Research-Gap-Spotting in Plum–Apricot Hybrids—Bioactive Compounds, Antioxidant Activities, and Health Beneficial Properties
Abstract
:1. Introduction
2. Metabolic Profile, Bioactive Compounds, and Antioxidant Capacity
3. Health Beneficial Properties
3.1. Antihyperlipidemic Properties (Cholesterol Control)
3.2. Anticancer Properties
3.3. Anti-Osteoporosis Properties
3.4. Anti-Inflammatory Activities
3.5. Gut Microbiota Support
3.6. Enzyme Inhibition (Antihyperglycemic and Neuroprotective Activities)
4. Applications
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popova, A.; Mihaylova, D.; Alexieva, I.; Doykina, P. Ethnopharmacology and Phytochemistry of Some Representatives of the Genus Prunus. J. Cent. Eur. Agric. 2022, 23, 665–678. [Google Scholar] [CrossRef]
- Guerrero, B.I.; Guerra, M.E.; Rodrigo, J. Simple Sequence Repeat (SSR)-Based Genetic Diversity in Interspecific Plumcot-Type (Prunus salicina x Prunus armeniaca) Hybrids. Plants 2022, 11, 1241. [Google Scholar] [CrossRef]
- Liu, W.; Liu, D.; Zhang, A.; Feng, C.; Yang, J.; Yoon, J.; Li, S. Genetic Diversity and Phylogenetic Relationships among Plum Germplasm Resources in China Assessed with Inter-Simple Sequence Repeat Markers. J. Am. Soc. Hortic. Sci. 2007, 132, 619–628. [Google Scholar] [CrossRef]
- Gago, D.; Sánchez, C.; Aldrey, A.; Christie, C.B.; Bernal, M.Á.; Vidal, N. Micropropagation of Plum (Prunus domestica L.) in Bioreactors Using Photomixotrophic and Photoautotrophic Conditions. Horticulturae 2022, 8, 286. [Google Scholar] [CrossRef]
- Yilmaz, K.U.; Gurcan, K.; Yilmaz, K.U.; Gurcan, K. Genetic Diversity in Apricot. Genet. Divers. Plants 2012, 13, 249–270. [Google Scholar] [CrossRef]
- Wani, A.A.; Zargar, S.A.; Malik, A.H.; Kashtwari, M.; Nazir, M.; Khuroo, A.A.; Ahmad, F.; Dar, T.A. Assessment of Variability in Morphological Characters of Apricot Germplasm of Kashmir, India. Sci Hortic 2017, 225, 630–637. [Google Scholar] [CrossRef]
- Głowacka, A.; Sitarek, M.; Rozpara, E.; Podwyszyńska, M. Pomological Characteristics and Ploidy Levels of Japanese Plum (Prunus salicina Lindl.) Cultivars Preserved in Poland. Plants 2021, 10, 884. [Google Scholar] [CrossRef]
- Nyawo, T.A. Fingerprinting and Molecular Characterisation of ARC’s Apricot and Plum Collection. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Frecon, J.L.; Ward, D.L. Testing and Evaluation of Plum and Plum Hybrid Cultivars. Fruit Notes 2012, 77, 12–22. [Google Scholar]
- Eierman, C. Fruit Trees in Small Spaces: Abundant Harvests from Your Own Backyard; Timber Press: London, UK, 2012; ISBN 9781604691900. [Google Scholar]
- Ahmad, R.; Potter, D.; Southwick, S.M. Identi®cation and Characterization of Plum and Pluot Cultivars by Microsatellite Markers. J. Hortic. Sci. Biotechnol. 2015, 79, 164–169. [Google Scholar] [CrossRef]
- Szymajda, M.; Studnicki, M.; Kuras, A.; Żurawicz, E. Cross-Compatibility in Interspecific Hybridization between Three Prunus Species. S. Afr. J. Bot. 2022, 146, 624–633. [Google Scholar] [CrossRef]
- Halász, J.; Hegedus, A.; Szabó, Z.; Nyéki, J.; Pedryc, A. DNA-Based S-Genotyping of Japanese Plum and Pluot Cultivars to Clarify Incompatibility Relationships. HortScience 2007, 42, 46–50. [Google Scholar] [CrossRef]
- Soldatov, I.V.; Salaš, P. Hybridization of Domestic Prunes with Black Apricot (Prunus dosmestica L. x Armeniaca dasycarpa Ehrn.). Acta Univ. Agric. Et Silvic. Mendel. Brun. 2007, 55, 147–154. [Google Scholar] [CrossRef]
- Yaman, M.; Uzun, A. Evaluation of Superior Hybrid Individuals with Intra and Interspecific Hybridization Breeding in Apricot. Int. J. Fruit Sci. 2020, 20, S2045–S2055. [Google Scholar] [CrossRef]
- Bai, J.; Jordán, M.J.; Li, J. Editorial: Metabolism of Fruit Volatile Organic Compounds. Front. Plant Sci. 2022, 13, 1586. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Ștefănescu, D.; Stoenescu, A.M. Variability of Phenological Behaviours of Wild Fruit Tree Species Based on Discriminant Analysis. Plants 2021, 11, 45. [Google Scholar] [CrossRef]
