capacity, while the MR extract showed the lowest total phenolic content and the lowest antioxidant capacity. The cytoprotective and anti-inflammatory activities of the extracts were quantified on murine RAW 264.7 macrophages treated with 7-ketocholesterol (7KC; 20 µg/mL: 50 µM) associated or not for 24 h and 48 h with ethanolic mint extracts used at different concentrations (25, 50, 100, 200 and 400 µg/mL). Under treatment with 7KC, an important inhibition of cell growth was revealed with the crystal violet test. This side effect was strongly attenuated in a dose dependent manner with the different ethanolic mint extracts, mainly at 48 h. The most important cytoprotective effect was observed with the MS extract. In addition, the effects of ethanolic mint extracts on cytokine secretion (Interleukin (IL)-6, IL-10, Monocyte Chemoattractant Protein (MCP)-1, Interferon (IFN)-ϒ, Tumor necrosis factor (TNF)-α) were determined at 24 h on lipopolysaccharide (LPS, 0.2 µg/mL)-, 7KC (20 µg/mL)- and (7KC + LPS)-treated RAW 264.7 cells. Complex effects of mint extracts were observed on cytokine secretion. However, comparatively to LPS-treated cells, all the extracts strongly reduce IL-6 secretion and two of them (MP and MR) also decrease MCP-1 and TNF-α secretion. However, no anti-inflammatory effects were observed on 7KC- and (7KC + LPS)-treated cells. Altogether, these data bring new evidences on the potential benefits (especially antioxidant and cytoprotective properties) of Algerian mint on human health. Full article
Show Figures

Graphical abstract

26 pages, 2002 KiB  
Article
Multivariate Numerical Taxonomy of Mentha Species, Hybrids, Varieties and Cultivars
by Broza ŠARIĆ-KUNDALIĆ, Silvia FIALOVÁ, Christoph DOBEŠ, Silvester ÖLZANT, Daniela TEKEĽOVÁ, Daniel GRANČAI, Gottfried REZNICEK and Johannes SAUKEL
Sci. Pharm. 2009, 77(4), 851-876; https://doi.org/10.3797/scipharm.0905-10 - 29 Oct 2009
Cited by 71 | Viewed by 4719
Abstract
A taxonomic study into the anatomical, morphological and phytochemical differentiation of the genus Mentha L (Lamiaceae) in Bosnia & Hercegovina and Slovakia is presented. Following a population-based approach and using hierarchical cluster analyses the following basic species and hybrids corresponding to exclusive branches, [...] Read more.
A taxonomic study into the anatomical, morphological and phytochemical differentiation of the genus Mentha L (Lamiaceae) in Bosnia & Hercegovina and Slovakia is presented. Following a population-based approach and using hierarchical cluster analyses the following basic species and hybrids corresponding to exclusive branches, i.e. groups, in the constructed hierarchies were recognized: Mentha aquatica, M. spicata, M. arvensis, M. longifolia, M. rotundifolia, M. × piperita, M. × villosa, M. × verticillata, M. × gentillis, M. × gracilis and M. pulegium. These groups were independently found by separate analyses of the sampled anatomical and morphological variation. In contrast, these anatomically and morphologically defined species exhibited a high level of phytochemical polymorphism which was largely inconsistent with the hierarchical classification. Among the analysed characters, the inflorescence type, dentation of the leaf margin, hair density, the type of capitate glandular hairs, and the main containing compound in essential oil proved most useful for the discrimination of taxa. However, most of the observed traits were not exclusive to a particular species and only the combined consideration of traits revealed coherent taxonomic groups. Basic species and hybrids are described in detail based on the anatomical, morphological and phytochemical characters used for their definition. The performed cluster analysis finally supported hypotheses on the parentage of some of the studied hybrids. Full article
Back to TopTop