Comparative Transcriptome Analysis Reveals Changes in Gene Expression Associated with Anthocyanin Metabolism in Begonia semperflorens under Light Conditions
Abstract
:1. Introduction
2. Methods
2.1. Plant Material and Treatment
2.2. Sequencing and De Novo Splicing
2.3. Database Annotation and Unigene Expression Analysis
2.4. Quantitative RT-PCR
2.5. Anthocyanin Quantification
3. Results
3.1. Anthocyanin Quantification, RNA-Seq, and Sequence Assembly
3.2. Transcriptome Functional Annotation
3.3. Differentially Expressed Gene Analysis
3.3.1. GO Enrichment Analysis of DEGs
3.3.2. KEGG Enrichment Analysis of DEGs
3.4. Analysis of DEGs Involved in Flavonoid Biosynthesis
3.5. Transcription Factor Database Annotation
3.6. Transcriptome Data Were Verified via qRT-PCR
4. Discussion
4.1. Anthocyanin Was Induced by Light Conditions
4.2. High Light Affects the Expression of Transcription Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, Y.; Li, M.; Dai, S. Ectopic expression of multiple chrysanthemum (Chrysanthemum × morifolium) R2R3-MYB transcription factor genes regulates anthocyanin accumulation in tobacco. Genes 2019, 10, 777. [Google Scholar] [CrossRef]
- Naing, A.; Park, K.; Ai, T.; Chung, M.; Han, J.; Kang, Y.; Lim, K.; Kim, C. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance. BMC Plant Biol. 2017, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, S.; Wang, Y.; Wang, Y.; Song, A.; Jiang, J.; Chen, S.; Guan, Z.; Chen, F. CmMYB3-like negatively regulates anthocyanin biosynthesis and flower color formation during the post-flowering stage in Chrysanthemum morifolium. Hortic. Plant J. 2023, 10, 194–204. [Google Scholar] [CrossRef]
- Qi, F.; Liu, Y.; Luo, Y.; Cui, Y.; Lu, C.; Li, H.; Huang, H.; Dai, S. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. Hortic. Res. 2022, 9, uhac071. [Google Scholar] [CrossRef]
- Zhao, D.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Liu, S.; Lu, Z.; Pang, S.; Wang, L.; Wang, L.; Li, W. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants 2020, 9, 1162. [Google Scholar] [CrossRef]
- Mao, D.; Zhong, L.; Zhao, X.; Wang, L. Function, biosynthesis, and regulation mechanisms of flavonoids in Ginkgo biloba. Fruit Res. 2023, 3, 18. [Google Scholar] [CrossRef]
- Harborne, J.; Williams, C. Advances in avonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Dixon, R.; Achnine, L.; Kota, P.; Liu, C.; Reddy, M.; Wang, L. The phenylpropanoid pathway and plant defence—A genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [Google Scholar] [CrossRef]
- Grunewald, W.; De Smet, I.; Lewis, D.; Löfke, C.; Jansen, L.; Goeminne, G.; Vanden Bossche, R.; Karimi, M.; De Rybel, B.; Vanholme, B.; et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc. Natl. Acad. Sci. USA 2012, 109, 1554–1559. [Google Scholar] [CrossRef]
- Grotewold, E.; Sainz, M.; Tagliani, L.; Hernandez, J.; Bowen, B.; Chandler, V. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc. Natl. Acad. Sci. USA 2000, 97, 13579–13584. [Google Scholar] [CrossRef] [PubMed]
- Bi, M.; Liang, R.; Wang, J.; Qu, Y.; Liu, X.; Cao, Y.; He, G.; Yang, Y.; Yang, P.; Xu, L.; et al. Multifaceted roles of LhWRKY44 in promoting anthocyanin accumulation in Asiatic hybrid lilies (Lilium spp.). Hortic. Res. 2023, 10, uhad167. [Google Scholar] [CrossRef] [PubMed]