- Gallinat, A.S.; Primack, R.B.; Willis, C.G.; Nordt, B.; Stevens, A.D.; Fahey, R.; Whittemore, A.T.; Du, Y.; Panchen, Z.A. Patterns and Predictors of Fleshy Fruit Phenology at Five International Botanical Gardens. Am. J. Bot. 2018, 105, 1824–1834. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.; Babu, K.S.; Thorakkattu, P.; Al-Asmari, F.; Pandiselvam, R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, Z.Y.; Quan, H.; Li, M.J.; Zhao, F.Y.; Xu, Y.J.; Liu, J.; Sai, M.; Zheng, W.L.; Lan, X.Z. Integrated Analysis of Transcriptomic and Metabolomic Data Reveals Critical Metabolic Pathways Involved in Rotenoid Biosynthesis in the Medicinal Plant Mirabilis Himalaica. Mol. Genet. Genom. 2018, 293, 635–647. [Google Scholar] [CrossRef]
- Lenchyk, L.; Upyr, T.; Mohammed, S.; Komisarenko, M. Study of Amino Acid Composition of Prunus domestica Fruits Pectin Complex. Int. J. Pharm. Chem. 2020, 6, 60. [Google Scholar] [CrossRef]
- Farag, M.A.; Ramadan, N.S.; Shorbagi, M.; Farag, N.; Gad, H.A. Profiling of Primary Metabolites and Volatiles in Apricot (Prunus armeniaca L.) Seed Kernels and Fruits in the Context of Its Different Cultivars and Soil Type as Analyzed Using Chemometric Tools. Foods 2022, 11, 1339. [Google Scholar] [CrossRef]
- Murathan, Z.T.; Arslan, M.; Erbil, N. Analyzing Biological Properties of Some Plum Genotypes Grown in Turkey. Int. J. Fruit Sci. 2020, 20, S1729–S1740. [Google Scholar] [CrossRef]
- Lahaye, M.; Falourd, X.; Quemener, B.; Devaux, M.F.; Audergon, J.M. Histological and Cell Wall Polysaccharide Chemical Variability among Apricot Varieties. LWT 2014, 58, 486–496. [Google Scholar] [CrossRef]
- Zhu, G.-P.; Zhao, H.; Zhou, X.-X.; Liu, M.-P.; Huang, Y.-L.; Wuyun, T.-N.; Li, F.-D. Prunus domestica × P. Armeniaca Cultivar Fengweimeigui: A New Natural Material for Fruit Wine. Adv. J. Food Sci. Technol. 2016, 10, 277–280. [Google Scholar] [CrossRef]
- Fratianni, F.; Ombra, M.N.; d’Acierno, A.; Cipriano, L.; Nazzaro, F. Apricots: Biochemistry and Functional Properties. Curr. Opin. Food Sci. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- Kan, T.; Gundogdu, M.; Ercisli, S.; Muradoglu, F.; Celik, F.; Gecer, M.K.; Kodad, O.; Zia-Ul-Haq, M. Phenolic Compounds and Vitamins in Wild and Cultivated Apricot (Prunus armeniaca L.) Fruits Grown in Irrigated and Dry Farming Conditions. Biol. Res. 2014, 47, 46. [Google Scholar] [CrossRef]
- Kaulmann, A.; Jonville, M.C.; Schneider, Y.J.; Hoffmann, L.; Bohn, T. Carotenoids, Polyphenols and Micronutrient Profiles of Brassica Oleraceae and Plum Varieties and Their Contribution to Measures of Total Antioxidant Capacity. Food Chem. 2014, 155, 240–250. [Google Scholar] [CrossRef]
- Stacewicz-Sapuntzakis, M.; Bowen, P.E.; Hussain, E.A.; Damayanti-Wood, B.I.; Farnsworth, N.R. Chemical Composition and Potential Health Effects of Prunes: A Functional Food? Crit. Rev. Food Sci. Nutr. 2010, 41, 251–286. [Google Scholar] [CrossRef]
- Khan, S.; Arya, R.; Singh, I. A Review Paper on Fruit Nutrition and Health Benefits. Pharma. Innov. J. 2021, 10, 119–123. [Google Scholar]
- Drkenda, P.; Music, O.; Oras, A.; Haracic, S.; Haseljic, S.; Blanke, M.; Hudina, M. Sugar, Acid and Phenols in Fruit of the Sharka-Tolerant Autochthonous Plum Genotype ‘Mrkosljiva’. Erwerbs-Obstbau 2022, 64, 569–580. [Google Scholar] [CrossRef]
- Bae, H.; Yun, S.K.; Jun, J.H.; Yoon, I.K.; Nam, E.Y.; Kwon, J.H. Assessment of Organic Acid and Sugar Composition in Apricot, Plumcot, Plum, and Peach during Fruit Development. J. Appl. Bot. Food Qual. 2014, 87, 24–29. [Google Scholar] [CrossRef]
- Bureau, S.; Renard, C.M.G.C.; Reich, M.; Ginies, C.; Audergon, J.M. Change in Anthocyanin Concentrations in Red Apricot Fruits during Ripening. LWT-Food Sci. Technol. 2009, 42, 372–377. [Google Scholar] [CrossRef]
- Naryal, A.; Acharya, S.; Kumar Bhardwaj, A.; Kant, A.; Chaurasia, O.P.; Stobdan, T. Altitudinal Effect on Sugar Contents and Sugar Profiles in Dried Apricot (Prunus armeniaca L.) Fruit. J. Food Compos. Anal. 2019, 76, 27–32. [Google Scholar] [CrossRef]
