Improving Aerial and Root Quality Traits of Two Landscaping Shrubs Stem Cuttings by Applying a Commercial Brown Seaweed Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rooting Environment
2.2. Stock Mother Plants and Cuttings
2.3. Rooting Promoters and Cutting Propagation
2.4. Experimental Design
- ✓
- C0, untreated control (distilled water);
- ✓
- IBA: 1250 mg L−1;
- ✓
- GC1: 1 mL L−1;
- ✓
- GC2: 2 mL L−1;
- ✓
- GC3: 3 mL L−1
2.5. Rooting Quality Traits
2.6. Aerial Quality Traits
2.7. Biochemical Quality: Carbohydrates Content
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kostas, S.; Kaplani, A.; Koulaouzidou, E.; Kotoula, A.-A.; Gklavakis, E.; Tsoulpha, P.; Hatzilazarou, S.; Nianiou-Obeidat, I.; Kanellis, A.K.; Economou, A. Sustainable Exploitation of Greek Rosmarinus officinalis L. Populations for Ornamental Use through Propagation by Shoot Cuttings and In Vitro Cultures. Sustainability 2022, 14, 4059. [Google Scholar] [CrossRef]
- Koufan, M.; Belkoura, I.; Mazri, M.A. In Vitro Propagation of Caper (Capparis spinosa L.): A Review. Horticulturae 2022, 8, 737. [Google Scholar] [CrossRef]
- Gonin, M.; Bergougnoux, V.; Nguyen, T.D.; Gantet, P.; Champion, A. What Makes Adventitious Roots? Plants 2019, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Ko, C.H.; Shin, U.S.; Oh, H.J.; Kim, S.Y.; Lee, S.Y. Successful stem cutting propagation of Patrinia rupestris for horticulture. Rhizosphere 2019, 9, 90–92. [Google Scholar] [CrossRef]
- Gallegos-Cedillo, V.M.; Diánez, F.; Nájera, C.; Santos, M. Plant Agronomic Features Can Predict Quality and Field Performance: A Bibliometric Analysis. Agronomy 2021, 11, 2305. [Google Scholar] [CrossRef]
- Cartabiano, J.A.; Lubell, J.D. Propagation of four underused native species from softwood cuttings. HortScience 2013, 48, 1018–1020. [Google Scholar] [CrossRef]
- Costa, J.M.; Heuvelink, E.; Pol, P.A.; Put, H.M.C. Anatomy and morphology of rooting in leafy rose stem cuttings and starch dynamics following severance. Acta Hortic. 2007, 751, 495–502. [Google Scholar] [CrossRef]
- De Almeida, M.R.; Aumond, M.; Da Costa, C.T.; Schwambach, J.; Ruedell, C.M.; Correa, L.R.; Fett-Neto, A.G. Environmental control of adventitious rooting in Eucalyptus and Populus cuttings. Trees 2017, 31, 1377–1390. [Google Scholar] [CrossRef]
- Olatunji, D.; Geelen, D.; Verstraeten, I. Control of Endogenous Auxin Levels in Plant Root Development. Int. J. Mol. Sci. 2017, 18, 2587. [Google Scholar] [CrossRef]
- Justamante, M.S.; Mhimdi, M.; Molina-Pérez, M.; Albacete, A.; Moreno, M.Á.; Mataix, I.; Pérez-Pérez, J.M. Effects of Auxin (Indole-3-butyric Acid) on Adventitious Root Formation in Peach-Based Prunus Rootstocks. Plants 2022, 11, 913. [Google Scholar] [CrossRef]
- Nair, A.; Zhang, D.; Smagula, J.; Hu, D. Rooting and overwintering stem cuttings of Stewartia pseudocamellia Maxim. Relevant to hormone, media, and temperature. HortScience 2008, 43, 2124–2128. [Google Scholar] [CrossRef]
