Can Soil Cover Affect the Performance, Yield, and Quality of Creeping Fresh Market Tomato Hybrids?
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description
2.2. Treatments and Experimental Design
2.3. Soil Preparation and Implantation of Soil Cover Species
2.4. Implantation and Management of Tomato Plants
2.5. Evaluation of Tomato Variables Grown in Different Soil Covers
2.5.1. Determination of Dry Biomass, Decomposition Rate, and Half-Life Time of Cover Crops
2.5.2. Tomato Production Components
2.5.3. Physicochemical and Biochemical Analyzes of Tomato Fruits
Hydrogen Potential (pH), Titratable Acidity, Soluble Solids, and Maturation Index
Lycopene and β-Carotene Content
2.5.4. Post-Harvest Shelf-Life Analysis of Tomato Fruits
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Cover and Fruit Yield
3.2. Chemical, Physical, and Biochemical Quality of Fruits
3.2.1. Chemical
3.2.2. Physical
3.2.3. Biochemical
3.3. Principal Components Analysis (PCA)
3.4. Pearson Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IBGE. Brazilian Institute of Geography and Statistics. Levantamento Sistemático da Produção Agrícola; IBGE: Brasília, Brazil, 2023. Available online: https://sidra.ibge.gov.br/tabela/1618 (accessed on 19 January 2023).
- Sekara, A.; Pokluda, R.; Cozzolino, E.; Del Piano, L.; Cuciniello, A.; Caruso, G. Plant growth, yield, and fruit quality of tomato affected by biodegradable and non-degradable mulches. Hortic. Sci. 2019, 46, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Seabra Júnior, S.; Casagrande, J.G.; de Lima Toledo, C.A.; da Silva Ponce, F.; da Silva Ferreira, F.; Zanuzo, M.R.; Diamante, M.S.; Lima, G.P.P. Selection of thermotolerant Italian tomato cultivars with high fruit yield and nutritional quality for the consumer taste grown under protected cultivation. Sci. Hortic. 2022, 291, 110559. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, H.; Wang, T.; Mustafa, G.; Liu, L.; Wang, Q.; Shao, Z. Quality improvement of tomato fruits by preharvest application of chitosan oligosaccharide. Horticulturae 2023, 9, 300. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, H.; Wan, X.; Li, Y. The effects of different types of mulch on soil properties and tea production and quality. J. Sci. Food Agric. 2020, 100, 5292–5300. [Google Scholar] [CrossRef]
- Majkowska-Gadomska, J.; Mikulewicz, E.; Francke, A. Effects of plant covers and mulching on the biometric parameters, yield and nutritional value of tomatillos (Physalis ixocarpa Brot. Ex Hornem.). Agronomy 2021, 11, 1742. [Google Scholar] [CrossRef]
- Ju, X.; Lei, T.; Guo, X.; Sun, X.; Ma, J.; Liu, R.; Zhang, M. Evaluation of suitable water–zeolite coupling regulation strategy of tomatoes with alternate drip irrigation under mulch. Horticulturae 2022, 8, 536. [Google Scholar] [CrossRef]
- Rao, S.A.; Singh, P.; Gonsalves, T. Black plastic mulch affects soil temperature and yield of sweet potato under short season temperate climates. Int. J. Veg. Sci. 2023, 29, 72–83. [Google Scholar] [CrossRef]
- Almeida, V.; Alves Júnior, J.; Mesquita, M.; Evangelista, A.W.P.; Casaroli, D.; Battisti, R. Comparison of the economic viability of agriculture irrigated by central pivot in conventional and no-tillage systems with soybean, maize and industrial tomato crops. Glob. Sci. Technol. 2018, 11, 256–273. [Google Scholar]
- Todd-Searle, J.; Friedrich, L.M.; Oni, R.A.; Shenge, K.; Lejeune, J.T.; Micallef, S.A.; Danyluk, M.D.; Schaffner, D.W. Quantification of Salmonella enterica transfer between tomatoes, soil, and plastic mulch. Int. J. Food Microbiol. 2020, 316, 108480. [Google Scholar] [CrossRef]
- Pavlů, L.; Kodešová, R.; Fér, M.; Nikodem, A.; Němec, F.; Prokeš, R. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Tillage Res. 2021, 205, 104748. [Google Scholar] [CrossRef]
- Perveen, R.; Suleria, H.A.R.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef]
- Nellis, S.C.; Correia, A.d.F.K.; Spoto, M.H.F. Extraction and quantification of carotenoids from dehydrated mini-tomatoes (Sweet Grape) by applying different solvents. Braz. J. Food Technol. 2017, 20, e2016156. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; EMBRAPA: Brasília, Brazil, 2017; p. 574. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1085209 (accessed on 19 January 2019).
