Quality of Olive Oil Obtained by Regulated Deficit Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Oil Samples
- ✓
- conventional irrigation (control treatment), which had an optimum water status. Trees were watered to supply 110% of crop evapotranspiration (ETc) [10]; a total of 498 L m−2 were applied, and;
- ✓
- hydroSOS irrigation treatment, trees were under non-limited water conditions during stage I (beginning of fruit development) and III (rehydration), while regulated deficit irrigation (RDI) was applied during stage II pit hardening (70% of reduction in the total water irrigation applied in the control treatment (349 L m−2 were applied)).
2.2. Consumer Study
2.3. Descriptive Sensory Analysis
2.4. Quality Classification
2.5. Volatile Compounds
2.6. Fatty Acids Profile
2.7. Total Antioxidant Activity and Total Phenolic Content
2.8. Statistical Analysis
3. Results and Discussion
3.1. Consumers Study
3.2. Descriptive Sensory Analysis
3.3. Quality Parameters
3.4. Volatile Compounds
3.5. Fatty Acids Profile
3.6. Antioxidant Activity and Total Phenol Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 3 May 2023).
- IOC. The Olive Tree. Available online: https://www.internationaloliveoil.org/olive-world/olive-tree/ (accessed on 3 May 2023).
- MAPA. Aceite de Oliva y Aceituna de Mesa. Available online: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/aceite. (accessed on 3 May 2023).
- Lombardo, L.; Grasso, F.; Lanciano, F.; Loria, S.; Monetti, E. Chapter 2—Broad-Spectrum Health Protection of Extra Virgin Olive Oil Compounds. In Studies in Natural Products Chemistry; Atta ur, R., Ed.; Elsevier: Oxford, UK, 2018; Volume 57, pp. 41–77. [Google Scholar]
- FAO. Food-Based Dietary Guidelines—Spain. Available online: http://www.fao.org/nutrition/education/food-dietary-guidelines/regions/countries/Spain/en (accessed on 3 May 2023).
- Guerrero-Casado, J.; Carpio, A.J.; Tortosa, F.S.; Villanueva, A.J. Environmental challenges of intensive woody crops: The case of super high-density olive groves. Sci. Total Environ. 2021, 798, 149212. [Google Scholar] [CrossRef] [PubMed]
- Morgado, R.; Santana, J.; Porto, M.; Sánchez-Oliver, J.S.; Reino, L.; Herrera, J.M.; Rego, F.; Beja, P.; Moreira, F. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 2020, 288, 106694. [Google Scholar] [CrossRef]
- Rodríguez-Cohard, J.C.; Sánchez-Martínez, J.D.; Garrido-Almonacid, A. Strategic responses of the European olive-growing territories to the challenge of globalization. Eur. Plan. Stud. 2020, 28, 2261–2283. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L.; Lipan, L.; Andreu, L.; Martín-Palomo, M.J.; Carbonell-Barrachina, Á.A.; Hernández, F.; Sendra, E. Effect of regulated deficit irrigation on the quality of raw and table olives. Agric. Water Manag. 2019, 221, 415–421. [Google Scholar] [CrossRef]
- Corell, M.; Pérez-López, D.; Andreu, L.; Recena, R.; Centeno, A.; Galindo, A.; Moriana, A.; Martín-Palomo, M.J. Yield response of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening. Agric. Water Manag. 2022, 261, 107374. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals: 17 Goals to Transform Our World. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 3 May 2023).
