Genome-Wide Identification of the Light-Harvesting Chlorophyll a/b Binding Protein Gene Family in Pyrus bretschneideri and Their Transcriptomic Features under Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome Wide Identification of PbrLhc in P. bretschneideri
2.2. Gene Sequence Alignment and Phylogenetic Relationships Analysis
2.3. Prediction Analysis of Chromosome Distribution, Subcellular Localization, and Gene Structure
2.4. Cis-Element Analysis of the Promoter Region and Signal Peptide Prediction
2.5. Collinearity Analysis and Expression Pattern Analysis
3. Results
3.1. Identification of PbLhc Genes
3.2. Characteristics of PbrLhc Genes
3.3. Phylogenetic Analysis of PbrLhc Proteins
3.4. Gene Structure Analysis of PbrLhc Genes
3.5. Promoter Elements and Conserved Motifs Analysis of PbrLhc Genes
3.6. Subcellular Localization and Signal Peptide Prediction of PbrLhc Proteins
3.7. Expression Pattern Analysis of PbrLhc Genes
3.8. Collinearity Analysis of PbrLhc Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirilovsky, D.; Büchel, C. Chapter Nine. Evolution and function of light-harvesting antenna in oxygenic photosynthesis. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2019; Volume 91, pp. 247–293. [Google Scholar]
- Wang, P.; Grimm, B. Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends Plant Sci. 2021, 26, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Yang, J. Genomics analysis of the light-harvesting chlorophyll a/b-binding (Lhc) superfamily in cassava (Manihot esculenta Crantz). Gene 2019, 702, 171–181. [Google Scholar] [CrossRef]
- Jansson, S. A guide to the Lhc genes and their relatives in Arabidopsis/IT>. Trends Plant Sci. 1999, 4, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Pietrzykowska, M.; Suorsa, M.; Semchonok, D.A.; Tikkanen, M.; Boekema, E.J.; Aro, E.M.; Jansson, S. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell. 2014, 26, 3646–3660. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Ning, Z.; Bai, G.; Li, R.; Yan, G.; Siddique, K.H.; Baum, M.; Guo, P. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1) associated with agronomic traits in barley. PLoS ONE 2012, 7, e37573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Senoura, T.; Yang, X.; Chao, Y.; Nishizawa, N.K. Lhcb2 gene expression analysis in two ecotypes of Sedum alfredii subjected to Zn/Cd treatments with functional analysis of SaLhcb2 isolated from a Zn/Cd hyperaccumulator. Biotechnol. Lett. 2011, 33, 1865–1871. [Google Scholar] [CrossRef]
- Xu, Y.H.; Liu, R.; Yan, L.; Liu, Z.Q.; Jiang, S.C.; Shen, Y.Y.; Wang, X.F.; Zhang, D.P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J. Exp. Bot. 2012, 63, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.E.; Ma, J.; Wu, N.; Su, Y.Q.; Zhang, Z.W.; Yuan, M.; Zhang, H.Y.; Zeng, X.Y.; Yuan, S. The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions. Plant Physiol. Biochem. 2018, 130, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.S.; Kong, F.Y.; Zhou, B.; Zhang, S.; Yue, M.M.; Meng, Q.W. Heterology expression of the tomato LeLhcb2 gene confers elevated tolerance to chilling stress in transgenic tobacco. Plant Physiol. Biochem. 2014, 80, 318–327. [Google Scholar] [CrossRef]