- Ribeiro, A.C.; Guimarães, P.T.G.; Alvarez, V.A.H. Recomendação Para Uso de Corretivos e Fertilizantes em Mina Gerais—5º Aproximação; Brazilian Society of Soil Science: Viçosa, Brazil, 1999; p. 360. [Google Scholar]
- Torres, J.L.R.; Pereira, M.G.; Fabian, A.J. Cover crops biomass production and its residues mineralization in a Brazilian no-till Oxisol. Pesqui. Agropecuária Bras. 2008, 43, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Asakawa, N.M. Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol. Biochem. 1993, 25, 1351–1361. [Google Scholar] [CrossRef]
- Paul, E.A.; Clark, F.E. Soil Microbiology and Biochemistry, 2nd ed.; Academic Press: New York, NY, USA, 1996; pp. 1–340. [Google Scholar]
- Skolik, P.; Morais, C.L.M.; Martin, F.L.; McAinsh, M.R. Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and Chemometrics. BMC Plant Biol. 2019, 19, 236. [Google Scholar] [CrossRef]
- MAPA. Ministry of Agriculture, Cattle and Supplying. Regulamento Técnico MERCOSUL de Identidade e Qualidade de Tomate—Instrução Normativa 33/2018; MAPA: Brasília, Brazil, 2018; pp. 1–7. [Google Scholar]
- PBMH. Programa Brasileiro para Modernização da Horticultura. Normas de Classificação do Tomate; Centro de Qualidade em Horticultura—CQH/CEAGESP: São Paulo, Brazil, 2003. [Google Scholar]
- IAL. Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos de Análise de Alimentos, 4th ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2008; pp. 1–1000. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll in tomato fruit. J. Jpn. Soc. Sci. Technol. 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- STATSOFT, Inc. STATISTICA (Data Analysis Software System), Version 8.0; STATSOFT: Palo Alto, CA, USA, 2008; Available online: www.statsoft.com (accessed on 19 January 2023).
- XLSTAT Company. XLSTAT Software Version 2020; Add-in Software (XLSTAT Company) ; XLSTAT Company: New York, NY, USA, 2020; Available online: www.xlstat.com (accessed on 20 January 2023).