- Tejeda-Sartorius, O.; Soto-Hernández, R.M.; San Miguel-Chávez, R.; Trejo-Téllez, L.I.; Caamal-Velázquez, H. Endogenous Hormone Profile and Sugars Display Differential Distribution in Leaves and Pseudobulbs of Laelia anceps Plants Induced and Non-Induced to Flowering by Exogenous Gibberellic Acid. Plants 2022, 11, 845. [Google Scholar] [CrossRef]
- Zheng, L.; Xiao, Z.B.; Song, W.T. Effects of substrate and exogenous auxin on the adventitious rooting of Dianthus caryophyllus L. Hortic. Sci. 2020, 55, 170–173. [Google Scholar] [CrossRef]
- Babaie, H.; Zarei, H.; Nikdel, K.; Firoozjai, M.N. Effect of different concentrations of IBA and time of taking cutting on rooting, growth and survival of Ficus binnendijkii ‘Amstel Queen’ cuttings. Not. Sci. Biol. 2014, 6, 163–166. [Google Scholar] [CrossRef]
- Bryant, P.H.; Trueman, S.J. Stem anatomy and adventitious root formation in cuttings of Angophora, Corymbia and Eucalyptus. Forests 2015, 6, 1227–1238. [Google Scholar] [CrossRef]
- Lei, C.; Fan, S.; Li, K.; Meng, Y.; Mao, J.; Han, M.; Zhao, C.; Bao, L.; Zhang, D. iTRAQ-based proteomic analysis reveals potential regulation networks of IBA-induced adventitious root formation in apple. Int. J. Mol. Sci. 2018, 19, 667. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Biopesticides. 2022. Available online: https://www.epa.gov/pesticides/biopesticides (accessed on 1 June 2022).
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Plant Propagation: Principles and Practices; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Ercişli, S.; Eşitken, A.; Anapali, O.; Şahin, U. Effects of substrate and iba-concentration on adventitious root formation on hardwood cuttings of rosa dumalis. Acta Hortic. 2005, 690, 149–152. [Google Scholar] [CrossRef]
- Ribeiro, M.M.; Collado, L.M.; Antunes, M.A. The influence of indole-3-butyric-acid in Prunus laurocerasus vegetative propagation. Acta Hortic. 2008, 885, 277–283. [Google Scholar] [CrossRef]
- Grigoriadou, K.; Sarropoulou, V.; Krigas, N.; Maloupa, E. Vegetative and in vitro propagation of the medicinal and ornamental plant Astragalus suberosus subsp. Haarbachii (Fabaceae). Eur. J. Hortic. Sci. 2022, 87, 1–9. [Google Scholar] [CrossRef]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Image Analysis of Adventitious Root Quality in Wild Sage and Glossy Abelia Cuttings after Application of Different Indole-3-Butyric Acid Concentrations. Plants 2022, 11, 290. [Google Scholar] [CrossRef]
- Cano, A.; Sánchez-García, A.B.; Albacete, A.; González-Bayón, R.; Justamante, M.S.; Ibáñez, S.; Pérez-Pérez, J.M. Enhanced conjugation of auxin by GH3 enzymes leads to poor adventitious rooting in carnation stem cuttings. Front. Plant Sci. 2018, 9, 566. [Google Scholar] [CrossRef]
- EU. Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, 62, 1–114. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2019:170:TOC (accessed on 3 June 2022).