- Marques, C.; Sotiles, A.R.; Farias, F.O.; Oliveira, G.; Mitterer-Daltoé, M.L.; Masson, M.L. Full Physicochemical Characterization of Malic Acid: Emphasis in the Potential as Food Ingredient and Application in Pectin Gels. Arab. J. Chem. 2020, 13, 9118–9129. [Google Scholar] [CrossRef]
- Famiani, F.; Battistelli, A.; Moscatello, S.; Cruz-Castillo, J.G.; Walker, R.P. The Organic Acids That Are Accumulated in the Flesh of Fruits: Occurrence, Metabolism and Factors Affecting Their Contents—A Review. Rev. Chapingo Ser. Hortic. 2015, 21, 97–128. [Google Scholar] [CrossRef]
- Cakpo, C.B.; Vercambre, G.; Baldazzi, V.; Roch, L.; Dai, Z.; Valsesia, P.; Memah, M.M.; Colombié, S.; Moing, A.; Gibon, Y.; et al. Model-Assisted Comparison of Sugar Accumulation Patterns in Ten Fleshy Fruits Highlights Differences between Herbaceous and Woody Species. Ann. Bot. 2020, 126, 455–470. [Google Scholar] [CrossRef]
- Dai, Z.; Wu, H.; Baldazzi, V.; van Leeuwen, C.; Bertin, N.; Gautier, H.; Wu, B.; Duchêne, E.; Gomès, E.; Delrot, S.; et al. Inter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits. Front. Plant Sci. 2016, 7, 649. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Desseva, I.; Petkova, N.; Stoyanova, M.; Vrancheva, R.; Slavov, A.; Slavchev, A.; Lante, A. Comparative Study of Early- and Mid-Ripening Peach (Prunus persica L.) Varieties: Biological Activity, Macro-, and Micro- Nutrient Profile. Foods 2021, 10, 164. [Google Scholar] [CrossRef]
- Waseem, M.; Naqvi, S.A.; Haider, M.S.; Shahid, M.; Jaskani, M.J.; Khan, I.A.; Abbas, H. Antioxidant activity, sugar quantification, and phytochemical and physical profiling of apricot varieties of chitral and gilgit-pakistan. Pak. J. Bot 2021, 53, 1407–1415. [Google Scholar] [CrossRef]
- Kusumiyati; Hadiwijaya, Y.; Putri, I.E.; Mubarok, S.; Hamdani, J.S. Rapid and Non-Destructive Prediction of Total Soluble Solids of Guava Fruits at Various Storage Periods Using Handheld near-Infrared Instrument. IOP Conf. Ser. Earth Environ. Sci. 2020, 458, 012022. [Google Scholar] [CrossRef]
- Shamsolshoara, Y.; Miri, S.M.; Gharesheikhbayat, R.; Pirkhezri, M.; Davoodi, D. Phenological, Morphological, and Pomological Characterizations of Three Promising Plum and Apricot Natural Hybrids. Taiwania 2021, 66, 466–477. [Google Scholar] [CrossRef]
- Bajramova, A.; Spégel, P. A Comparative Study of the Fatty Acid Profile of Common Fruits and Fruits Claimed to Confer Health Benefits. J. Food Compos. Anal. 2022, 112, 104657. [Google Scholar] [CrossRef]
- MatthÄus, B.; Özcan, M.M. Fatty Acids and Tocopherol Contents of Some Prunus Spp. Kernel Oils. J. Food Lipids 2009, 16, 187–199. [Google Scholar] [CrossRef]
- Hrichi, S.; Rigano, F.; Chaabane-Banaoues, R.; El Majdoub, Y.O.; Mangraviti, D.; Di Marco, D.; Babba, H.; Dugo, P.; Mondello, L.; Mighri, Z.; et al. Identification of Fatty Acid, Lipid and Polyphenol Compounds from Prunus armeniaca L. Kernel Extracts. Foods 2020, 9, 896. [Google Scholar] [CrossRef] [PubMed]
- Pintea, A.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Pop, E.A.; Opriță, V.A.; Giuffrida, D.; Cacciola, F.; Bartolomeo, G.; Mondello, L. Carotenoids, Fatty Acids, and Volatile Compounds in Apricot Cultivars from Romania—A Chemometric Approach. Antioxidants 2020, 9, 562. [Google Scholar] [CrossRef]
- Pott, D.M.; Vallarino, J.G.; Osorio, S. Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites 2020, 10, 187. [Google Scholar] [CrossRef]
- Rejman, K.; Górska-Warsewicz, H.; Kaczorowska, J.; Laskowski, W. Nutritional Significance of Fruit and Fruit Products in the Average Polish Diet. Nutrients 2021, 13, 2079. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Exploring the Potential of Antioxidants from Fruits and Vegetables and Strategies for Their Recovery. Innov. Food Sci. Emerg. Technol. 2022, 77, 102974. [Google Scholar] [CrossRef]