- Sarma, A.; Sharma, R. Anthocyanin-DNA copigmentation complex: Mutual protection against oxidative damage. Phytochemistry 1999, 52, 1313–1318. [Google Scholar] [CrossRef]
- Debeaujon, I.; Léon-Kloosterziel, K.; Koornneef, M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000, 122, 403–413. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Giusti, M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, H.; Jiang, X.; Zhang, L.; Qin, Y. Integrated physiological, transcriptomic, and metabolomic analyses reveal that low-nitrogen conditions improve the accumulation of flavonoids in snow chrysanthemum. Ind. Crops Prod. 2023, 197, 116574. [Google Scholar] [CrossRef]
- Song, A.; Su, J.; Wang, H.; Zhang, Z.; Zhang, X.; Van de Peer, Y.; Chen, F.; Fang, W.; Guan, Z.; Zhang, F.; et al. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum. Nat. Commun. 2023, 14, 2021. [Google Scholar] [CrossRef]
- Dong, Y.; Qu, Y.; Qi, R.; Bai, X.; Tian, G.; Wang, Y.; Wang, J.; Zhang, K. Transcriptome analysis of the biosynthesis of anthocyanins in Begonia semperflorens under low-temperature and high-light conditions. Forests 2018, 9, 87. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, J.; Guo, M.; Du, W.; Wu, R.; Wang, X. Short-day signals are crucial for the induction of anthocyanin biosynthesis in Begonia semperflorens under low temperature condition. J. Plant Physiol. 2016, 204, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, A.; Zhang, X.; Huang, S. Effects of shading on some morphological and physiologycal characteristics of Begonial semperflorens. Pak. J. Bot. 2018, 50, 2173–2179. [Google Scholar]
- Grabherr, M.; Haas, B.; Yassour, M.; Levin, J.; Thompson, D.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jaroszewski, L.; Godzik, A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 2001, 17, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, B.; Chao, X.; Daniel, H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar]
- Jaina, M.; Finn, R.; Eddy, S.; Bateman, A.; Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013, 41, e121. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A. Ambiguous Fragment Assignment for High-Throughput Sequencing Experiments; University of California: Berkeley, CA, USA, 2013. [Google Scholar]
- Roberts, A.; Trapnell, C.; Donaghey, J.; Rinn, J.; Pachter, L. Improving RNA-seq expression estimates by correcting for fragment bias. Genome Biol. 2011, 12, R22. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential Expression of RNA-Seq Data at the Gene Level-the DESeq Package; European Molecular Biology Laboratory: Heidelberg, Germany, 2012. [Google Scholar]
- Thomas, S.; Liva, K. Analysis of relative gene expression data using RT-qPCR. Methods 2001, 25, 402–408. [Google Scholar]
- Mita, S.; Murano, N.; Akaike, M.; Nakamura, K. Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J. 2010, 11, 841–851. [Google Scholar] [CrossRef]