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- García, A.C.; van Tol de Castro, T.A.; Santos, L.A.; Tavares, O.C.H.; Castro, R.N.; Berbara, R.L.L.; García-Mina, J.M. Structure–Property–Function Relationship of Humic Substances in Modulating the Root Growth of Plants: A Review. J. Environ. Qual. 2019, 48, 1622–1632. [Google Scholar] [CrossRef]
- Kim, H.J.; Ku, K.M.; Choi, S.; Cardarelli, M. Vegetal-derived biostimulant enhances adventitious rooting in cuttings of basil, tomato, and chrysanthemum via brassinosteroid-mediated processes. Agronomy 2019, 9, 74. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. As biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci. 2018, 9, 428. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef]
- Duarte, M.E.; Cardoso, M.A.; Noseda, M.D.; Cerezo, A.S. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohyd. Res. 2001, 333, 281–293. [Google Scholar] [CrossRef]
- Afonso, N.C.; Catarino, M.D.; Silva, A.; Cardoso, S.M. Brown macroalgae as valuable food ingredients. Antioxidants 2019, 8, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Hrólfsdóttir, A.Þ.; Arason, S.; Sveinsdóttir, H.I.; Gudjónsdóttir, M. Added Value of Ascophyllum nodosum Side Stream Utilization during Seaweed Meal Processing. Mar. Drugs 2022, 20, 340. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.H. Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bent grass heat tolerance. Crop Sci. 2008, 48, 364–370. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, F.; Li, J.; Wang, G.; Wu, M.; Zhan, J.; Chen, X.; Mao, Z. Effects of seaweed fertilizer on the growth of Malus hupehensis Rehd. Seedlings, soil enzyme activities and fungal communities under replant condition. Eur. J. Soil Biol. 2016, 75, 1–7. [Google Scholar] [CrossRef]
- Stirk, W.A.; Rengasamy, K.R.R.; Kulkarni, M.G.; van Staden, J. Plant Biostimulants from Seaweed. In The Chemical Biology of Plant Biostimulants; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 31–55. ISBN 978-1-119-35725-4. [Google Scholar]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef]
- Petropoulos, S.A. Practical Applications of Plant Biostimulants in Greenhouse Vegetable Crop Production. Agronomy 2020, 10, 1569. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Kisvarga, S.; Farkas, D.; Boronkay, G.; Neményi, A.; Orlóci, L. Effects of Biostimulants in Horticulture, with Emphasis on Ornamental Plant. Agronomy 2022, 12, 1043. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Vendrame, W.A. Innovation in Propagation and Cultivation of Ornamental Plants. Horticulturae 2022, 8, 229. [Google Scholar] [CrossRef]
- Monder, M.J.; Kozakiewicz, P.; Jankowska, A. Anatomical structure changes in stem cuttings of rambler roses induced with plant origin preparations. Sci. Hortic. 2019, 255, 242–254. [Google Scholar] [CrossRef]
- Pacholczak, A.; Nowakowska, K.; Mika, N.; Borkowska, M. The effect of the biostimulator Goteo on the rooting of ninebark stem cuttings. Folia Hortic. 2016, 28, 109–116. [Google Scholar] [CrossRef]
- Pacholczak, A.; Nowakowska, K. The Effect of Biostimulators and Indole-3-Butyric Acid on Rooting of Stem Cuttings of Two Ground Cover Roses. Acta Agrobot. 2020, 73, 1. [Google Scholar] [CrossRef]