- Wang, S.; Song, Z.; Sun, Z.; Zhang, J.; Mei, Y.; Nian, H.; Li, K.; Chen, L. Effects of formaldehyde stress on physiological characteristics and gene expression associated with photosynthesis in Arabidopsis thaliana. Plant Mol. Biol. Rep. 2012, 30, 1291–1302. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, H.; Luo, J.; Wang, H.; Dong, Q.; Wang, Y.; Yang, K.; Mao, K.; Ma, F. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress. Plant Physiol. Biochem. 2020, 154, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Lamesch, P.; Berardini, T.Z.; Li, D.H.; Swarbreck, D.; Wilks, C.; Sasidharan, R.; Muller, R.; Dreher, K.; Alexander, D.L.; Garcia-Hernandez, M.; et al. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2012, 40, D1202–D1210. [Google Scholar] [CrossRef] [PubMed]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the Expasy server. In The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005; Volume 52, pp. 571–607. ISSN 1064-3745. [Google Scholar]
- Hung, J.H.; Weng, Z.P. Sequence alignment and homology search with BLAST and ClustalW. Cold Spring Harb. Protoc. 2016, 2016, pdb-prot093088. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. Tbtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 9. [Google Scholar] [CrossRef]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Yi Chuan = Hered. 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MeMe: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34, W369–W373. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Yang, D.C.; Meng, Y.Q.; Jin, J.; Gao, G. Plantregmap: Charting functional regulatory maps in plants. Nucleic Acids Res. 2019, 48, D1104–D1113. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, J.D.; Nielsen, H.; von Heijne, G.; Brunak, S.S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef]
- Wang, Y.P.; Tang, H.B.; Debary, J.D.; Tan, X.; Li, J.P.; Wang, X.Y.; Lee, T.H.; Jin, H.Z.; Marler, B.; Guo, H.; et al. Mcscanx: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Yang, S.; Bai, M.; Hao, G.; Guo, H.; Fu, B. Transcriptomics analysis of field-droughted pear (Pyrus spp.) reveals potential drought stress genes and metabolic pathways. PeerJ 2022, 10, e12921. [Google Scholar] [CrossRef] [PubMed]
- Umate, P. Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in Arabidopsis and rice. Plant Signal. Behav. 2010, 5, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Klimmek, F.; Sjödin, A.; Noutsos, C.; Leister, D.; Jansson, S. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol. 2006, 140, 793–804. [Google Scholar] [CrossRef]
- Kong, F.; Zhou, Y.; Sun, P.; Cao, M.; Li, H.; Mao, Y. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions. J. Ocean Univ. China 2016, 15, 152–162. [Google Scholar] [CrossRef]
- Zou, Z.; Huang, Q.; An, F. Genome-wide identification, classification and expression analysis of Lhc supergene family in castor bean (Ricinus communis L.). Agric. Biotechnol. 2013, 2, 44. [Google Scholar]
Name | Gene ID | Protein Number | Position | Number of Transcripts | CDS_num |
---|---|---|---|---|---|
PbrLhca1.2 | LOC103926626 | XP_018497900.1 | NW_008988401.1:8383-9921 | 1 | 4 |
PbrLhcb3.2 | LOC103927393 | XP_009334588.1 | NW_008988422.1:124117-125654 | 1 | 3 |
PbrLhca6 | LOC103929687 | NP_001289223.1 | NW_008988490.1:111701-113341 | 1 | 5 |
PbrLhca3 | LOC103931352 | XP_009339094.1 | NW_008988051.1:1569215-1570588 | 1 | 3 |