- Sánchez-Bravo, P.; Chambers, E.; Noguera-Artiaga, L.; Sendra, E.; Chambers, E.; Carbonell-Barrachina, Á.A. How Consumers Perceive Water Sustainability (HydroSOStainable) in Food Products and How to Identify It by a Logo. Agronomy 2020, 10, 1495. [Google Scholar] [CrossRef]
- Bubola, K.B.; Kolega, Š.; Marcelić, Š.; Šikić, Z.; Pinto, A.G.; Zorica, M.; Klisović, D.; Novoselić, A.; Špika, M.J.; Kos, T. Effect of Different Watering Regimes on Olive Oil Quality and Composition of Coratina Cultivar Olives Grown on Karst Soil in Croatia. Foods 2022, 11, 1767. [Google Scholar] [CrossRef]
- Pierantozzi, P.; Torres, M.; Tivani, M.; Contreras, C.; Gentili, L.; Mastio, V.; Parera, C.; Maestri, D. Yield and chemical components from the constitutive parts of olive (cv. Genovesa) fruits are barely affected by spring deficit irrigation. J. Food Compos. Anal. 2021, 102, 104072. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L.; Kranjac, M.; Marijanović, Z.; Jerković, I.; Corell, M.; Moriana, A.; Carbonell-Barrachina, Á.A.; Sendra, E.; Hernández, F. Quality attributes and fatty acid, volatile and sensory profiles of “Arbequina” hydrosostainable olive oil. Molecules 2019, 24, 2148. [Google Scholar] [CrossRef]
- Rufat, J.; Romero-Aroca, A.J.; Arbonés, A.; Villar, J.M.; Hermoso, J.F.; Pascual, M. Mechanical Harvesting and Irrigation Strategy Responses on ‘Arbequina’ Olive Oil Quality. HortTechnology Hortte 2018, 28, 607–614. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Girón, I.F.; Pleite, R.; Burló, F.; Corell, M.; Moriana, A.; Carbonell-Barrachina, A.A. Quality attributes of table olives as affected by regulated deficit irrigation. LWT-Food Sci. Technol. 2015, 62, 19–26. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L.; Corell, M.; Hernández, F.; Sendra, E.; Moriana, A.; Carbonell-Barrachina, Á.A. Effect of Spanish-style processing on the quality attributes of HydroSOStainable green olives. J. Sci. Food Agric. 2019, 99, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Carbonell-Barrachina, Á.A.; Sendra, E.; Hernández, F. Volatile Composition, Sensory Profile and Consumer Acceptability of HydroSOStainable Table Olives. Foods 2019, 8, 470. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, D.; Roselli, L.; Giannoccaro, G.; Cavallo, C.; Del Giudice, T.; Vecchio, R.; Cicia, G.; De Gennaro, B.C. Consumer acceptance of innovations in traditional foods: The case of extra-virgin olive oil. Br. Food J. 2023, 125, 1–17. [Google Scholar] [CrossRef]
- Latino, M.E.; De Devitiis, B.; Corallo, A.; Viscecchia, R.; Bimbo, F. Consumer Acceptance and Preference for Olive Oil Attributes—A Review. Foods 2022, 11, 3805. [Google Scholar] [CrossRef] [PubMed]
- IOC. Glass for Oil Tasting. 2020. COI/T.20/Doc. No 5. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/05/COI-T.20-Doc5-Rev2-2020-EN.pdf (accessed on 3 May 2023).
- IOC. Trade Standard on Olive Oils and Olive-Pomace Oils. Standard 2022; COI/T.15/NC No 3/ Rev.19/2022. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2022/12/Norme-comerciale-REV-19_ENK.pdf (accessed on 3 May 2023).
- IOC. Determination of Free Fatty Acids, Cold Method. DEC-III-8/106-VI/2017. 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-33-Rev.-1-2017.pdf (accessed on 3 May 2023).
- IOC. Determination of Peroxide Value. DEC-III-12/106-VI/2017. 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/Method-COI-T.20-Doc.-No-35-Rev.-1-2017.pdf (accessed on 3 May 2023).
- IOC. Spectrophotemtric Investigation in the Ultraviolet. DEC-III.4/109-VI/2019. 2019. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/Method-COI-T.20-Doc.-No-19-Rev.-5-2019-2.pdf (accessed on 3 May 2023).
- García-Garví, J.M.; Sánchez-Bravo, P.; Hernández, F.; Sendra, E.; Corell, M.; Moriana, A.; Burgos-Hernández, A.; Carbonell-Barrachina, Á.A. Effect of Regulated Deficit Irrigation on the Quality of ‘Arbequina’ Extra Virgin Olive Oil Produced on a Super-High-Intensive Orchard. Agronomy 2022, 12, 1892. [Google Scholar] [CrossRef]
- NIST. National Institute of Standars and Technology. U.S. Department of Commerce. Available online: https://webbook.nist.gov/chemistry/ (accessed on 3 May 2023).