- Shemesh, K.; Zohar, M.; Bar-Ya’Akov, I.; Hatib, K.; Holland, D.; Isaacson, T. Analysis of Carotenoids in Fruit of Different Apricot Accessions Reveals Large Variability and Highlights Apricot as a Rich Source of Phytoene and Phytofluene. Fruits 2017, 72, 185–202. [Google Scholar] [CrossRef]
- Walkowiak-Tomczak, D.; Reguła, J.; Łysiak, G. Physico-Chemical Properties and Antioxidant Activity of Selected Plum Cultivar Fruit. ACTA Acta Sci. Pol. Technol. Aliment 2008, 7, 15–22. [Google Scholar]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Dincheva, I. Pattern Recognition of Varieties of Peach Fruit and Pulp from Their Volatile Components and Metabolic Profile Using HS-SPME-GC/MS Combined with Multivariable Statistical Analysis. Plants 2022, 11, 3219. [Google Scholar] [CrossRef] [PubMed]
- Miletić, N.; Popović, B.; Mitrović, O.; Kandić, M. Phenolic Content and Antioxidant Capacity of Fruits of Plum Cv. “Stanley” (Prunus domestica L.) as Influenced by Maturity Stage and on-Tree Ripening. AJCS 2012, 6, 681–687. [Google Scholar]
- Trendafilova, A.; Ivanova, V.; Trusheva, B.; Kamenova-Nacheva, M.; Tabakov, S.; Simova, S. Chemical Composition and Antioxidant Capacity of the Fruits of European Plum Cultivar “Čačanska Lepotica” Influenced by Different Rootstocks. Foods 2022, 11, 2844. [Google Scholar] [CrossRef] [PubMed]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef] [PubMed]
- Bousselma, A.; Abdessemed, D.; Tahraoui, H.; Zedame, F.; Amrane, A. Polyphenols and Flavonoids Contents of Fresh and Dried Apricots Extracted by Cold Soaking and Ultrasound-Assisted Extraction. Kem. U Ind. 2023, 72, 161–168. [Google Scholar] [CrossRef]
- Ullah, H.; Sommella, E.; Santarcangelo, C.; D’avino, D.; Rossi, A.; Dacrema, M.; Di Minno, A.; Di Matteo, G.; Mannina, L.; Campiglia, P.; et al. Hydroethanolic Extract of Prunus domestica L.: Metabolite Profiling and In Vitro Modulation of Molecular Mechanisms Associated to Cardiometabolic Diseases. Nutrients 2022, 14, 340. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Göttingerová, M.; Kaplan, J.; Kiss, T.; Venuta, R.; Nečas, T. Determination of the Pomological and Nutritional Properties of Selected Plum Cultivars and Minor Fruit Species. Hortic. Sci. 2020, 47, 181–193. [Google Scholar] [CrossRef]
- Drogoudi, P.; Pantelidis, G. Phenotypic Variation and Peel Contribution to Fruit Antioxidant Contents in European and Japanese Plums. Plants 2022, 11, 1338. [Google Scholar] [CrossRef]
- Alajil, O.; Sagar, V.R.; Kaur, C.; Rudra, S.G.; Sharma, R.R.; Kaushik, R.; Verma, M.K.; Tomar, M.; Kumar, M.; Mekhemar, M. Nutritional and Phytochemical Traits of Apricots (Prunus armeniaca L.) for Application in Nutraceutical and Health Industry. Foods 2021, 10, 1344. [Google Scholar] [CrossRef]
- Lin, X.; Huang, S.; Zhang, Q.; Zhu, S.; Dong, X. Changes in the Primary Metabolites of ‘Fengtang’ Plums during Storage Detected by Widely Targeted Metabolomics. Foods 2022, 11, 2830. [Google Scholar] [CrossRef]
- Moscatello, S.; Frioni, T.; Blasi, F.; Proietti, S.; Pollini, L.; Verducci, G.; Rosati, A.; Walker, R.P.; Battistelli, A.; Cossignani, L.; et al. Changes in Absolute Contents of Compounds Affecting the Taste and Nutritional Properties of the Flesh of Three Plum Species Throughout Development. Foods 2019, 8, 486. [Google Scholar] [CrossRef] [PubMed]
- Pino, J.A.; Quijano, C.E. Study of the Volatile Compounds from Plum (Prunus domestica L. Cv. Horvin) and Estimation of Their Contribution to the Fruit Aroma. Ciênc. Tecnol. Aliment 2012, 32, 76–83. [Google Scholar] [CrossRef]
- Goliáš, J.; Létal, J.; Kožíšková, J.; Dokoupil, L. Formation of Volatiles in Apricot (Prunus armeniaca L.) Fruit during Post-Harvest Ripening. Mitt. Klosterneubg. 2013, 63, 96–107. [Google Scholar]
- Alwan, A.M.; Rokaya, D.; Kathayat, G.; Afshari, J.T. Onco-Immunity and Therapeutic Application of Amygdalin: A Review. J. Oral Biol. Craniofacial Res. 2023, 13, 155–163. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Amygdalin Content of Seeds, Kernels and Food Products Commercially-Available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef]