- Schmidt, D.; Zamban, D.T.; Prochnow, D.; Caron, B.O.; Souza, V.Q.; Paula, G.M.; Cocco, C. Phenological characterization, phyllochron and thermal requirement of Italian tomato in two cropping seasons. Hortic. Bras. 2017, 35, 89–96. [Google Scholar] [CrossRef]
- Branco, R.B.F.; Bolonhezi, D.; Salles, F.A.; Balieiro, G.; Suguino, E.; Minami, W.S.; Nahas, E. Soil properties and tomato agronomic attributes in no-tillage in rotation with cover crops. Afr. J. Agric. Res. 2013, 8, 184–190. [Google Scholar]
- Patel, H.F.; Bana, J.K.; Makwana, A.I.; Attar, S.; Gaikwad, S.S. Weed control in tomato (Solanum lycopersicum) through mulching and herbicides under drip irrigation conditions. Res. Crops 2021, 22, 110–115. [Google Scholar] [CrossRef]
- Muchanga, R.A.; Hirata, T.; Uchida, Y.; Hatano, R.; Araki, H. Soil carbon and nitrogen and tomato yield response to cover crop management. Agronomy 2020, 112, 1636–1648. [Google Scholar] [CrossRef] [Green Version]
- Sardar, H.; Akhtar, G.; Akram, A.; Naseem, K. Influence of mulching materials on soil conditions, weeds, plant growth and flower yield of Rosa centifolia. Int. J. Agric. Appl. Sci. 2016, 8, 64–71. [Google Scholar]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar] [CrossRef]
- Shehata, S.A.; Abouziena, H.F.; Abdelgawad, K.F.; Elkhawaga, F.A. Weed control efficacy, growth and yield of potato (Solanum tuberosum L.) as affected by alternative weed control methods. Potato Res. 2019, 62, 139–155. [Google Scholar] [CrossRef]
- da Silva, A.C.C.; do Nascimento, J.M.S.; Diotto, A.V.; Lima, L.A.; de Oliveira, M.C. Yield in tomato under two water depths and plastic mulching. Rev. Bras. Ciências Agrárias 2019, 14, e5664. [Google Scholar] [CrossRef]
- Kundu, P.; Adhikary, N.K.; Saha, M.; Ghosal, A.; Sahu, N.C. The effects of mulches on tomato (Lycopersicon esculentum L.) in respect of yield attribute in ecosystem of coastal Bengal. Curr. J. Appl. Sci. Technol. 2019, 35, 1–8. [Google Scholar] [CrossRef]
- Rohwer, C.L.; Fritz, V.A. Transplant fertilizer solution and early season plastic mulch increase tomato yield in adequate fertility clay loam soil. HortTechnology 2016, 26, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Rajablariani, H.R.; Hassankhan, F.; Rafezi, R. Effect of colored plastic mulches on yield of tomato and weed biomass. IJESD 2012, 3, 590–593. [Google Scholar] [CrossRef] [Green Version]
- Elsayed-Farag, S.; Anciso, J.; Marconi, C.; Avila, C.; Rodriguez, A.; Badillo-Vargas, I.E.; Enciso, J. Appropriate planting dates and plastic mulch for increasing common tomato varieties yield in South Texas. Afr. J. Agric. Res. 2018, 13, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Gordon, G.G.; Foshee, W.G., III; Reed, S.T.; Brown, J.E.; Vinson, E.; Woods, F.M. Plastic mulches and row covers on growth and production of summer squash. Int. J. Veg. Sci. 2008, 14, 322–338. [Google Scholar] [CrossRef]