- ISO-12966-2; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- Lipan, L.; Carbonell-Pedro, A.A.; Rodríguez, B.C.; Durán-Zuazo, V.H.; Franco Tarifa, D.; García-Tejero, I.F.; Ruiz, B.G.; Tavira, S.C.; Muelas, R.; Sendra, E.; et al. Can sustained deficit irrigation save water and meet the quality characteristics of mango? Agriculture 2021, 11, 448. [Google Scholar] [CrossRef]
- Aguilar-Hernández, M.G.; Núñez-Gómez, D.; Forner-Giner, M.Á.; Hernández, F.; Pastor-Pérez, J.J.; Legua, P. Quality parameters of Spanish lemons with commercial interest. Foods 2021, 10, 62. [Google Scholar] [CrossRef]
- Sastre, B.; Arbonés, A.; Pérez-Jiménez, M.Á.; Pascual, M.; Benito, A.; de Lorenzo, C.; Villar, J.M.; Bonet, L.J.; Paz, S.; Santos, Á.; et al. Influence of Regulated Deficit Irrigation on Arbequina’s Crop Yield and EVOOs Quality and Sensory Profile. Agronomy 2023, 13, 31. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L.; Kranjac, M.; Marijanović, Z.; Jerković, I.; Pérez-López, D.; Carbonell-Barrachina, Á.A.; Hernández, F.; Sendra, E. “Arbequina” Olive Oil Composition Is Affected by the Application of Regulated Deficit Irrigation during Pit Hardening Stage. J. Am. Oil Chem. Soc. 2020, 97, 449–462. [Google Scholar] [CrossRef]
- León Mendoza, L.; Casanova Pavel, D.; González Cabeza, J. Estabilidad de la calidad sensorial de aceites de oliva Olea europea (Oleaceae) extra virgen varietal y mono varietal. Arnaldoa 2021, 28, 613–624. [Google Scholar] [CrossRef]
- Navajas-Porras, B.; Pérez-Burillo, S.; Morales-Pérez, J.; Rufián-Henares, J.A.; Pastoriza, S. Relationship of quality parameters, antioxidant capacity and total phenolic content of EVOO with ripening state and olive variety. Food Chem. 2020, 325, 126926. [Google Scholar] [CrossRef]
- Grossi, M.; Di Lecce, G.; Arru, M.; Gallina Toschi, T.; Riccò, B. An opto-electronic system for in-situ determination of peroxide value and total phenol content in olive oil. J. Food Eng. 2015, 146, 1–7. [Google Scholar] [CrossRef]
- Kamikata, K.; Vicente, E.; Arisseto-Bragotto, A.P.; Miguel, A.M.R.D.O.; Milani, R.F.; Tfouni, S.A.V. Occurrence of 3-MCPD, 2-MCPD and glycidyl esters in extra virgin olive oils, olive oils and oil blends and correlation with identity and quality parameters. Food Control 2019, 95, 135–141. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Lodolini, E.; Selvaggini, R.; Taticchi, A.; Urbani, S.; Montedoro, G.; Serravalle, M.; Gucci, R. Irrigation Effects on Quality, Phenolic Composition, and Selected Volatiles of Virgin Olive Oils Cv. Leccino. J. Agric. Food Chem. 2007, 55, 6609–6618. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Liu, Z.; Wang, W.; Sun, S.; Wang, J.; Zhu, Z.; Liu, J.; Yang, H.; Zhu, S.; et al. Quality assessment and geographical origin classification of extra-virgin olive oils imported into China. J. Food Compos. Anal. 2022, 113, 104713. [Google Scholar] [CrossRef]
- da Silveira, R.; Vágula, J.M.; de Lima Figueiredo, I.; Claus, T.; Galuch, M.B.; Santos Junior, O.O.; Visentainer, J.V. Rapid methodology via mass spectrometry to quantify addition of soybean oil in extra virgin olive oil: A comparison with traditional methods adopted by food industry to identify fraud. Food Res. Int. 2017, 102, 43–50. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Zhao, H.; Ren, L.; Shen, R.; Guo, S.; Peng, X. Identification of the influential odorants for the unpleasant rancid smell of ripe noni fruit (Morinda citrifolia). Int. J. Food Sci. Technol. 2022, 57, 2277–2284. [Google Scholar] [CrossRef]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S. Olive oil quality response to irrigation cut-off strategies in a super-high density orchard. Agric. Water Manag. 2018, 202, 81–88. [Google Scholar] [CrossRef]
