Regeneration of Transgenic Ficus lyrata via Indirect Somatic Embryogenesis and Isolation of Variants for Development of New Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Initial Culture and Callus Induction
2.3. Callus Proliferation and Somatic Embryo Occurrence
2.4. Somatic Embryogenesis
2.5. Rooting Medium Selection
2.6. Transplantation and Acclimatization
2.7. Experimental Design and Data Analysis
2.8. Identification of Variants in Regenerated Populations
3. Results
3.1. Callus Induction and Occurrence of Somatic Embryos
3.2. Somatic Embryo Induction
3.3. In Vitro Rooting
3.4. Morphology of Regenerated Plants and Isolation of Variants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; McConnell, D.B.; Norman, D.L.; Henny, R.J. The foliage plant industry. Hort. Rev. 2005, 31, 47–112. [Google Scholar]
- Henny, R.J.; Chen, J. Cultivar development of ornamental foliage plants. Plant Breed. Rev. 2003, 23, 245–290. [Google Scholar]
- Chen, J. Ornamental plant research inaugural editorial. Ornam. Plant Res. 2021, 1, 1. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.T.; Chen, J.; Henny, R.J.; Gray, D.J.; Chen, J. Purple-leaved Ficus lyrate plants produced by overexpressing a grapevine VvMybA1 gene. Plant Cell Rep. 2013, 32, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Matus, J.T.; Aquea, F.; Arce-Johnson, P. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol. 2008, 8, 83. [Google Scholar] [CrossRef]
- Li, Z.T.; Dhekney, S.A.; Gray, D.J. Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco. Transgenic Res. 2011, 20, 1087–1097. [Google Scholar] [CrossRef]
- Li, Z.T.; Kim, K.H.; Jasinski, J.R.; Creech, M.R.; Gray, D.J. Large-scale characterization of promoters from grapevine (Vitis spp.) using quantitative anthocyanin and GUS assay systems. Plant Sci. 2012, 196, 132–142. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ishimaru, M.; Hiraoka, K.; Honda, C. Mybrelated genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 2002, 215, 924–933. [Google Scholar]
- Kobayashi, S.; Ishimaru, M.; Ding, C.K.; Yakushiji, H.; Goto, N. Comparison of UDPglucose:flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci. 2001, 160, 543–550. [Google Scholar] [CrossRef]
- Niu, S.-S.; Xu, C.-J.; Zhang, W.-S.; Zhang, B.; Li, X.; Lin-Wang, K.; Ferguson, I.B.; Allan, A.C.; Chen, K.-S. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 2010, 231, 887–899. [Google Scholar] [CrossRef]
- Liu, J.; Osbourn, A.; Ma, P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant 2015, 8, 689–708. [Google Scholar] [CrossRef]
- Guan, X.; Wang, W.; Ye, Q.; Xie, Q.; Li, Z.; Chen, Q.; Chen, J. De novo transcriptomic sequencing unraveled the molecular mechanisms of VvMybA1 underlying the alteration of Ficus lyrata leaf color. Acta Physiol. Plant 2019, 41, 16. [Google Scholar] [CrossRef]
- Debergh, P.; De Wael, J. Mass propagation of Ficus lyrata. Acta Hortic. 1977, 78, 361–364. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Yakushiji, H.; Mase, N.; Sato, Y. Adventitious bud formation and plantlet regeneration from leaves of fig (Ficus carica L.). J. Pomol. Hortic. Sci. 2003, 78, 874–878. [Google Scholar]
- Yancheva, S.D.; Golubowicz, S.; Yablowicz, Z.; Perl, A.; Flaishman, M.A. Efficient Agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants. Plant Sci. 2005, 168, 433–1441. [Google Scholar] [CrossRef]
- Soliman, H.I.; Gabr, M.; Abdallah, N.A. Efficient transformation and regeneration of fig (Ficus carica L.) via somatic embryogenesis. GM Crops 2010, 1, 47–58. [Google Scholar] [CrossRef]