- Hutton, M.G.; Handley, D.T. Effects of silver reflective mulch, white inter-row mulch, and plant density on yields of pepper in Maine. HortTechnology 2007, 17, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Adamczewska-Sowińska, K.; Krygier, M.; Turczuk, J. The yield of eggplant depending on climate conditions and mulching. Folia Hortic. 2016, 28, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Adamczewska-Sowińska, K.; Turczuk, J. Effects of plastic and biodegradable mulch films in field tomato cultivation. Acta Sci. Pol. Hortorum Cultus 2018, 17, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.S.; Balbi, M.E.; Miguel, O.G.; da Silva Penteado, P.T.P.; Haracemiv, S.M.C. Qualidade nutricional e antioxidante do tomate “Tipo Italiano”. Alim. Nutr. 2008, 19, 25–31. [Google Scholar]
- Ferreira, S.M.R.; de Freitas, R.J.S.; Karkle, E.N.L.; de Quadros, D.A.; Tullio, L.T.; de Lima, J.J. Quality of tomatoes cultivated in the organic and conventional cropping systems. Food Sci. Technol. 2010, 30, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Antônio, A.C.; Silva, D.J.H.; Araújo, W.L.; Cecon, P.R. Tomato growth analysis across three cropping systems. Hortic. Bras. 2017, 35, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Martins, B.N.M.; Candian, J.S.; Fujita, É.; Cardoso, A.I.I.; Evangelista, R.M. Physico-chemical characteristics of tomato fruits in the function of phosphorus doses in the seedling. Rev. Mir. 2018, 11, 224–239. [Google Scholar]
- Schwarz, K.; de Resende, J.T.V.; Preczenhak, A.P.; de Paula, J.T.; Faria, M.V.; Dias, D.M. Agronomic performance and physico-chemical quality in tomato hybrids grown without guiding. Hortic. Bras. 2013, 31, 410–418. [Google Scholar] [CrossRef] [Green Version]
- da Silva, E.C.; Maciel, G.M.; de Alvarenga, P.P.M.; de Paula, A.C.C.F.F. Tenors of β-carotene and lycopene in function of phosphorus and potassium rates in fruits of the different genotypes of industrial tomatoes. Biosci. J. 2011, 27, 247–252. [Google Scholar]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Andreuccetti, C.; Ferreira, M.D.; Gutierrez, A.S.D.; Tavares, M. Classification and standardization of tomatoes cv. Carmem and Debora in the CEAGESP—São Paulo—Brazil. Eng. Agrícola 2004, 24, 790–798. [Google Scholar] [CrossRef]
- Alvarenga, M.A.R. Tomate: Produção em Campo, Casa de Vegetação e Hidroponia, 2nd ed.; Editora UFLA: Lavras, Brazil, 2013; p. 455. [Google Scholar]
- Domiciano, S.A.; Casagrande, J.G.; Realto, G.B.; da Silva, I.V.; de Carvalho, M.A.C.; Zanuzo, M.R.; Seabra Júnior, S. Sensory, physicochemical and biochemical analysis of Italian tomatoes grown in organic and conventional systems. Ibero-Am. J. Environ. Sci. 2021, 12, 72–81. [Google Scholar] [CrossRef]