- Bolger, A.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Love, M.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wei, W.; Fan, Z.; Chen, J.; You, Y.; Huang, W.; Zhan, J. VabHLH137 promotes proanthocyanidin and anthocyanin biosynthesis and enhances resistance to Colletotrichum gloeosporioides in grapevine. Hortic. Res. 2023, 10, uhac261. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Hori, W.; Hosokawa, M.; Tatsuzawa, F.; Doi, M. Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) ‘Yuino’. Planta 2018, 247, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Zhou, F.; Li, W.; Yu, Y.; Guan, Z.; Zhang, B.; Guo, W. The R2R3-MYB transcription factor GaPC controls petal coloration in cotton. Crop J. 2023, 11, 1319–1330. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Li, Y.; Li, Y.; Kong, D.; Wu, R. Carbohydrate accumulation may be the proximate trigger of anthocyanin biosynthesis under autumn conditions in Begonia semperflorens. Plant Biol. 2013, 15, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhang, R.; Jiang, S.; Wang, H.; Ming, F. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Hortic. Res. 2023, 10, uhad080. [Google Scholar] [CrossRef] [PubMed]
- Javed, T.; Gao, S. WRKY transcription factors in plant defense. Trends Genet. 2023, 39, 787–801. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Mao, Z.; Liu, W.; Ding, L.; Zhang, X.; Yang, Y.; Wu, S.; Chen, X.; Wang, Y. Transcription factor McWRKY71 induced by ozone stress regulates anthocyanin and proanthocyanidin biosynthesis in Malus crabapple. Ecotoxicol. Environ. Saf. 2022, 232, 113274. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, K.; Jiang, C.; Zhou, D.; Lin, Y.; Pan, S.; Espley, R.; Ye, X. Postharvest temperature and light treatments induce anthocyanin accumulation in peel of ‘Akihime’ plum (Prunus salicina Lindl.) via transcription factor PsMYB10.1. Postharvest Biol. Technol. 2021, 179, 111592. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, J.; Lin, S.; Li, M.; Liu, J.; Raymond, O.; Vergne, P.; Kong, W.; Wu, Q.; Zhang, X.; et al. Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. Bot. Rev. 2023, 74, 5783–5804. [Google Scholar] [CrossRef]
Sample | Raw_Reads | Raw_Bases | Clean_Reads | Clean_Bases | Valid_Bases | Q30 | GC |
---|---|---|---|---|---|---|---|
SJHT01 | 49,777,226 | 7,466,583,900 | 48,004,270 | 6,990,744,218 | 93.63% | 94.40% | 46.57% |
SJHT02 | 49,522,814 | 7,428,422,100 | 47,590,320 | 6,923,035,939 | 93.20% | 94.13% | 46.62% |
SJHT03 | 49,863,826 | 7,479,573,900 | 47,936,466 | 6,967,194,631 | 93.15% | 94.15% | 46.63% |
SJHT04 | 49,828,304 | 7,474,245,600 | 48,213,482 | 7,020,997,231 | 93.94% | 94.72% | 46.58% |
SJHT05 | 49,100,084 | 7,365,012,600 | 47,345,236 | 6,871,630,987 | 93.30% | 94.43% | 46.35% |
SJHT06 | 49,157,100 | 7,373,565,000 | 47,370,798 | 6,876,938,189 | 93.26% | 94.35% | 46.21% |
SJHT07 | 49,563,616 | 7,434,542,400 | 47,804,554 | 6,944,073,974 | 93.40% | 94.45% | 47.48% |
SJHT08 | 49,606,990 | 7,441,048,500 | 47,810,836 | 6,952,011,668 | 93.43% | 94.40% | 47.44% |
SJHT09 | 49,281,318 | 7,392,197,700 | 47,370,676 | 6,890,183,691 | 93.21% | 94.24% | 47.13% |
Term/Sample | SJHT01 | SJHT02 | SJHT03 | SJHT04 | SJHT05 | SJHT06 | SJHT07 | SJHT08 | SJHT09 |
---|---|---|---|---|---|---|---|---|---|
Total reads | 48,004,270 (100.00%) | 47,590,320 (100.00%) | 47,936,466 (100.00%) | 48,213,482 (100.00%) | 47,345,236 (100.00%) | 47,370,798 (100.00%) | 47,804,554 (100.00%) | 47,810,836 (100.00%) | 47,370,676 (100.00%) |