- Stępowska, A. Effects of GA 142 (Goëmar Goteo) and GA 14 (Goëmar BM86) extracts on sweet pepper yield in non-heated tunnels. In Solanaceous Crops; Zbigniew, T.D., Ed.; Editorial House Wieś Jutra: Warsaw, Poland, 2008; p. 45. [Google Scholar]
- Francke, A.; Majkowska-Gadomska, J.; Kaliniewicz, Z.; Jadwisieńczak, K. No Effect of Biostimulants on the Growth, Yield and Nutritional Value of Shallots Grown for Bunch Harvest. Agronomy 2022, 12, 1156. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Kowalczyk, K.; Nowecka, M.; Mazur, K.; Metera, A. Effect of organic-mineral fertilizers on the yield and quality of endive (Cichorium endivia L.). Acta Sci. Pol. Hortorum Cultus 2012, 11, 189–200. [Google Scholar]
- Matysiak, K.; Kaczmarek, S.; Kierzek, R.; Kardasz, P. Effect of seaweeds extracts and humic and fulvic acids on the germination and early growth of winter oilseed rape (Brassica napus L.). J. Agric. Eng. Res. 2010, 55, 28–32. [Google Scholar]
- Giannoccaro, E.; Wang, Y.J.; Chen, P. Effects of solvent, temperature, time, solvent-to-sample ratio, sample size, and defatting on the extraction of soluble sugars in soybean. J. Food Sci. 2006, 71, C59–C64. [Google Scholar] [CrossRef]
- Van der Hoeven, R.A.M.; Tjaden, U.R.; Van der Greef, J.; Van Casteren, W.H.M.; Schols, H.A.; Voragen, A.G.J.; Bruggink, C. Recent progress in high-performance anion-exchange chromatography/ionspray mass spectrometry for molecular mass determination and characterization of carbohydrates using static and scanning array detection. J. Mass Spectrom. 1998, 33, 377–386. [Google Scholar] [CrossRef]
- Oh, S.; Kim, D.-Y. Characterization, Antioxidant Activities, and Functional Properties of Mucilage Extracted from Corchorus olitorius L. Polymers 2022, 14, 2488. [Google Scholar] [CrossRef] [PubMed]
- Feldsine, P.; Abeyta, C.; Andrews, W.H.; AOAC International Methods Committee. AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. J. AOAC Int. 2002, 85, 1187–1200. [Google Scholar] [CrossRef]
- Damodaran, S.; Strader, L.C. Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Front. Plant Sci. 2019, 10, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikhian, L.; Bina, S. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent. J. Chromatogr. B 2016, 1009, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Nasri, F.; Fadakar, A.; Saba, M.K.; Yousefi, B. Study of indole butyric acid (IBA) effects on cutting rooting improving some of wild genotypes of damask roses (Rosa damascena Mill.). J. Agric. Sci. 2015, 60, 263–275. [Google Scholar] [CrossRef]
- Otiende, M.A.; Nyabundi, J.O.; Ngamau, K.; Opala, P. Effects of cutting position of rose rootstock cultivars on rooting and its relationship with mineral nutrient content and endogenous carbohydrates. Sci. Hortic. 2017, 225, 204–212. [Google Scholar] [CrossRef]
- Kapczyńska, A.; Kowalska, I.; Prokopiuk, B.; Pawłowska, B. Rooting Media and Biostimulator Goteo Treatment effect the adventitious root formation of Pennisetum ‘Vertigo’cuttings and the Quality of the Final Product. Agriculture 2020, 10, 570. [Google Scholar] [CrossRef]
- Alam, M.Z.; Braun, G.; Norrie, J.; Hodges, D.M. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can. J. Plant Sci. 2013, 93, 23–36. [Google Scholar] [CrossRef]