- Asensio, E.; Sanvicente, I.; Mallor, C.; Menal-Puey, S. Spanish traditional tomato. Effects of genotype, location and agronomic conditions on the nutritional quality and evaluation of consumer preferences. Food Chem. 2019, 270, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iamjud, K.; Srimat, S.; Sangwanangkul, P.; Wasee, S.; Thaipong, K. Antioxidant properties and fruit quality of selected papaya breeding lines. Sci. Asia 2016, 42, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Valšíková, M.; Mlček, J.; Snopek, L.; Rehuš, M.; Škrovánková, S.; Juríková, T.; Sumczynski, D.; Paulen, O. Monitoring of bioactive compounds of tomato cultivars as affected by mulching film. Sci. Agric. Bohem. 2018, 49, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Kumar, R.; Kumar, S.; Bhardwaj, M.L.; Thakur, M.C.; Kumar, R.; Thakur, K.S.; Dogra, B.S.; Vikram, A.; Thakur, A.; et al. Genetic variability, correlation and path coefficient analysis in tomato. Int. J. Veg. Sci. 2013, 19, 313–323. [Google Scholar] [CrossRef]
- Fallahi, H.R.; Ramazani, S.H.R.; Ghorbany, M.; Aghhavani-Shajari, M. Path and factor analysis of roselle (Hibiscus sabdariffa L.) performance. J. Appl. Res. Med. Aromat. Plants 2017, 6, 119–125. [Google Scholar] [CrossRef]
- Anzalone, A.; Cirujeda, A.; Aibar, J.; Pardo, G.; Zaragoza, C. Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol. 2010, 24, 369–377. [Google Scholar] [CrossRef]
- Maul, J.E.; Buyer, J.S.; Lehman, R.M.; Culman, S.; Blackwood, C.B.; Roberts, D.P.; Zasada, I.A.; Teasdale, J.R. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Appl. Soil Ecol. 2014, 77, 42–50. [Google Scholar] [CrossRef]
- Kosterna, E. The effect of covering and mulching on the soil temperature, growth and yield of tomato. Folia Hortic. 2014, 26, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; You, S.; Tian, Y.; Li, J. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sci. Hortic. 2019, 249, 38–48. [Google Scholar] [CrossRef]
- Sari, B.G.; Lúcio, A.D.; Santana, C.S.; Lopes, S.J. Linear relationships between cherry tomato traits. Ciência Rural 2017, 47, e20160666. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.B.; Marim, B.G.; Silva, D.J.H.; Mattedi, A.P.; Almeida, V.S. Path analysis of primary and secondary yield components in tomato plants of the Salad group. Pesqui. Agropecuária Bras. 2010, 45, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, I.; Alegre, S. The effects of reflective film on fruit color, quality, canopy light distribution, and profitability of ‘Mondial Gala’ apples. HortTechnology 2009, 19, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Sackey, S.S.; Vowotor, M.K.; Owusu, A.; Mensah-Amoah, P.; Tatchie, E.T.; Baah Sefa-Ntiri, B.; Hood, C.O.; Atiemo, S.M. Spectroscopic study of UV transparency of some materials. Environ. Pollut. 2015, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vieira, R.D.; dos Santos, H.S.T.; Pires, N.M.; da Silva Soares, S.; da Silva, T.F.; da Silva, P.M.; Vieira, W.D.; Leandro, W.M. No-tillage system for vegetables: The case of the industrial tomato plant in Goiás. Sci. Electron. Arch. 2022, 15, 76–80. [Google Scholar] [CrossRef]