- Saberi Hasanabadi, P.; Shaki, F. The Pharmacological and Toxicological Effects of Amygdalin: A Review Study. Pharm. Biomed. Res. 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Naryal, A.; Bhardwaj, P.; Kant, A.; Chaurasia, O.; Stobdan, T. Altitude and Seed Phenotypic Effect on Amygdalin Content in Apricot (Prunus armeniaca L.) Kernel. Pharmacogn. J. 2019, 11, 332–337. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M. Determination of Physico-Chemical and Functional Properties of Plum Seed Cakes for Estimation of Their Further Industrial Applications. Sustainability 2022, 14, 12601. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of Secondary Metabolites in Plant Defense against Pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Monjotin, N.; Amiot, M.J.; Fleurentin, J.; Morel, J.M.; Raynal, S. Clinical Evidence of the Benefits of Phytonutrients in Human Healthcare. Nutrients 2022, 14, 1712. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B.; Kubanek, J.; Linington, R.; Luesch, H. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S. Therapeutic and Pharmacological Potential of Prunus domestica: A Comprehensive Review. Int. J. Pharm. Sci. Res. 2021, 12, 3034–3041. [Google Scholar] [CrossRef]
- Kovacikova, E.; Kovacik, A.; Halenar, M.; Tokarova, K.; Chrastinova, L.; Ondruska, L.; Jurcik, R.; Kolesar, E.; Valuch, J.; Kolesarova, A. Potential Toxicity of Cyanogenic Glycoside Amygdalin and Bitter Apricot Seed in Rabbits—Health Status Evaluation. J. Anim. Physiol. Anim. Nutr. 2019, 103, 695–703. [Google Scholar] [CrossRef]
- Wani, S.M.; Jan, N.; Wani, T.A.; Ahmad, M.; Masoodi, F.A.; Gani, A. Optimization of Antioxidant Activity and Total Polyphenols of Dried Apricot Fruit Extracts (Prunus armeniaca L.) Using Response Surface Methodology. J. Saudi Soc. Agric. Sci. 2017, 16, 119–126. [Google Scholar] [CrossRef]
- Fatima, T.; Bashir, O.; Jan, N.; Scholar, P.; Gani, G.; Bhat, T.A. Nutritional and Health Benefits of Apricots. Int. J. Unani Integr. Med. 2018, 2, 5–9. [Google Scholar]
- Al-Soufi, M.H.; Alshwyeh, H.A.; Alqahtani, H.; Al-Zuwaid, S.K.; Al-Ahmed, F.O.; Al-Abdulaziz, F.T.; Raed, D.; Hellal, K.; Mohd Nani, N.H.; Zubaidi, S.N.; et al. A Review with Updated Perspectives on Nutritional and Therapeutic Benefits of Apricot and the Industrial Application of Its Underutilized Parts. Molecules 2022, 27, 5016. [Google Scholar] [CrossRef]
- Askarpour, M.; Ghalandari, H.; Setayesh, L.; Ghaedi, E. Plum Supplementation and Lipid Profile: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. J. Nutr. Sci. 2023, 12, e6. [Google Scholar] [CrossRef]
- Mullins, A.; Akhavan, N.; Arjmandi, B.; Ormsbee, L. Study Protocol: Effects of Daily Prune Consumption on Lipid Profile, Inflammation, and Oxidative Stress. Curr. Dev. Nutr. 2022, 6, 1150. [Google Scholar] [CrossRef]
- Kitic, D.; Miladinovic, B.; Randjelovic, M.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Seidel, V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. Plants 2022, 11, 1885. [Google Scholar] [CrossRef]
- Buskaran, K.; Bullo, S.; Hussein, M.Z.; Masarudin, M.J.; Moklas, M.A.M.; Fakurazi, S. Anticancer Molecular Mechanism of Protocatechuic Acid Loaded on Folate Coated Functionalized Graphene Oxide Nanocomposite Delivery System in Human Hepatocellular Carcinoma. Materials 2021, 14, 817. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; El-Ansary, A.E.; Mostafa, M.A.; Kamel, T.A.; Safwat, G. Evaluation of the Phytochemical, Antioxidant, Antibacterial and Anticancer Activity of Prunus domestica Fruit. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 395–404. [Google Scholar] [CrossRef]
- Bahrin, A.A.; Moshawih, S.; Dhaliwal, J.S.; Kanakal, M.M.; Khan, A.; Lee, K.S.; Goh, B.H.; Goh, H.P.; Kifli, N.; Ming, L.C. Cancer Protective Effects of Plums: A Systematic Review. Biomed. Pharmacother. 2022, 146, 112568. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, S.; Kern, M.; Metti, D.; Shamloufard, P.; Chai, S.C.; Johnson, S.A.; Payton, M.E.; Arjmandi, B.H. The Effect of Two Doses of Dried Plum on Bone Density and Bone Biomarkers in Osteopenic Postmenopausal Women: A Randomized, Controlled Trial. Osteoporos. Int. 2016, 27, 2271–2279. [Google Scholar] [CrossRef]
