Yeast Mixtures for Postharvest Biocontrol of Diverse Fungal Rots on Citrus limon var Eureka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Yeast Strains
2.3. Compatibility among Yeasts
2.4. Liquid Formulation Preparation
2.5. Biocontrol Effect of the Formulations Tested In Vitro
2.6. Biocontrol Performance of the Formulations on Fruits
2.7. Statistical Analysis
3. Results
3.1. Compatibility of Yeasts
3.2. Biocontrol Effect of Formulations In Vitro
3.3. Biocontrol Effect of Formulations on Fruits
4. Discussion
4.1. Compatibility among Yeasts
4.2. Performance of the Formulations In Vitro
4.3. Performance of the Formulations on Stored Lemons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Janisiewicz, W.J.; Korsten, L. Biological control of postharvest diseases of fruits. Ann. Rev. Phytopathol. 2002, 40, 411–441. [Google Scholar] [CrossRef] [PubMed]
- Tennant, P.F.; Robinson, D.; Latanya, F.; Bennett, S.-M.; Hutton, D.; Coates-Beckford, P.; Laughlin, W.M. Diseases and pests of citrus (Citrus sp.). Tree For. Sci. Biotechnol. 2009, 3, 81–107. [Google Scholar]
- Eckert, J.W. Recent developments in the chemical control of postharvest diseases. Acta Hortic. 1990, 269, 477–494. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Denis-Arrue, R. Control of green molds of lemons with Pseudomonas species. Plant Dis. 1992, 76, 481–485. [Google Scholar] [CrossRef]
- Lingk, W. Health risk evaluation of pesticide contaminations in drinking water. Gesunde Pflangen 1991, 43, 21–25. [Google Scholar]
- Unnikrishnan, V.; Nath, B.S. Hazardous chemicals in foods. Indian J. Dairy Biosci. 2002, 11, 155–158. [Google Scholar]
- Chalutz, E.; Wilson, C.L. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis. 1990, 74, 134–137. [Google Scholar] [CrossRef]
- Karabulut, O.A.; Smilanick, J.L.; Gabler, F.M.; Mansour, M.; Droby, S. Near harvest applications of Metschnikowia fructicola, ethanol, and sodium bicarbonate to control postharvest diseases of grape in central California. Plant Dis. 2003, 87, 1384–1389. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.E.; Cohen, L.; Weiss, D.; Touitou, D.; Eilam, Y.; Chalutz, E. Influence of CaCl2 on Penicillium digitatum, grapefruit peel tissue, and biocontrol activity of Pichia guilliermondii. Phytopathology 1997, 87, 310–315. [Google Scholar] [CrossRef]
- Long, C.A.; Deng, B.X.; Deng, X.X. Commercial testing of Kloeckera apiculata, isolate 34-9, for biological control of postharvest diseases of citrus fruit. Ann. Microbiol. 2007, 57, 203–207. [Google Scholar] [CrossRef]
- Torres, R.; Nunes, C.; Garcia, J.M.; Abadias, M.; Vinas, I.; Manso, T.; Olmo, M.; Usall, J. Application of Pantoea agglomerans CPA-2 in combination with heated sodium bicarbonate solutions to control the major postharvest diseases affecting citrus fruit at several Mediterranean locations. Eur. J. Plant Pathol. 2007, 118, 73–83. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control. 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Panebianco, S.; Vitale, A.; Polizzi, G.; Scala, F.; Cirvilleri, G. Enhanced control of postharvest citrus fruit decay by means of the combined use of compatible biocontrol agents. Biol. Control. 2015, 84, 19–27. [Google Scholar] [CrossRef]
- Larralde-Corona, C.P.; Ramírez-González, M.S.; Rosas-Hernández, I.; De la Cruz-Arguijo, E.A.; De Santiago, C.; Shirai, K.; Narváez-Zapata, J.A. Occurrence and infective potential of Colletotrichum gloeosporioides isolates associated to Citrus limon var Eureka. Biotechnol. Rep. 2021, 31, e00651. [Google Scholar]
- Campos-Rivero, G.; Sánchez-Teyer, L.F.; De la Cruz-Arguijo, E.A.; Ramírez-González, M.S.; Larralde-Corona, C.P.; Narváez-Zapata, J.A. Bioprospecting for fungi with potential pathogenic activity on leaves of Agave tequilana Weber var. Azul. J. Phytopathol. 2019, 167, 283–294. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Carnielli-Queiroz, L.; Correa, B. Epicoccum sorghinum in food: Occurrence, genetic aspects and tenuazonic acid production. Curr. Opin. Food Sci. 2018, 23, 44–48. [Google Scholar] [CrossRef]