- Madeira, N.R.; Lima, C.E.P.; Melo, R.A.C.; Fontenelle, M.R.; da Silva, J.; Michereff Filho, M.; Guedes, I.M.R. Cultivo do Tomateiro em Sistema de Plantio Direto de Hortaliças (SPDH); Embrapa Hortaliças: Brasília, Brazil, 2021; p. 455. [Google Scholar]
Sample (Soil Cover) | Depth | pH | P Mehlich | K | Ca + Mg | Ca | Mg | Al | H | H + Al | OM |
---|---|---|---|---|---|---|---|---|---|---|---|
cm | H2O | mg dm−3 | cmolc dm−3 | g dm−3 | |||||||
Uncovered soil | 0–20 | 5.00 | 11.0 | 0.280 | 2.30 | 1.60 | 0.70 | 0.20 | 8.00 | 8.20 | 24.6 |
Plastic mulching | 0–20 | 4.80 | 54.0 | 0.410 | 1.80 | 1.30 | 0.80 | 0.20 | 9.70 | 9.90 | 24.3 |
Sorghum | 0–20 | 5.50 | 7.00 | 0.230 | 3.50 | 2.50 | 1.10 | 0.00 | 6.60 | 6.60 | 25.5 |
Sudan grass | 0–20 | 5.40 | 3.00 | 0.300 | 3.20 | 2.00 | 1.20 | 0.00 | 6.90 | 6.90 | 28.8 |
Pearl millet | 0–20 | 5.10 | 29.0 | 0.250 | 3.10 | 2.10 | 0.90 | 0.10 | 8.10 | 8.20 | 24.9 |
Soil Covers | DBAP (t ha−1) | k (g g−1) | Half-Life Time (T1/2) (Days) |
---|---|---|---|
Spontaneous vegetation (Uncovered soil) | 4.65 ± 2.30 b | 0.023 ± 0.003 a | 31.0 ± 3.40 b |
Sorghum | 7.85 ± 0.70 a | 0.020 ± 0.001 b | 34.4 ± 1.40 b |
Sudan grass | 7.80 ± 0.90 a | 0.017 ± 0.002 c | 42.4 ± 3.90 a |
Pearl millet | 9.10 ± 0.90 a | 0.016 ± 0.002 c | 44.9 ± 4.60 a |
F values | 1.25 * | 0.057 * | 0.028 * |
C.V. (%) | 20.3 | 8.72 | 7.78 |
Source of Variation | Yield | Fruit Production Per Plant | Number of Fruits | ||||
---|---|---|---|---|---|---|---|
TY | CY | NCY | TP | CP | MF | TNFP | |
(t ha−1) | (Kg Plant−1) | (Unit Plant−1) | |||||
Hybrid | |||||||
Fascínio | 95.8 ± 6.80 | 65.0 ± 8.50 | 30.8 ± 3.00 a | 7.18 ± 0.60 | 4.87 ± 0.60 | 24.8 ± 3.50 a | 77.9 ± 8.90 a |
Thaíse | 94.8 ± 15.9 | 67.0 ± 12.7 | 27.9 ± 3.30 b | 7.11 ± 1.20 | 5.02 ± 1.00 | 17.6 ± 5.70 b | 65.6 ± 11.8 b |
Soil cover | |||||||
Uncovered soil | 92.8 ± 13.7 b | 62.9 ± 12.7 b | 29.9 ± 3.70 b | 6.95 ± 1.00 b | 4.71 ± 0.80 b | 21.8 ± 5.40 a | 68.7 ± 7.60 b |
Plastic mulching | 111 ± 19.7 a | 74.4 ± 17.3 a | 36.1 ± 3.90 a | 8.29 ± 1.50 a | 5.58 ± 1.20 a | 23.3 ± 5.50 a | 84.8 ± 12.7 a |
Sorghum | 92.5 ± 14.0 b | 67.7 ± 9.90 b | 24.8 ± 5.00 b | 6.93 ± 1.00 b | 5.07 ± 0.70 b | 22.5 ± 5.90 a | 67.1 ± 11.8 b |
Sudan grass | 88.4 ± 13.6 b | 59.3 ± 12.1 b | 29.1 ± 3.50 b | 6.63 ± 1.00 b | 4.45 ± 0.80 b | 17.3 ± 5.90 b | 70.0 ± 9.60 b |
Pearl millet | 92.3 ± 8.1 b | 65.6 ± 9.40 b | 26.7 ± 2.40 b | 6.92 ± 0.60 b | 4.92 ± 0.70 b | 23.3 ± 4.90 a | 68.0 ± 8.20 b |
F values | |||||||
Hybrid | 0.06 ns | 0.41 ns | 5.28 * | 0.060 ns | 0.410 ns | 34.8 * | 26.9 * |