- Wallace, T.C. Dried Plums, Prunes and Bone Health: A Comprehensive Review. Nutrients 2017, 9, 401. [Google Scholar] [CrossRef]
- Silvan, J.M.; Ciechanowska, A.M.; Martinez-Rodriguez, A.J. Modulation of Antibacterial, Antioxidant, and Anti-Inflammatory Properties by Drying of Prunus domestica L. Plum Juice Extracts. Microorganisms 2020, 8, 119. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Anwar, S.; Yunusa, B.M.; Nayik, G.A.; Mousavi Khaneghah, A. The Potential of Apricot Seed and Oil as Functional Food: Composition, Biological Properties, Health Benefits & Safety. Food Biosci. 2023, 51, 102336. [Google Scholar] [CrossRef]
- Lever, E.; Scott, S.M.; Louis, P.; Emery, P.W.; Whelan, K. The Effect of Prunes on Stool Output, Gut Transit Time and Gastrointestinal Microbiota: A Randomised Controlled Trial. Clin. Nutr. 2018, 38, 165–173. [Google Scholar] [CrossRef]
- Simpson, A.M.R.; De Souza, M.J.; Damani, J.; Rogers, C.; Williams, N.I.; Weaver, C.; Ferruzzi, M.G.; Chadwick-Corbin, S.; Nakatsu, C.H. Prune Supplementation for 12 Months Alters the Gut Microbiome in Postmenopausal Women. Food Funct. 2022, 13, 12316–12329. [Google Scholar] [CrossRef]
- Alasalvar, C.; Chang, S.K.; Kris-Etherton, P.M.; Sullivan, V.K.; Petersen, K.S.; Guasch-Ferré, M.; Jenkins, D.J.A. Dried Fruits: Bioactives, Effects on Gut Microbiota, and Possible Health Benefits—An Update. Nutrients 2023, 15, 1611. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Alexieva, I.; Krastanov, A.; Lante, A. Polyphenols as Suitable Control for Obesity and Diabetes. Open Biotechnol. J. 2018, 12, 219–228. [Google Scholar] [CrossRef]
- Lankatillake, C.; Luo, S.; Flavel, M.; Lenon, G.B.; Gill, H.; Huynh, T.; Dias, D.A. Screening Natural Product Extracts for Potential Enzyme Inhibitors: Protocols, and the Standardisation of the Usage of Blanks in α-Amylase, α-Glucosidase and Lipase Assays. Plant Methods 2021, 17, 3. [Google Scholar] [CrossRef] [PubMed]
- Magiera, A.; Kołodziejczyk-Czepas, J.; Skrobacz, K.; Czerwińska, M.E.; Rutkowska, M.; Prokop, A.; Michel, P.; Olszewska, M.A. Valorisation of the Inhibitory Potential of Fresh and Dried Fruit Extracts of Prunus Spinosa L. towards Carbohydrate Hydrolysing Enzymes, Protein Glycation, Multiple Oxidants and Oxidative Stress-Induced Changes in Human Plasma Constituents. Pharmaceuticals 2022, 15, 1300. [Google Scholar] [CrossRef]
- Marčetić, M.; Samardžić, S.; Ilić, T.; Božić, D.D.; Vidović, B. Phenolic Composition, Antioxidant, Anti-Enzymatic, Antimicrobial and Prebiotic Properties of Prunus Spinosa L. Fruits. Foods 2022, 11, 3289. [Google Scholar] [CrossRef]
- Vahedi-Mazdabadi, Y.; Karimpour-Razkenari, E.; Akbarzadeh, T.; Lotfian, H.; Toushih, M.; Roshanravan, N.; Saeedi, M.; Ostadrahimi, A. Anti-Cholinesterase and Neuroprotective Activities of Sweet and Bitter Apricot Kernels (Prunus armeniaca L.). Iran. J. Pharm. Res. 2020, 19, 216–224. [Google Scholar] [CrossRef]
- Ogunlade, A.O.; Oluwafemi, G.I. Production and Evaluation of Jam Produced from Plum and African Star Apple Blends. J. Homepage 2021, 5, 93–98. [Google Scholar] [CrossRef]
- Wu, Z.; Li, X.; Zeng, Y.; Cai, D.; Teng, Z.; Wu, Q.; Sun, J.; Bai, W. Color Stability Enhancement and Antioxidation Improvement of Sanhua Plum Wine under Circulating Ultrasound. Foods 2022, 11, 2435. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.K.; Gill, A.; Kumar, V.; Chauhan, A. Preparation of Plum Wine with Reduced Alcohol Content: Effect of Must Treatment and Blending with Sand Pear Juice on Physico-Chemical and Sensory Quality. Indian J. Nat. Prod. Resour. 2014, 5, 67–74. [Google Scholar]
- Jarvis, N.; O’Bryan, C.A.; Ricke, S.C.; Crandall, P.G. The Functionality of Plum Ingredients in Meat Products: A Review. Meat Sci. 2015, 102, 41–48. [Google Scholar] [CrossRef]