- Hesami, M.; Daneshvar, M.H.; Yoosefzadeh-Najafabadi, M.; Alizadeh, M. Effect of plant growth regulators on indirect shoot organogenesis of Ficus religiosa through seedling derived petiole segments. J. Genet. Eng. Biotechnol. 2018, 16, 175–180. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, N.; Zhang, L. Research on tissue culture technology of linden tree. J. Tianjin Agric. Univ. 2012, 19, 30–33. [Google Scholar]
- Zhou, Y.; Ding, L.; Xu, B.; Xia, G.; Cui, Y. Effects of different plant growth regulators on tissue culture of Ficus banyan. J. Zhejiang Agric. For. Univ. 2013, 30, 453–458. [Google Scholar]
- Chen, J.; Henny, R.J. Somaclonal Variation: An Important Source for Cultivar Development of Floriculture Crops. In Floriculture, Ornamental and Plant Biotechnology II; Da Silva, J.A.T., Ed.; Global Science Books: London, UK, 2006; pp. 244–253. [Google Scholar]
- Bhatia, S.; Bera, T. Somatic Embryogenesis and Organogenesis. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Elsevier: London, UK, 2015; pp. 209–230. [Google Scholar]
- Yasuda, T.; Fujii, Y.; Yamaguchi, T. Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant Cell Physiol. 1985, 26, 595–597. [Google Scholar] [CrossRef]
- Chaudhury, A.; Qu, R. Somatic embryogenesis and plant regeneration of turf-type bermudagrass: Effect of 6-benzyladenine in callus induction medium. Plant Cell Tissue Organ Cult. 2000, 60, 113–120. [Google Scholar] [CrossRef]
- Verma, M.; Bansal, Y.K. Induction of somatic embryogenesis in endangered butterfly ginger Hedychium coronarium J. Koenig. Indian J. Exp. Biol. 2012, 50, 904–909. [Google Scholar] [PubMed]
- Kintzios, S.; Manos, C.; Makri, O. Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep. 1999, 18, 467–472. [Google Scholar] [CrossRef]
- Ji, C.; Xue, C.; Wang, Q. 6-BA and NAA effects on fig tissue culture. North Hort. 2009, 12, 98–99. (In Chinese) [Google Scholar]
- Deng, Z.; Li, C.; Wang, L. Tissue culture and rapid propagation of linden tree. Plant Physiol. Comms. 2005, 41, 795–796. (In Chinese) [Google Scholar]
- Larkin, P.J.; Scowcroft, W. Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theor. Appl Genet. 1981, 60, 197–214. [Google Scholar] [CrossRef]
- Chen, J.; Henny, R.J.; Devenand, P.S.; Chao, C.T. AFLP analysis of nephthytis (Syngonium podophyllum Schott) selected from somaclonal variants. Plant Cell Rep. 2006, 24, 743–749. [Google Scholar] [CrossRef]
- Shen, X.; Chen, J.; Kane, M.E.; Henny, R.J. Assessment of somaclonal variation of Dieffenbachia plants regenerated via indirect shoot organogenesis from leaf explants. Plant Cell Tissue Organ Cult. 2007, 91, 21–27. [Google Scholar] [CrossRef]
- Rai, M.K. Somaclonal variation in improvement of agricultural crops: Recent progress. In Agricultural Biotechnology: Latest Research and Trends; Srivastava, D.K., Thakur, A.K., Kumar, P., Eds.; Springer: Singapore, 2021; pp. 129–146. [Google Scholar]
- Wilson, A.K.; Latham, J.R.; Steinbrecher, R.A. Transformation-induced mutations in transgenic plants: Analysis and biosafety implications. Biotechnol. Genet. Eng. Rev. 2006, 23, 209–238. [Google Scholar] [CrossRef]
- Boutigny, A.L.; Dohin, N.; Pornin, D.; Polland, M. Overview and detectability of the genetic modifications in ornamental plants. Hortic. Res. 2020, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Lijavetzky, D.; Ruiz-García, L.; Cabezas, J.A.; De Andres, M.T.; Bravo, G.; Ibanez, A.; Carreno, J.; Cabello, F.; Ibanez, J.; Martinez-Zapater, J.M. Molecular genetics of berry colour variation in table grape. Mol. Genet. Genom. 2006, 276, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Davies, F.T.; Geneve, R.L., Jr.; Wilson, S.B. Hartmann and Kester’s Plant Propagation Principles and Practices, 9th ed.; Pearson Education Inc.: New York, NY, USA, 2017; 1004p. [Google Scholar]