Soil cover | 4.37 * | 2.75 * | 9.26 * | 4.37 * | 2.75 * | 2.90 * | 7.76 * |
Hybrid × Soil cover | 0.34 ns | 0.48 ns | 0.16 ns | 0.34 ns | 0.48 ns | 0.36 ns | 0.42 ns |
C.V. (%) | 12.4 | 14.7 | 13.6 | 12.4 | 14.7 | 18.1 | 10.5 |
Source of Variation | Physical Variable | Number of Fruits | Fruit Production Per Plant | Total Fruit Production | ||||
---|---|---|---|---|---|---|---|---|
PEDUNC | SF | LF | TNCF | PSF | PLF | TYS | TYL | |
(mm) | (Unit Plant−1) | (Kg Plant−1) | (t ha−1) | |||||
Hybrid | ||||||||
Fascínio | 14.0 ± 1.10 a | 17.9 ± 3.4 b | 4.42 ± 2.00 a | 46.6 ± 6.60 a | 1.30 ± 0.30 b | 0.74 ± 0.40 a | 17.4 ± 3.7 b | 9.92 ± 4.80 a |
Thaíse | 12.0 ± 0.90 b | 22.2 ± 4.5 a | 0.61 ± 0.50 b | 40.6 ± 7.80 b | 2.10 ± 0.40 a | 0.14 ± 0.10 b | 28.0 ± 5.8 a | 1.96 ± 1.60 b |
Soil cover | ||||||||
Uncovered soil | 12.5 ± 1.20 | 17.4 ± 2.70 | 2.31 ± 2.10 | 41.4 ± 5.40 | 1.48 ± 0.40 | 0.41 ± 0.30 | 19.8 ± 5.3 | 5.50 ± 4.40 |
Plastic mulching | 13.4 ± 1.30 | 20.9 ± 5.10 | 3.62 ± 3.10 | 47.3 ± 9.80 | 1.76 ± 0.70 | 0.66 ± 0.50 | 23.5 ± 8.8 | 8.84 ± 7.10 |
Sorghum | 12.5 ± 1.30 | 20.1 ± 4.20 | 2.39 ± 2.10 | 45.0 ± 7.90 | 1.77 ± 0.40 | 0.41 ± 0.30 | 23.7 ± 5.5 | 5.56 ± 4.40 |
Sudan grass | 13.5 ± 1.30 | 21.7 ± 5.30 | 1.93 ± 2.10 | 40.8 ± 7.00 | 1.81 ± 0.60 | 0.33 ± 0.30 | 24.1 ± 8.6 | 4.47 ± 4.40 |
Pearl millet | 12.9 ± 1.70 | 20.0 ± 3.70 | 2.33 ± 2.10 | 43.6 ± 6.30 | 1.68 ± 0.50 | 0.40 ± 0.40 | 22.5 ± 6.1 | 5.35 ± 4.80 |
F values | ||||||||
Hybrid | 39.5 * | 11.7 * | 95.2 * | 10.2 * | 56.8 * | 74.3 * | 56.8 * | 74.3 * |
Soil cover | 1.75 ns | 1.30 ns | 2.17 ns | 1.63 ns | 1.25 ns | 2.64 ns | 1.25 ns | 2.64 ns |
Hybrid × Soil cover | 0.98 ns | 0.56 ns | 0.46 ns | 0.42 ns | 0.940 ns | 0.29 ns | 0.94 ns | 0.29 ns |
C.V. (%) | 7.87 | 19.7 | 49.0 | 13.5 | 19.6 | 49.1 | 19.6 | 49.1 |
Source of Variation | Chemical Variables | Fruit Production Per Plant | Total Fruit Production | Post-Harvest | |||
---|---|---|---|---|---|---|---|
pH | SS | TA | RATIO | PMF | TYM | PHMASS | |
(°Brix) | (%) | (Kg Plant−1) | (t ha−1) | (%) | |||
Hybrid | |||||||
Fascínio | 4.04 ± 0.20 | 3.66 ± 0.30 | 0.44 ± 0.10 | 8.38 ± 0.90 | 2.96 ± 0.40 | 39.5 ± 6.00 | 8.75 ± 2.90 |
Thaíse | 4.07 ± 0.20 | 3.57 ± 0.30 | 0.41 ± 0.10 | 8.67 ± 1.20 | 2.78 ± 1.00 | 37.2 ± 13.0 | 9.03 ± 4.10 |
Soil cover | |||||||
Uncovered soil | 4.08 ± 0.30 | 3.80 ± 0.40 | 0.47 ± 0.10 | 8.10 ± 0.90 | 2.99 ± 0.90 | 40.0 ± 11.4 | 10.0 ± 4.20 |
Plastic mulching | 4.15 ± 0.20 | 3.75 ± 0.30 | 0.42 ± 0.10 | 8.91 ± 1.40 | 3.18 ± 0.70 | 42.4 ± 9.40 | 7.29 ± 2.10 |
Sorghum | 4.00 ± 0.20 | 3.54 ± 0.20 | 0.40 ± 0.10 | 8.88 ± 0.90 | 3.01 ± 0.60 | 40.2 ± 8.30 | 9.44 ± 2.50 |
Sudan grass | 4.06 ± 0.10 | 3.52 ± 0.20 | 0.41 ± 0.10 | 8.66 ± 1.10 | 2.31 ± 0.70 | 30.9 ± 9.90 | 5.58 ± 3.10 |
Pearl millet | 4.00 ± 0.10 | 3.47 ± 0.20 | 0.43 ± 0.10 | 8.06 ± 0.90 | 2.86 ± 0.50 | 38.2 ± 7.30 | 9.15 ± 4.50 |
F values | |||||||