- Mohammadi-Moghaddam, T.; Firoozzare, A.; Kariminejad, M.; Sorahi, M.; Tavakoli, Z. Black Plum Peel as a Useful By-Product for the Production of New Foods: Chemical, Textural, and Sensory Characteristics of Halva Masghati. Int. J. Food Prop. 2020, 23, 2005–2019. [Google Scholar] [CrossRef]
- Ivanova, D.; Valov, N.; Valova, I.; Stefanova, D. Optimization of Convective Drying of Apricots. TEM J. 2017, 6, 572–577. [Google Scholar] [CrossRef]
- Téllez-Pérez, C.; Cardador-Martínez, A.; Tejada-Ortigoza, V.; Soria-Mejía, M.C.; Balderas-León, I.; Alonzo-Macías, M. Antioxidant Content of Frozen, Convective Air-Dried, Freeze-Dried, and Swell-Dried Chokecherries (Prunus virginiana L.). Molecules 2020, 25, 1190. [Google Scholar] [CrossRef] [PubMed]
- Abd, M.; Sorour, E.; Mehanni, A.-H.E.-S.; Mahmoud, S.; Mustafa, H.; Mustafa, A.; Mustafa, M.A.; Hussien, S.M. Chemical Composition and Functional Properties of Some Fruit Seed Kernel Flours. J. Sohag Agriscience (JSAS) 2021, 6, 184–191. [Google Scholar]
- Saadi, S.; Saari, N.; Ariffin, A.A.; Ghazali, H.M.; Hamid, A.A.; Abdulkarim, S.M.; Anwar, F.; Nacer, N.E. Novel Emulsifiers and Stabilizers from Apricot (Prunus armeniaca L.): Their Potential Therapeutic Targets and Functional Properties. Appl. Food Res. 2022, 2, 100085. [Google Scholar] [CrossRef]
- Li, Y.; Tang, B.; Chen, J.; Lai, P. Microencapsulation of Plum (Prunus salicina Lindl.) Phenolics by Spray Drying Technology and Storage Stability. Food Sci. Technol. 2017, 38, 530–536. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z. Extracts of Cherry and Sweet Cherry Fruit as Active Ingredients of Body Wash Formulations. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 100–107. [Google Scholar] [CrossRef]
- Pham, T.T.; Le, L.; Nguyen, P.; Dam, M.S.; Baranyai, L. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering 2023, 5, 520–536. [Google Scholar] [CrossRef]
- Stryjecka, M.; Kiełtyka-Dadasiewicz, A.; Michalak, M.; Rachoń, L.; Głowacka, A. Chemical Composition and Antioxidant Properties of Oils from the Seeds of Five Apricot (Prunus armeniaca L.) Cultivars. J. Oleo Sci. 2019, 68, 729–738. [Google Scholar] [CrossRef]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Custódio, L.; Vitalini, S.; Iriti, M.; Hassani, L. A Comparative Study of the in Vitro Antimicrobial and Synergistic Effect of Essential Oils from Laurus nobilis L. and Prunus armeniaca L. from Morocco with Antimicrobial Drugs: New Approach for Health Promoting Products. Antibiotics 2020, 9, 140. [Google Scholar] [CrossRef]
- Makrygiannis, I.; Athanasiadis, V.; Bozinou, E.; Chatzimitakos, T.; Makris, D.P.; Lalas, S.I. An Investigation into Apricot Pulp Waste as a Source of Antioxidant Polyphenols and Carotenoid Pigments. Biomass 2022, 2, 334–347. [Google Scholar] [CrossRef]
- Soares Mateus, A.R.; Pena, A.; Sendón, R.; Almeida, C.; Nieto, G.A.; Khwaldia, K.; Sanches Silva, A. By-Products of Dates, Cherries, Plums and Artichokes: A Source of Valuable Bioactive Compounds. Trends Food Sci. Technol. 2023, 131, 220–243. [Google Scholar] [CrossRef]
- Vorobyova, V.; Skiba, M. Apricot pomace extract as a natural corrosion inhibitor of mild steel corrosion in 0.5 m nacl solution: A combined experimental and theoretical approach. J. Chem. Technol. Metall. 2020, 55, 210–222. [Google Scholar]
- Dawson, I.K.; Attwood, S.J.; Park, S.E.; Jamnadass, R.; Powell, W.; Sunderland, T.; Kindt, R.; Mcmullin, S.; Hoebe, P.N.; Baddeley, J.; et al. Contributions of Biodiversity to the Sustainable Intensification of Food Production–Thematic Study for The State of the World’s Biodiversity for Food and Agriculture; Food and Agriculture Organization: Rome, Italy, 2019; Volume 161. [Google Scholar]
- Li, M.; Xiao, Y.; Mount, S.; Liu, Z. An Atlas of Genomic Resources for Studying Rosaceae Fruits and Ornamentals. Front. Plant Sci. 2021, 12, 397. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Song, Y.; Li, X.; Chen, J.; Mo, L.; Zhang, X.; Lin, Z.; Zhang, L. Genome Sequences of Horticultural Plants: Past, Present, and Future. Hortic. Res. 2019, 6, 112. [Google Scholar] [CrossRef]