- Rayorath, P.; Jithesh, M.N.; Farid, A.; Khan, W.; Palanisamy, R.; Hankinset, S.D.; Critchleyal, A.T.; Prithiviraj, B. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. Using a model plant, Arabidopsis thaliana (L.) Heynh. J. Appl. Phycol. 2008, 20, 423–429. [Google Scholar] [CrossRef]
- Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef]
- Pacholczak, A.; Szydło, W.; Jacygrad, E.; Federowicz, M. Effect of auxins and the biostimulator AlgaminoPlant on rhizogenesis in stem cuttings of two dogwood cultivars (Cornus alba ‘Aurea’ and ‘Elegantissima’). Acta Sci. Pol. Hortorum Cultus 2012, 11, 93–103. [Google Scholar]
- Abd-Elkader, D.Y.; Mohamed, A.A.; Feleafel, M.N.; Al-Huqail, A.A.; Salem, M.Z.; Ali, H.M.; Hassan, H.S. Photosynthetic Pigments and Biochemical Response of Zucchini (Cucurbita pepo L.) to Plant-Derived Extracts, Microbial, and Potassium Silicate as Biostimulants Under Greenhouse Conditions. Front. Plant Sci. 2022, 13, 879545. [Google Scholar] [CrossRef] [PubMed]
- Izadi, Z.; Rezaei Nejad, A.; Abadía, J. Iron Chelate Improves Rooting in Indole-3-Butyric Acid-Treated Rosemary (Ros-marinus officinalis) Stem Cuttings. Agriculture 2022, 12, 210. [Google Scholar] [CrossRef]
- Lötze, E.; Hoffman, E.W. Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. J. Appl. Phycol. 2016, 28, 1379–1386. [Google Scholar] [CrossRef]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Toscano, S.; Ferrante, A.; Branca, F.; Romano, D. Enhancing the Quality of Two Species of Baby Leaves Sprayed with Moringa Leaf Extract as Biostimulant. Agronomy 2021, 11, 1399. [Google Scholar] [CrossRef]
- Traversari, S.; Cacini, S.; Nesi, B. Seaweed Extracts as Substitutes of Synthetic Hormones for Rooting Promotion in Rose Cuttings. Horticulturae 2022, 8, 561. [Google Scholar] [CrossRef]
- Mali, M.J.; Pacholczak, A. Preparations of plant origin enhance carbohydrate content in plant tissues of rooted cuttings of rambler roses: Rosa beggeriana ‘Polstjärnan’and Rosa helenae ‘Semiplena’. Acta Agric. Scand. Sect. B-Plant Soil Sci. 2018, 68, 189–198. [Google Scholar] [CrossRef]
- Monder, M.J.; Pacholczak, A. Rhizogenesis and concentration of carbohydrates in cuttings harvested at different phenological stages of once-blooming rose shrubs and treated with rooting stimulants. Biol. Agric. Hortic. 2020, 36, 53–70. [Google Scholar] [CrossRef]
- Zorb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture–status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef]
- Ahkami, A.H.; Lischewski, S.; Haensch, K.T.; Porfirova, S.; Hofmann, J.; Rolletschek, H.; Hajirezaei, M.R. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: Involvement of wound response and primary metabolism. New Phytol. 2009, 181, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.M.; Mao, J.; Li, S.; Li, K.; Liu, Y.; Shao, Y.; Zhang, X. Insights into Factors Controlling Adventitious Root Formation in Apples. Horticulturae 2022, 8, 276. [Google Scholar] [CrossRef]
- Druege, U. Involvement of carbohydrates in survival and adventitious root formation of cuttings within the scope of global horticulture. In Adventitious Root Formation of Forest Trees and Horticultural Plants—From Genes to Applications; Niemi, K., Ed.; Research Signpost: Thiruvananthapuram, India, 2009; pp. 187–208. [Google Scholar]