- Gómez del Campo, M.; García, J.M. Summer Deficit-Irrigation Strategies in a Hedgerow Olive cv. Arbequina Orchard: Effect on Oil Quality. J. Agric. Food Chem. 2013, 61, 8899–8905. [Google Scholar] [CrossRef] [PubMed]
- Rumora, A.E.; LoGrasso, G.; Hayes, J.M.; Mendelson, F.E.; Tabbey, M.A.; Haidar, J.A.; Lentz, S.I.; Feldman, E.L. The divergent roles of dietary saturated and monounsaturated fatty acids on nerve function in murine models of obesity. J. Neurosci. 2019, 39, 3770–3781. [Google Scholar] [CrossRef]
- Shavakhi, F.; Rahmani, A.; Moradi, P. Characterization of Iranian olive oils based on biophenolic minor polar compounds and their contribution to organoleptic properties. Yuzuncu Yıl Univ. J. Agric. Sci. 2021, 31, 365–376. [Google Scholar] [CrossRef]
- Sena-Moreno, E.; Cabrera-Bañegil, M.; Pérez-Rodríguez, J.M.; De Miguel, C.; Prieto, M.H.; Martín-Vertedor, D. Influence of Water Deficit in Bioactive Compounds of Olive Paste and Oil Content. J. Am. Oil Chem. Soc. 2018, 95, 349–359. [Google Scholar] [CrossRef]
- Allalout, A.; Krichène, D.; Methenni, K.; Taamalli, A.; Oueslati, I.; Daoud, D.; Zarrouk, M. Characterization of virgin olive oil from Super Intensive Spanish and Greek varieties grown in northern Tunisia. Sci. Hortic. 2009, 120, 77–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Xu, C.; Deng, Y.; Wen, B.; Xie, P.; Huang, L. Effect of geographical location and soil fertility on main phenolic compounds and fatty acids compositions of virgin olive oil from Leccino cultivar in China. Food Res. Int. 2022, 157, 111207. [Google Scholar] [CrossRef]
Sensory Attribute | ANOVA † | Arbequina Conventional | Arbequina HydroSOS | Arbosana HydroSOS |
---|---|---|---|---|
Olive oil odor | *** | 5.4 b,‡ | 6.8 a | 6.0 b |
Olive oil flavor | *** | 5.5 b | 6.4 a | 5.8 a,b |
Fruity | * | 5.0 b | 5.9 a | 5.6 a,b |
Bitterness | * | 4.6 b | 5.5 a | 5.0 a,b |
Pungent | * | 4.6 b | 5.5 a | 5.3 a,b |
Aftertaste | * | 5.3 b | 6.3 a | 5.8 a,b |
Olive oil color | * | 5.1 b | 7.1 a | 6.6 a |
Overall liking | ** | 5.3 b | 6.3 a | 5.8 a,b |
Sensory Attribute | ANOVA † | Arbequina Conventional | Arbequina HydroSOS | Arbosana HydroSOS |
---|---|---|---|---|
Fruity | ** | 3.8 a,‡ | 3.0 b | 3.8 a |
Maturity: Green | ** | 4.9 a | 5.0 a | 3.4 b |
Maturity: Ripe | * | 5.1 b | 5.0 b | 6.6 a |
Floral | N.S. | 0.1 | 0.2 | 0.1 |
Green (artichoke) | N.S. | 0.4 | 0.1 | 0.2 |
Green (herbaceous) | N.S. | 0.2 | 0.2 | 0.1 |
Green (pepper) | N.S. | 0.2 | 0.9 | 0.1 |
Tomato | * | 0.5 b | 1.1 a | 1.4 a |
Bitter | ** | 1.4 a | 0.5 b | 0.5 b |
Astringent | N.S. | 0.1 | 0.1 | 0.1 |
Pungent | * | 1.0 b | 1.5 a | 1.9 a |
Oxidized | N.S. | 0 | 0 | 0.1 |
Rancid | N.S. | 0 | 0 | 0 |
Fusty | N.S. | 0 | 0 | 0 |
Musty | N.S. | 0 | 0 | 0 |
Muddy | N.S. | 0 | 0 | 0 |
Commercial Classification | EVOO | EVOO | EVOO |
Parameters | ANOVA† | Arbequina Conventional | Arbequina HydroSOS | Arbosana HydroSOS | Values IOC |
---|---|---|---|---|---|
Free acidity (%) | * | 0.485 a,‡ | 0.212 b | 0.281 b | ≤0.8 |