PGR (μM) | Initial Culture (50 Days) | First Subculture (50 Days) | |||
---|---|---|---|---|---|
BA | NAA | Callus Occurrence Rate (%) | Somatic Embryo No. per Explant | Somatic Embryo No. per Explant | Embryo Conversion Rate (%) |
4.44 | 0.05 | 98.75 ± 8.12 a | 0.6 ± 0.35 bc | 3.8 ± 1.01 c | 43.31 ± 3.57 ab |
4.44 | 0.27 | 92.65 ± 10.56 a | 0.05 ± 0.05 bc | 3.7 ± 1.04 c | 34.62 ± 9.86 b |
4.44 | 0.54 | 89.81 ± 12.45 a | 0 ± 0 c | 2.8 ± 0.54 c | 33.64 ± 9.81 b |
8.88 | 0.05 | 97.45 ± 9.65 a | 0.25 ± 0.10 bc | 5.85 ± 0.69 bc | 56.80 ± 2.30 a |
8.88 | 0.27 | 100 ± 0.00 a | 1.4 ± 0.38 a | 10.15 ± 2.26 a | 54.01 ± 3.99 ab |
8.88 | 0.54 | 98.89 ± 7.28 a | 0.7 ± 0.13 b | 8.35 ± 1.24 ab | 55.69 ± 6.49 a |
PGR (μM) | Somatic Embryos No. per Callus Piece |
No. of Embryo Conversion (50 Days) | Conversion Rate (%) in 50 Days | |||
---|---|---|---|---|---|---|
BA | NAA | 30 Days | 40 Days | 50 Days | ||
4.44 | 0.05 | 3.80 ± 0.69 b | 6.63 ± 1.19 b | 7.73 ± 1.37 b | 2.95 ± 0.93 c | 31.00 ± 5.74 c |
4.44 | 0.27 | 12.80 ± 4.36 a | 15.45 ± 5.16 ab | 18.30 ± 5.83 b | 10.50 ± 4.34 abc | 39.00 ± 7.17 bc |
4.44 | 0.54 | 3.55 ± 0.70 b | 5.35 ± 0.96 b | 7.60 ± 1.36 b | 2.85 ± 0.67 c | 33.00 ± 3.19 c |
8.88 | 0.05 | 11.30 ± 2.69 ab | 14.28 ± 3.45 ab | 18.13 ± 4.28 b | 9.90 ± 3.00 bc | 48.00 ± 3.2 ab |
8.88 | 0.27 | 17.88 ± 3.83 a | 23.95 ± 4.77 a | 30.30 ± 5.49 a | 18.23 ± 3.96 ab | 56.00 ± 3.48 a |
8.88 | 0.54 | 18.38 ± 2.93 a | 24.38 ± 3.69 a | 30.33 ± 4.44 a | 18.80 ± 3.15 a | 60.00 ± 2.46 a |
IBA (μM) | Activated Charcoal (%) | Rooting Rate (%) | Root No. | Root Length (cm) |
---|---|---|---|---|
0.49 | 0 | 100.00 ± 0 a | 7.19 ± 0.51 c | 0.98 ± 0.08 ab |
2.46 | 0 | 97.92 ± 2.08 a | 13.25 ± 1.28 b | 0.62 ± 0.06 bc |
4.92 | 0 | 93.75 ± 3.26 ab | 18.38 ± 1.60 a | 0.45 ± 0.02 c |
0.49 | 0.2 | 83.33 ± 4.70 bc | 3.64 ± 0.39 d | 1.16 ± 0.22 a |
2.46 | 0.2 | 77.08 ± 8.40 c | 3.40 ± 0.62 d | 1.01 ± 0.23 ab |
4.92 | 0.2 | 79.17 ± 5.18 c | 3.42 ± 0.48 d | 1.10 ± 0.22 a |
First Batch | Second Batch | Third Batch | |||||||
---|---|---|---|---|---|---|---|---|---|
Cultural Conditions | Green Leaves | Green–Purple Leaves | Purple Leaves | Green Leaves | Green–Purple Leaves | Purple Leaves | Green Leaves | Green–Purple Leaves | Purple Leaves |
In vitro | 32 | 0 | 0 | 90 | 136 | 0 | 103 | 136 | 0 |
GH (60 days) | 14 | 18 | 0 | 32 | 102 | 92 | 45 | 132 | 62 |
GH (120 days) | 0 | 9 | 23 | 0 | 76 | 150 | 0 | 72 | 167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Jian, D.; Chen, J.; Chen, L. Regeneration of Transgenic Ficus lyrata via Indirect Somatic Embryogenesis and Isolation of Variants for Development of New Cultivars. Horticulturae 2023, 9, 530. https://doi.org/10.3390/horticulturae9050530
Fan S, Jian D, Chen J, Chen L. Regeneration of Transgenic Ficus lyrata via Indirect Somatic Embryogenesis and Isolation of Variants for Development of New Cultivars. Horticulturae. 2023; 9(5):530. https://doi.org/10.3390/horticulturae9050530
Chicago/Turabian StyleFan, Shufang, Dawei Jian, Jianjun Chen, and Longqing Chen. 2023. "Regeneration of Transgenic Ficus lyrata via Indirect Somatic Embryogenesis and Isolation of Variants for Development of New Cultivars" Horticulturae 9, no. 5: 530. https://doi.org/10.3390/horticulturae9050530
APA StyleFan, S., Jian, D., Chen, J., & Chen, L. (2023). Regeneration of Transgenic Ficus lyrata via Indirect Somatic Embryogenesis and Isolation of Variants for Development of New Cultivars. Horticulturae, 9(5), 530. https://doi.org/10.3390/horticulturae9050530