- Maria Sirangelo, T. Sensory Descriptive Evaluation of Food Products: A Review Citation: Tiziana Maria Sirangelo. Sensory Descriptive Evaluation of Food Products: A Review. J. Food Sci. Nutr. Res. 2019, 2, 354–363. [Google Scholar] [CrossRef]
- Palka, A.; Skotnicka, M. The Health-Promoting and Sensory Properties of Tropical Fruit Sorbets with Inulin. Molecules 2022, 27, 4239. [Google Scholar] [CrossRef]
- Belli, S.; Chang, C.-L.; Malusà, E.; Furmanczyk, E.M.; Tartanus, M.; Brouwer, G.; Parveaud, C.-E.; Warlop, F.; Kelderer, M.; Kienzle, J.; et al. Knowledge Networks in Organic Fruit Production across Europe: A Survey Study. Sustainability 2022, 14, 2960. [Google Scholar] [CrossRef]
Representative/Feature | Plum (Prunus domestica) | Apricot (Prunus armeniaca) | Plum–Apricot Hybrid | References |
---|---|---|---|---|
Amino acids | glutamic acid (0.196 µg/mg), aspartic acid (0.282 µg/mg), lysine | aspartic acid (0.6–1.2 mg/g), alanine (2.4–3.4 mg/g) | N/A | [21,22] |
Sugars | sucrose (31–307.9 mg/g), fructose (134–138.9 mg/g), glucose (91–283.6 mg/g), and sorbitol | fructose, glucose (67.1–132.3 mg/g), inositol (0.9–1.7 mg/g), and sorbitol | sucrose (332–2478 μg/g), fructose (1010–4374 μg/g), glucose (1550–4302 μg/g), and sorbitol (237–2383 μg/g) | [22,23] |
Polysaccharides | pectin, cellulose, lignin, fiber | pectin, hemicellulose (2–2.6% DW) | N/A | [24] |
Fatty acids | linoleic (12–16.5%), Cis-11-eicosanoic (5.3–19.4%), palmitic (13.3–26.4%) acid | 1.8–5.0 mg/g in fruit, 1.05–1.7 mg/g kernel (palmitic acid, linoleic acid, and vaccenic acid) | N/A | [22,23] |
Vitamins | ascorbic acid (25.1 mg/100 g) | ascorbic acid | ascorbic acid (73.30 μg/g) | [25] |
Carotenoids | β-carotene (694 µg/100), lutein (183 µg/100) | β-carotene (≤16 mg/100 g FW); lycopene | N/A | [26,27,28] |
Minerals | K, Ca, Mg, P (745 mg/100 g) | K, P, Na, Fe | P (17.2 mg/kg), Zn (0.13 mg/kg), Fe (0.14 mg/kg) | [25,29,30] |
Phenolic acids | neochlorogenic acid (6.5–60.8 g/kg FW), chlorogenic acid (61.1–129.1 g/kg FW), | chlorogenic acid (7542 μg/100 g DW), gallic acid | N/A | [27,31] |
Organic acids | oxalic acid (22–224 μg/g), malic acid (16.8–25.5 g/kg FW), citric acid (2.9–6.9 g/ kg FW), fumaric acid (0.03–0.07 g/kg FW), shikimic (0.07–0.76 g/kg FW), quinic acid (438–2751 μg/g) | malic acid (2.8–26.6 mg/g of FW), citric acid (0.18–20.5 mg/g of FW), fumaric acid (1.6–9.7 mg/g FW), shikimic acid (5.3–13.2 mg/g of FW), tiglic, pyruvic | malic acid (1987–4270 μg/g), citric acid (59–996 μg/g), shikimic acid (12–41 μg/g), quinic acid (405–1149 μg/g) | [26,31,32] |
Flavonols, flavonoids | catechin (3.1–6.1 g/kg FW) | rutin (2855 μg/100 g) | N/A | [26,31] |
Anthocyanins | cyanidin 3-O-rutinoside, cyanidin 3-O-glucoside | cyanidin-3-O-rutinoside | N/A | [31,33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, A.; Mihaylova, D.; Pandova, S.; Doykina, P. Research-Gap-Spotting in Plum–Apricot Hybrids—Bioactive Compounds, Antioxidant Activities, and Health Beneficial Properties. Horticulturae 2023, 9, 584. https://doi.org/10.3390/horticulturae9050584
Popova A, Mihaylova D, Pandova S, Doykina P. Research-Gap-Spotting in Plum–Apricot Hybrids—Bioactive Compounds, Antioxidant Activities, and Health Beneficial Properties. Horticulturae. 2023; 9(5):584. https://doi.org/10.3390/horticulturae9050584
Chicago/Turabian StylePopova, Aneta, Dasha Mihaylova, Svetla Pandova, and Pavlina Doykina. 2023. "Research-Gap-Spotting in Plum–Apricot Hybrids—Bioactive Compounds, Antioxidant Activities, and Health Beneficial Properties" Horticulturae 9, no. 5: 584. https://doi.org/10.3390/horticulturae9050584
APA StylePopova, A., Mihaylova, D., Pandova, S., & Doykina, P. (2023). Research-Gap-Spotting in Plum–Apricot Hybrids—Bioactive Compounds, Antioxidant Activities, and Health Beneficial Properties. Horticulturae, 9(5), 584. https://doi.org/10.3390/horticulturae9050584