- Lohr, D.; Tillmann, P.; Druege, U.; Zerche, S.; Rath, T.; Meinken, E. Non-destructive determination of carbohydrate reserves in leaves of ornamental cuttings by near-infrared spectroscopy (NIRS) as a key indicator for quality assessments. Biosyst. Eng. 2017, 158, 51–63. [Google Scholar] [CrossRef]
- Li, M.; Leung, D.W.M. Starch accumulation is associated with adventitious root formation in hypocotyl cuttings of Pinus radiata. J. Plant Growth Regul. 2000, 19, 423–428. [Google Scholar] [CrossRef]
- Nowakowska, K.; Pacholczak, A. Effect of the biopreparation “Goteo” on rooting of Hydrangea stem cuttings (Hydrangea paniculate siebold Limelight and Vanille Freise®Renhy). Propag. Ornam. Plants 2017, 17, 126–133. [Google Scholar]
- Malik, A.; Mor, V.S.; Tokas, J.; Punia, H.; Malik, S.; Malik, K.; Sangwan, S.; Tomar, S.; Singh, P.; Singh, N.; et al. Biostimulant-Treated Seedlings under Sustainable Agriculture: A Global Perspective Facing Climate Change. Agronomy 2021, 11, 14. [Google Scholar] [CrossRef]
- Lisowska, A.; Filipek-Mazur, B.; Komorowska, M.; Niemiec, M.; Bar-Michalczyk, D.; Kuboń, M.; Tabor, S.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; et al. Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials. Materials 2022, 15, 3387. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Michalak, I.; Dmytryk, A.; Gramza, M.; Słowiński, A.; Górecki, H. Algal extracts as plant growth biostimulants. In Marine Algae Extracts: Processes, Products, and Applications; Kim, K., Chojnacka, K., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 189–212. [Google Scholar] [CrossRef]
TMTS | Rooting Percentage (%) | Roots per Cutting (No.) | ||
---|---|---|---|---|
S1 | S2 | S1 | S2 | |
C0 | 80.7 ± 2.9 b | 93.3 ± 2.1 a | 9.2 ± 0.6 c | 6.9 ± 0.2 c |
IBA | 91.7 ± 0.9 a | 93.9 ± 2.1 a | 10.4 ± 0.3 bc | 9.8 ± 0.3 a |
GC1 | 89.6 ± 0.7a | 92.3 ± 1.5 a | 10.8 ± 0.4 bc | 10.7 ± 0.4 a |
GC2 | 86.7 ± 3.4 ab | 90.7 ± 1.8 a | 12.3 ± 0.5 b | 9.3 ± 0.4 a |
GC3 | 87.3 ± 1.7 ab | 90.1 ± 3.8 a | 15.7 ± 0.9 a | 7.3 ± 0.5 bc |
TMTS | Leaves per Cutting (No.) | Leaf Area per Cutting (cm2) | Chlorophyll Index (SPAD) | |||
---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | |
C0 | 4.7 ± 0.3 b | 12.3 ± 0.7 b | 6.4 ± 0.6 b | 13.4 ± 0.7 c | 323 ± 15 b | 343 ± 20 b |
IBA | 5.0 ± 0.2 b | 12.2 ± 0.3 b | 7.2 ± 0.4 b | 15.8 ± 0.3 b | 328 ± 15 b | 386 ± 17 b |
GC1 | 6.7 ± 0.1 a | 14.2 ± 0.3 a | 6.8 ± 0.5 b | 18.4 ± 0.3 a | 352 ± 19 a | 442 ± 35 a |
GC2 | 7.4 ± 0.1 a | 15.1 ± 0.2 a | 9.2 ± 0.9 b | 18.8 ± 0.3 a | 336 ± 12 a | 458 ± 7 a |
GC3 | 8.1 ± 0.1 a | 13.8 ± 0.3 a | 11.7 ± 0.9 a | 16.9 ± 1.0 a | 342 ± 8 a | 420 ± 9 ab |
TMTS | Dry Weight per Cutting (g) | |||
---|---|---|---|---|
Above-Ground | Ground | |||
S1 | S2 | S1 | S2 | |
C0 | 0.091 ± 0.007 b | 0.145 ± 0.012 b | 0.031 ± 0.003 c | 0.030 ± 0.001 b |
IBA | 0.084 ± 0.009 b | 0.143 ± 0.012 b | 0.041 ± 0.003 bc | 0.033 ± 0.003 b |
GC1 | 0.111 ± 0.015 ab | 0.180 ± 0.009 ab | 0.044 ± 0.003 bc | 0.045 ± 0.003 ab |
GC2 | 0.120 ± 0.012 ab | 0.201 ± 0.011 a | 0.062 ± 0.010 ab | 0.053 ± 0.001 a |
GC3 | 0.141 ± 0.014 a | 0.174 ± 0.009 b | 0.080 ± 0.003 a | 0.032 ± 0.003 b |
TMTS | Root | |||||
---|---|---|---|---|---|---|
Length (mm) | Surface Area (mm2) | Diameter (mm) | ||||