Hybrid | 0.16 ns | 0.90 ns | 1.90 ns | 0.66 ns | 0.80 ns | 0.80 ns | 0.06 ns |
Soil cover | 0.57 ns | 1.73 ns | 1.89 ns | 1.06 ns | 2.21 ns | 2.21 ns | 0.64 ns |
Hybrid × Soil cover | 0.35 ns | 0.07 ns | 0.89 ns | 0.95 ns | 0.34 ns | 0.34 ns | 0.79 ns |
C.V. (%) | 5.82 | 8.71 | 12.7 | 13.4 | 21.9 | 21.9 | 41.1 |
Variables | Soil Cover | Tomato Hybrids | F Values | C.V. | |||
---|---|---|---|---|---|---|---|
Fascínio | Thaíse | Soil Cover | Hybrids | Soil Cover× Hybrids | (%) | ||
Fruit wall thickness (mm) | Uncovered soil | 6.98 ± 0.30 Bb | 7.70 ± 0.50 Aa | 2.78 * | 8.75 * | 2.86 * | 5.38 |
Plastic mulching | 8.01 ± 0.30 Aa | 7.97 ± 0.40 Aa | |||||
Sorghum | 7.04 ± 0.40 Bb | 8.09 ± 0.30 Aa | |||||
Sudan grass | 7.58 ± 0.30 Aa | 7.51 ± 0.30 Aa | |||||
Pearl millet | 7.39 ± 0.30 Ab | 7.63 ± 0.20 Aa | |||||
Lycopene (µg 100 g−1) | Uncovered soil | 490 ± 21.1 Aa | 146 ± 11.3 Bc | 100 * | 1453.3 * | 164 * | 5.71 |
Plastic mulching | 317 ± 13.9 Ad | 212 ± 12.3 Ba | |||||
Sorghum | 392 ± 7.50 Ac | 153 ± 5.70 Bc | |||||
Sudan grass | 435 ± 9.90 Ab | 185 ± 2.70 Bb | |||||
Pearl millet | 175 ± 21.5 Ae | 187 ± 7.80 Ab | |||||
β-carotene (µg 100 g−1) | Uncovered soil | 133 ± 14.6 Ab | 73.6 ± 6.10 Ba | 11.6 * | 21.9 * | 8.80 * | 29.0 |
Plastic mulching | 31.6 ± 8.60 Ac | 48.5 ± 17.2 Aa | |||||
Sorghum | 67.2 ± 25.8 Ac | 73.0 ± 9.00 Aa | |||||
Sudan grass | 167 ± 48.3 Aa | 55.0 ± 10.2 Ba | |||||
Pearl millet | 121 ± 30.8 Ab | 85.6 ± 33.9 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalbianco, A.B.; Santi, A.; Oliveira, R.C.d.; Borges, C.V.; Daniel, D.F.; Trento, D.A.; Dipple, F.L.; Dallacort, R.; Seabra Júnior, S. Can Soil Cover Affect the Performance, Yield, and Quality of Creeping Fresh Market Tomato Hybrids? Horticulturae 2023, 9, 574. https://doi.org/10.3390/horticulturae9050574
Dalbianco AB, Santi A, Oliveira RCd, Borges CV, Daniel DF, Trento DA, Dipple FL, Dallacort R, Seabra Júnior S. Can Soil Cover Affect the Performance, Yield, and Quality of Creeping Fresh Market Tomato Hybrids? Horticulturae. 2023; 9(5):574. https://doi.org/10.3390/horticulturae9050574
Chicago/Turabian StyleDalbianco, Alessandro Bandeira, Adalberto Santi, Regiane Cristina de Oliveira, Cristine Vanz Borges, Diego Fernando Daniel, Daiane Andréia Trento, Fernanda Lourenço Dipple, Rivanildo Dallacort, and Santino Seabra Júnior. 2023. "Can Soil Cover Affect the Performance, Yield, and Quality of Creeping Fresh Market Tomato Hybrids?" Horticulturae 9, no. 5: 574. https://doi.org/10.3390/horticulturae9050574
APA StyleDalbianco, A. B., Santi, A., Oliveira, R. C. d., Borges, C. V., Daniel, D. F., Trento, D. A., Dipple, F. L., Dallacort, R., & Seabra Júnior, S. (2023). Can Soil Cover Affect the Performance, Yield, and Quality of Creeping Fresh Market Tomato Hybrids? Horticulturae, 9(5), 574. https://doi.org/10.3390/horticulturae9050574