Total mapped reads | 41,984,877 (87.46%) | 41,550,401 (87.31%) | 41,907,962 (87.42%) | 41,832,385 (86.76%) | 41,286,182 (87.20%) | 41,353,105 (87.30%) | 41,068,040 (85.91%) | 41,291,670 (86.36%) | 40,733,631 (85.99%) |
Multiple mapped | 11,293,504 (23.53%) | 10,918,104 (22.94%) | 11,014,508 (22.98%) | 10,837,352 (22.48%) | 10,429,495 (22.03%) | 10,401,779 (21.96%) | 10,774,523 (22.54%) | 10,746,716 (22.48%) | 10,275,731 (21.69%) |
Uniquely mapped | 30,691,373 (63.93%) | 30,632,297 (64.37%) | 30,893,454 (64.45%) | 30,995,033 (64.29%) | 30,856,687 (65.17%) | 30,951,326 (65.34%) | 30,293,517 (63.37%) | 30,544,954 (63.89%) | 30,457,900 (64.30%) |
Reads mapped in proper pairs | 38,922,888 (81.08%) | 38,559,570 (81.02%) | 38,869,636 (81.09%) | 38,862,724 (80.61%) | 38,360,006 (81.02%) | 38,436,858 (81.14%) | 37,948,358 (79.38%) | 38,199,484 (79.90%) | 37,668,310 (79.52%) |
Database | Annotated Number | Percentage (%) |
---|---|---|
NR | 31,197 | 72.49 |
Swiss-Prot | 24,591 | 57.14 |
KEGG | 12,096 | 28.11 |
KOG | 18,309 | 42.54 |
eggNOG | 30,226 | 70.23 |
GO | 22,489 | 52.25 |
Pfam | 41 | 0.10 |
Gene_Id | HS_75–vs–TL_100 | LS_25–vs–HS_75 | LS_25–vs–TL_100 | Annotation |
---|---|---|---|---|
TRINITY_DN17817_c0_g1_i3_2 | Up | Up | Up | WRKY70 |
TRINITY_DN18363_c1_g1_i1_2 | Up | Up | Up | CRF6 |
TRINITY_DN19191_c0_g1_i3_2 | Up | Up | Up | WRKY-like |
TRINITY_DN19457_c0_g3_i1_2 | Up | Up | Up | F3′H |
TRINITY_DN20076_c0_g1_i1_2 | Up | Up | Up | MYB102 |
TRINITY_DN20148_c0_g1_i1_2 | Up | Up | Up | ERF2 |
TRINITY_DN20316_c0_g1_i4_1 | Up | Up | Up | WRKY40 |
TRINITY_DN21459_c0_g1_i15_2 | Up | Up | Up | WRKY40 |
TRINITY_DN2235_c0_g1_i1_1 | Up | Up | Up | WRKY76 |
TRINITY_DN24643_c0_g1_i2_2 | Up | Up | Up | WRKY53 |
TRINITY_DN5558_c0_g1_i1_3 | Up | Up | Up | WRKY70 |
TRINITY_DN14802_c0_g1_i1_3 | Down | Down | Down | AP1 |
TRINITY_DN18676_c0_g2_i2_3 | Down | Down | Down | SWEET1 |
TRINITY_DN19032_c0_g1_i1_3 | Down | Down | Down | ATHB12 |
TRINITY_DN20561_c0_g1_i2_3 | Down | Down | Down | HSP20-like |
TRINITY_DN24640_c0_g3_i1_3 | Down | Down | Down | HSP-like |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Liu, A.; Zhang, Y.; Liu, W.; Zhao, Z.; Yang, S. Comparative Transcriptome Analysis Reveals Changes in Gene Expression Associated with Anthocyanin Metabolism in Begonia semperflorens under Light Conditions. Horticulturae 2024, 10, 96. https://doi.org/10.3390/horticulturae10010096
Zhao K, Liu A, Zhang Y, Liu W, Zhao Z, Yang S. Comparative Transcriptome Analysis Reveals Changes in Gene Expression Associated with Anthocyanin Metabolism in Begonia semperflorens under Light Conditions. Horticulturae. 2024; 10(1):96. https://doi.org/10.3390/horticulturae10010096
Chicago/Turabian StyleZhao, Kunkun, Airong Liu, Yuanbing Zhang, Weixin Liu, Zhimin Zhao, and Shuyue Yang. 2024. "Comparative Transcriptome Analysis Reveals Changes in Gene Expression Associated with Anthocyanin Metabolism in Begonia semperflorens under Light Conditions" Horticulturae 10, no. 1: 96. https://doi.org/10.3390/horticulturae10010096
APA StyleZhao, K., Liu, A., Zhang, Y., Liu, W., Zhao, Z., & Yang, S. (2024). Comparative Transcriptome Analysis Reveals Changes in Gene Expression Associated with Anthocyanin Metabolism in Begonia semperflorens under Light Conditions. Horticulturae, 10(1), 96. https://doi.org/10.3390/horticulturae10010096