S1 | S2 | S1 | S2 | S1 | S2 | |
C0 | 370 ± 23 c | 166 ± 16 b | 60 ± 5 c | 25 ± 3 c | 0.52 ± 0.01 b | 0.48 ± 0.03 a |
IBA | 649 ± 38 b | 391 ± 5 a | 96 ± 6 b | 67 ± 5 a | 0.49 ± 0.02 b | 0.52 ± 0.06 a |
GC1 | 794 ± 53 a | 396 ± 5 a | 125 ± 10 a | 70 ± 3 a | 0.51 ± 0.03 b | 0.56 ± 0.03 a |
GC2 | 810 ± 41 a | 336 ± 24 a | 148 ± 9 a | 61 ± 3 a | 0.60 ± 0.01 a | 0.55 ± 0.01 a |
GC3 | 874 ± 29 a | 244 ± 38 b | 150 ± 7 a | 42 ± 2 b | 0.56 ± 0.02 ab | 0.50 ± 0.02 a |
TMTS | Root | |||||
---|---|---|---|---|---|---|
Tips (No.) | Forks (No.) | Crossings (No.) | ||||
S1 | S2 | S1 | S2 | S1 | S2 | |
C0 | 45 ± 2 d | 32 ± 3 c | 197 ± 4 d | 79 ± 3 c | 30 ± 3 c | 13 ± 1 c |
IBA | 97 ± 6 c | 73 ± 3 a | 430 ± 11 c | 239 ± 4 a | 81 ± 1 b | 38 ± 1 a |
GC1 | 114 ± 5 b | 68 ± 9 a | 477 ± 14 c | 242 ± 11 a | 83 ± 3 b | 38 ± 1 a |
GC2 | 116 ± 6 b | 37 ± 3 c | 613 ± 35 b | 136 ± 3 b | 84 ± 4 b | 23 ± 2 b |
GC3 | 137 ± 5 a | 53 ± 2 b | 694 ± 16 a | 128 ± 5 b | 106 ± 2 a | 19 ± 1 b |
TMTS | Starch | Glucose | Fructose | |||
---|---|---|---|---|---|---|
(mg g−1 Dry Weight—d.w.) | ||||||
S1 | S2 | S1 | S2 | S1 | S2 | |
C0 | 2.43 ± 0.26 b | 6.93 ± 0.03 b | 0.193 ± 0.014 b | 0.682 ± 0.031 c | 0.154 ± 0.009 b | 0.527 ± 0.035 c |
IBA | 3.36 ± 0.03 a | 6.23 ± 0.17 c | 0.231 ± 0.002 a | 0.517 ± 0.012 d | 0.176 ± 0.002 a | 0.515 ± 0.021 c |
GC1 | 3.03 ± 0.09 a | 7.30 ± 0.06 a | 0.216 ± 0.005 a | 0.995 ± 0.034 a | 0.180 ± 0.005 a | 0.753 ± 0.012 a |
GC2 | 3.00 ± 0.11 a | 7.40 ± 0.01 a | 0.199 ± 0.004 b | 1.090 ± 0.030 a | 0.169 ± 0.003 b | 0.794 ± 0.024 a |
GC3 | 3.13 ± 0.03 a | 6.90 ± 0.06 b | 0.170 ± 0.002 c | 0.913 ± 0.023 b | 0.137 ± 0.003 c | 0.703 ± 0.013 b |
TMTS | Sucrose | Total Carbohydrates | ||
---|---|---|---|---|
(mg g−1 Dry Weight—d.w.) | ||||
S1 | S2 | S1 | S2 | |
C0 | 0.014 ± 0.001 b | 0.088 ± 0.009 c | 2.792 ± 0.290 b | 8.232 ± 0.033 b |
IBA | 0.018 ± 0.001 a | 0.052 ± 0.001 d | 3.785 ± 0.033 a | 7.314 ± 0.208 c |
GC1 | 0.019 ± 0.001 a | 0.112 ± 0.007 b | 3.445 ± 0.066 a | 9.201 ± 0.057 a |
GC2 | 0.018 ± 0.001 a | 0.130 ± 0.003 b | 3.386 ± 0.115 a | 9.414 ± 0.057 a |
GC3 | 0.018 ± 0.001 a | 0.580 ± 0.015 a | 3.455 ± 0.033 a | 9.096 ± 0.058 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loconsole, D.; Cristiano, G.; De Lucia, B. Improving Aerial and Root Quality Traits of Two Landscaping Shrubs Stem Cuttings by Applying a Commercial Brown Seaweed Extract. Horticulturae 2022, 8, 806. https://doi.org/10.3390/horticulturae8090806
Loconsole D, Cristiano G, De Lucia B. Improving Aerial and Root Quality Traits of Two Landscaping Shrubs Stem Cuttings by Applying a Commercial Brown Seaweed Extract. Horticulturae. 2022; 8(9):806. https://doi.org/10.3390/horticulturae8090806
Chicago/Turabian StyleLoconsole, Danilo, Giuseppe Cristiano, and Barbara De Lucia. 2022. "Improving Aerial and Root Quality Traits of Two Landscaping Shrubs Stem Cuttings by Applying a Commercial Brown Seaweed Extract" Horticulturae 8, no. 9: 806. https://doi.org/10.3390/horticulturae8090806
APA StyleLoconsole, D., Cristiano, G., & De Lucia, B. (2022). Improving Aerial and Root Quality Traits of Two Landscaping Shrubs Stem Cuttings by Applying a Commercial Brown Seaweed Extract. Horticulturae, 8(9), 806. https://doi.org/10.3390/horticulturae8090806