- De la Torre-González, F.J.; Narváez-Zapata, J.A.; López-y-López, V.E.; Larralde-Corona, C.P. Ethanol tolerance is decreased by fructose in Saccharomyces and non-Saccharomyces yeasts. LWT Food Sci. Technol. 2016, 67, 1–7. [Google Scholar] [CrossRef]
- McLaughlin, R.J.; Wilson, C.L.; Chalutz, E.; Kurtzman, C.P.; Feet, W.F.; Osman, S.F. Characterization and reclassification of yeasts used for biological control of postharvest diseases of fruits and vegetables. Appl. Environ. Microbiol. 1990, 56, 3583–3586. [Google Scholar] [CrossRef]
- Cordero-Bueso, G.; Mangieri, N.; Maghradze, D.; Foschino, R.; Valdetara, F.; Cantoral, J.M.; Vigentini, I. Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera Fungal Pathogens. Front. Microbiol. 2017, 8, 2025. [Google Scholar] [CrossRef]
- Arras, G. Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Postharvest Biol. Technol. 1996, 8, 191–198. [Google Scholar] [CrossRef]
- Bautista, P.; Calderon, M.; Servín, R.; Ochoa, N.; Vázquez, R.; Ragazzo, J.A. Biocontrol action mechanisms of Cryptococcus laurentii on Colletotrichum gloeosporioides of mango. Crop Prot. 2014, 65, 194–201. [Google Scholar] [CrossRef]
- Avis, T.J.; Bélanger, R.R. Mechanisms and means of detecion of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Res. 2002, 2, 5–8. [Google Scholar] [PubMed]
- Liu, Y.; Wang, W.; Zhou, Y.; Yao, S.; Deng, L.; Zeng, K. Isolation, identification and in vitro screening of Chongqing orangery yeasts for the biocontrol of Penicillium digitatum on citrus fruit. Biol. Control. 2017, 110, 18–24. [Google Scholar] [CrossRef]
- Kitamoto, H. The phylloplane yeast Pseudozyma: A rich potential for biotechnology. FEMS Yeast Res. 2019, 19, foz053. [Google Scholar] [CrossRef]
- Nally, M.C.; Pesce, V.M.; Maturano, Y.P.; Rodriguez-Assaf, L.A.; Toro, M.E.; Castellanos de Figueroa, L.I.; Vazquez, F. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. Int. J. Food Microbiol. 2015, 204, 91–100. [Google Scholar] [CrossRef]
- Lopes, M.R.; Klein, M.N.; Ferraz, L.P.; Silva, A.C.; Kupper, K.C. Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletrotrichum acutamum during pre-harvest. Microbiol. Res. 2015, 175, 93–99. [Google Scholar] [CrossRef]
- Pereyra, M.M.; Díaz, M.A.; Solíz-Santander, F.F.; Poehlein, A.; Meinhardt, F.; Daniel, R.; Dib, J.R. Screening methods for isolation of biocontrol epiphytic yeasts against Penicillium digitatum in lemons. J. Fungi 2021, 7, 166. [Google Scholar] [CrossRef]
- Larralde-Corona, C.P.; Ramírez-González, M.S.; Pérez-Sánchez, G.; Oliva-Hernández, A.A.; Narváez-Zapata, J.A. Identification of differentially expressed genes in the citrus epiphytic yeast Pichia guilliermondii during interaction with Penicillium digitatum. Biol. Control. 2011, 57, 208–214. [Google Scholar] [CrossRef]
- Zhang, D.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Potential biocontrol activity of a strain of Pichia guilliermondii against grey mold of apples and its possible modes of action. Biol. Control. 2011, 57, 193–201. [Google Scholar] [CrossRef]
- Kwasiborski, A.; Bajji, M.; Renaut, J.; Delaplace, P.; Jijakli, H. Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: New possible targets for biocontrol improvement. PLoS ONE 2014, 9, e91434. [Google Scholar] [CrossRef]
- Pérez-Torrado, R.; Rantsiou, K.; Perrone, B.; Navarro-Tapia, E.; Querol, A.; Cocolin, L. Ecological interactions among Saccharomyces cerevisiae strains: Insight into the dominance phenomenon. Sci. Rep. 2017, 7, 43603. [Google Scholar] [CrossRef]
- Bakkeren, G.; Kämper, J.; Schirawski, J. Sex in smut fungi: Structure, function and evolution of mating-type complexes. Fungal Genet. Biol. 2008, 45 (Suppl. S1), S15–S21. [Google Scholar] [CrossRef]