Peroxide Index (meq O2 Kg−1) | * | 13.67 b | 16.46 a | 13.40 b | ≤20 |
K232 | * | 1.28 b | 1.45 a,b | 2.06 a | ≤2.5 |
K270 | N.S. | 0.066 | 0.066 | 0.046 | ≤0.22 |
ΔK | N.S. | −0.012 | 0.003 | 0.006 | ≤0.01 |
Commercial Classification | AOVE | AOVE | AOVE | AOVE |
Compound | Sensory Descriptor [42,43] | ANOVA † | Arbequina Conventional | Arbequina HydroSOS | Arbosana HydroSOS |
---|---|---|---|---|---|
Hexanal | Green apple | ** | 51.59 c,‡ | 102 b | 116 a |
trans-2-Hexenal | Bitter almonds, green fruity | * | 332 b | 339 b | 369 a |
trans-2-Hexen-1-ol | Grass, astringent, bitter | ** | 164 b | 199 a | 202 a |
1-Hexanol | Fruity | ** | 576 b | 688 a | 695 a |
2,4-Hexadienal | Fresh, green, floral | N.S. | 1.78 | 1.89 | 1.68 |
Hexanoic acid | Sweet, rancid, sour | N.S. | 1.03 | 0.59 | 0.72 |
cis-3-Hexen-1-ol acetate | Green, fruity | N.S. | 125 | 119 | 122 |
Hexyl acetate | Green, apple, fruity | N.S. | 35.4 | 35.05 | 33.3 |
Limonene | Citrus | N.S. | 9.06 | 8.88 | 11.86 |
Nonanal | Nutty, citrus | N.S. | 8.01 | 8.93 | 8.37 |
Ethyl dodecanoate | Waxy, floral, fruity | N.S. | 0.29 | 0.23 | 0.19 |
TOTAL | * | 1305 b | 1501 a | 1559 a |
Fatty Acid | ANOVA † | Arbequina Conventional | Arbequina HydroSOS | Arbosana HydroSOS |
---|---|---|---|---|
C14:0 | N.S. | 0.01 | 0.02 | 0.01 |
C16:0 | *** | 13.28 c,‡ | 17.43 a | 16.74 b |
C16:1 c9 | ** | 0.13 b | 0.14 a | 0.067 c |
C16:1 c9 | *** | 1.22 b | 1.53 a | 1.53 a |
C17:0 | * | 0.08 c | 0.15 a | 0.18 a |
C17:1 | *** | 0.16 c | 0.28 b | 0.35 a |
C18:0 | *** | 2.53 a | 1.86 c | 2.15 b |
C18:1 c9 | *** | 70.31 a | 61.68 c | 66.92 b |
C18:1 t11 | ** | 2.10 b | 3.17 a | 2.85 a |
C18:2 n6c | *** | 9.39 b | 12.70 a | 8.29 c |
C18:3 n3 | *** | 0.39 c | 0.61 a | 0.44 b |
C20:1 n9 | N.S. | 0.30 | 0.33 | 0.31 |
C22:0 | N.S. | 0.11 | 0.12 | 0.16 |
SFA | *** | 16.01 b | 19.57 a | 19.24 a |
MUFA | ** | 74.21 a | 67.12 b | 72.03 a |
PUFA | *** | 9.78 b | 13.31 a | 8.73 b |
ANOVA † | Arbequina Conventional | Arbequina HydroSOS | Arbosana HydroSOS | |
---|---|---|---|---|
ABTS+ (mmol Trolox L−1) | ** | 0.273 b,‡ | 0.402 a | 0.275 b |
DPPH• (mmol Trolox L−1) | ** | 0.407 a,b | 0.515 a | 0.347 b |
TPC (mg GAE L−1) | ** | 90.3 b | 111 a | 76.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Garví, J.M.; Noguera-Artiaga, L.; Hernández, F.; Pérez-López, A.J.; Burgos-Hernández, A.; Carbonell-Barrachina, Á.A. Quality of Olive Oil Obtained by Regulated Deficit Irrigation. Horticulturae 2023, 9, 557. https://doi.org/10.3390/horticulturae9050557
García-Garví JM, Noguera-Artiaga L, Hernández F, Pérez-López AJ, Burgos-Hernández A, Carbonell-Barrachina ÁA. Quality of Olive Oil Obtained by Regulated Deficit Irrigation. Horticulturae. 2023; 9(5):557. https://doi.org/10.3390/horticulturae9050557
Chicago/Turabian StyleGarcía-Garví, José Miguel, Luis Noguera-Artiaga, Francisca Hernández, Antonio José Pérez-López, Armando Burgos-Hernández, and Ángel A. Carbonell-Barrachina. 2023. "Quality of Olive Oil Obtained by Regulated Deficit Irrigation" Horticulturae 9, no. 5: 557. https://doi.org/10.3390/horticulturae9050557
APA StyleGarcía-Garví, J. M., Noguera-Artiaga, L., Hernández, F., Pérez-López, A. J., Burgos-Hernández, A., & Carbonell-Barrachina, Á. A. (2023). Quality of Olive Oil Obtained by Regulated Deficit Irrigation. Horticulturae, 9(5), 557. https://doi.org/10.3390/horticulturae9050557