- Geiser, E.; Wiebach, V.; Wierckx, N.; Blank, L.M. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol. Biotechnol. 2014, 1, 2. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant siseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Sui, Y.; Wisniewski, M.; Droby, S.; Liu, J. Responses of yeast biocontrol agents to environmental stress. Appl. Env. Microbiol. 2015, 81, 2968–2975. [Google Scholar] [CrossRef]
- Klein, M.N.; Kupper, K.C. Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus. Food Microbiol. 2018, 69, 1–10. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol. Technol. 2016, 122, 22–29. [Google Scholar] [CrossRef]
Code | Accession Number | Identity | Tissue of Isolation |
---|---|---|---|
Fungal phytopathogens | |||
AL-13 | KC341958.1 | Colletotrichum gloeosporioides | Pericarp and flowers of Citrus limon var Eureka |
AL_21 | KC341966.1 | Fusarium sp. | |
AL-38 | KC341982.1 | Penicillium digitatum | |
H3A | MK041914.1 | Epicoccum sorghinum H11_1 | Surface of Agave tequilana leaf |
Biocontrol yeasts | |||
LCBG-03 | HM991450.1 | Meyerozyma guilliermondii | Pericarp of Citrus limon var Eureka |
LCBG-27 | OQ850308 | Macalpinomyces sp. | |
LCBG-30 | OQ850309 | Pseudozyma sp. | |
LCBG-49 (Sc3D6) | JQ824876 | Saccharomyces cerevisiae | Agave mezcal must |
Days of Storage of the Formulation | Yeasts Present on Formulation | Radial Growth Rate Inhibition (%) | Viable Yeast Cell Count | |||
---|---|---|---|---|---|---|
C. gloeosporioides AL-13 | Fusarium sp. AL-21 | P. digitatum AL-38 | E. sorghinum H3A | (×108) CFU/mL | ||
1 | LCBG 03+30 | 93 | 92 | 48 | 38 | 2.68 A |
LCBG 03+49 | 93 | 86 | 56 | 39 | 2.42 A | |
LCBG 30+49 | 80 | 84 | 34 | 58 | 1.97 A | |
LCBG03 | 88 | 70 | 37 | 49 | 1.68 B | |
LCBG30 | 79 | 64 | 32 | 47 | 1.43 B | |
LCBG49 | 79 | 68 | 22 | 47 | 1.35 B | |
25 | LCBG 03+30 | 93 | 93 | 48 | 50 | 2.77 A |
LCBG03+49 | 96 | 87 | 62 | 48 | 2.37 A | |
LCBG30+49 | 81 | 81 | 43 | 64 | 1.93 A | |
LCBG03 | 84 | 70 | 44 | 42 | 1.58 B | |
LCBG30 | 88 | 73 | 50 | 42 | 1.37 B | |
LCBG49 | 88 | 69 | 32 | 42 | 1.27 B | |
100 | LCBG03+30 | 96 | 92 | 56 | 57 | 2.95 A |
LCBG03+49 | 96 | 89 | 56 | 54 | 2.45 A | |
LCBG30+49 | 86 | 83 | 54 | 64 | 1.95 A | |
LCBG03 | 89 | 73 | 47 | 48 | 1.65 B | |
LCBG30 | 89 | 73 | 42 | 48 | 1.45 B | |
LCBG49 | 89 | 73 | 47 | 48 | 1.33 B | |
180 | LCBG03+30 | 94 | 94 | 57 | 61 | 2.98 A |
LCBG03+49 | 94 | 92 | 57 | 61 | 2.48 A | |
LCBG30+49 | 88 | 84 | 54 | 72 | 1.98 A | |
LCBG03 | 88 | 78 | 51 | 52 | 1.68 B | |
LCBG30 | 88 | 78 | 51 | 52 | 1.48 B | |
LCBG49 | 88 | 78 | 51 | 48 | 1.37 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edward-Rajanayagam, R.M.A.; Narváez-Zapata, J.A.; Ramírez-González, M.d.S.; de la Cruz-Arguijo, E.A.; López-Meyer, M.; Larralde-Corona, C.P. Yeast Mixtures for Postharvest Biocontrol of Diverse Fungal Rots on Citrus limon var Eureka. Horticulturae 2023, 9, 573. https://doi.org/10.3390/horticulturae9050573
Edward-Rajanayagam RMA, Narváez-Zapata JA, Ramírez-González MdS, de la Cruz-Arguijo EA, López-Meyer M, Larralde-Corona CP. Yeast Mixtures for Postharvest Biocontrol of Diverse Fungal Rots on Citrus limon var Eureka. Horticulturae. 2023; 9(5):573. https://doi.org/10.3390/horticulturae9050573
Chicago/Turabian StyleEdward-Rajanayagam, Rose Meena Amirthanayagam, José Alberto Narváez-Zapata, María del Socorro Ramírez-González, Erika Alicia de la Cruz-Arguijo, Melina López-Meyer, and Claudia Patricia Larralde-Corona. 2023. "Yeast Mixtures for Postharvest Biocontrol of Diverse Fungal Rots on Citrus limon var Eureka" Horticulturae 9, no. 5: 573. https://doi.org/10.3390/horticulturae9050573
APA StyleEdward-Rajanayagam, R. M. A., Narváez-Zapata, J. A., Ramírez-González, M. d. S., de la Cruz-Arguijo, E. A., López-Meyer, M., & Larralde-Corona, C. P. (2023). Yeast Mixtures for Postharvest Biocontrol of Diverse Fungal Rots on Citrus limon var Eureka. Horticulturae, 9(5), 573. https://doi.org/10.3390/horticulturae9050573