PbrLhcb3.1 | LOC103934433 | XP_009342455.1 | NW_008988686.1:173208-174807 | 1 | 3 |
PbrLhcb2.1 | LOC103935439 | XP_018500051.1 | NW_008988746.1:219242-221370 | 1 | 2 |
PbrLhcb4.1 | LOC103936594 | NP_001306737.1 | NW_008988827.1:22454-23815 | 1 | 2 |
Name | Amino Acids (No.) | Molecular wt (Da) | Isoelectric Points (pH) | Instability Index | Aliphatic Index | GRAVY |
---|---|---|---|---|---|---|
PbrLhca1.1 | 247 | 26,722.72 | 5.85 | 44.39 | 82.19 | −0.100 |
PbrLhca1.2 | 247 | 26,684.63 | 5.85 | 45.17 | 82.96 | −0.111 |
PbrLhca2 | 271 | 29,112.03 | 6.91 | 36.53 | 75.72 | −0.074 |
PbrLhca3 | 253 | 27,854.85 | 6.43 | 42.40 | 84.82 | −0.072 |
PbrLhca4 | 253 | 27,977.02 | 6.11 | 43.88 | 85.18 | −0.096 |
PbrLhca5 | 260 | 28,224.61 | 7.90 | 26.52 | 94.19 | 0.083 |
PbrLhca6 | 266 | 29,305.79 | 5.44 | 39.12 | 82.89 | −0.036 |
Protein Name | Subcellular Localization Prediction | Amino Acids (No.) | Score |
---|---|---|---|
PbrLhca1.2 | Membrane bound Chloroplast | 247 | 9.3 |
PbrLhcb3.2 | Membrane bound Chloroplast | 264 | 9.3 |
PbrLhca6 | Membrane bound Chloroplast | 266 | 9.5 |
PbrLhca3 | Membrane bound Chloroplast | 253 | 9.2 |
PbrLhcb3.1 | Membrane bound Chloroplast | 264 | 9.3 |
PbrLhcb2.1 | Membrane bound Chloroplast | 265 | 9.3 |
PbrLhcb4.1 | Membrane bound Chloroplast | 289 | 9.3 |
PbrLhcb5.2 | Membrane bound Chloroplast | 283 | 9.2 |
PbrLhca5 | Membrane bound Chloroplast | 260 | 9.5 |
PbrLhcb1.4 | Membrane bound Chloroplast | 264 | 9.3 |
PbrLhcb1.5 | Membrane bound Chloroplast | 283 | 9.3 |
PbrLhcb7.2 | Membrane bound Chloroplast | 257 | 9 |
PbrLhcb1.3 | Membrane bound Chloroplast | 265 | 9.3 |
PbrLhcb2.2 | Membrane bound Chloroplast | 287 | 9.3 |
PbrLhcb6.2 | Membrane bound Chloroplast | 290 | 9.3 |
PbrLhcb1.1 | Membrane bound Chloroplast | 265 | 9.3 |
PbrLhcb5.1 | Membrane bound Chloroplast | 246 | 9.4 |
PbrLhca4 | Membrane bound Chloroplast | 253 | 9.3 |
PbrLhcb6.1 | Membrane bound Chloroplast | 290 | 9.3 |
PbrLhca2 | Membrane bound Chloroplast | 271 | 9.3 |
PbrLhcb8 | Membrane bound Chloroplast | 347 | 8.9 |
PbrLhcb1.2 | Membrane bound Chloroplast | 265 | 9.3 |
PbrLhcb1.6 | Membrane bound Chloroplast | 267 | 9.3 |
PbrLhcb1.8 | Membrane bound Chloroplast | 267 | 9.3 |
PbrLhcb1.7 | Membrane bound Chloroplast | 267 | 9.3 |
PbrLhcb4.2 | Membrane bound Chloroplast | 286 | 9.2 |
PbrLhca1.1 | Membrane bound Chloroplast | 247 | 9.3 |
PbrLhcb7.1 | Membrane bound Chloroplast | 259 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Ran, K.; Zhao, S.; Cheng, F. Genome-Wide Identification of the Light-Harvesting Chlorophyll a/b Binding Protein Gene Family in Pyrus bretschneideri and Their Transcriptomic Features under Drought Stress. Horticulturae 2023, 9, 522. https://doi.org/10.3390/horticulturae9050522
Wu R, Ran K, Zhao S, Cheng F. Genome-Wide Identification of the Light-Harvesting Chlorophyll a/b Binding Protein Gene Family in Pyrus bretschneideri and Their Transcriptomic Features under Drought Stress. Horticulturae. 2023; 9(5):522. https://doi.org/10.3390/horticulturae9050522
Chicago/Turabian StyleWu, Ruigang, Kun Ran, Shuliang Zhao, and Fuhou Cheng. 2023. "Genome-Wide Identification of the Light-Harvesting Chlorophyll a/b Binding Protein Gene Family in Pyrus bretschneideri and Their Transcriptomic Features under Drought Stress" Horticulturae 9, no. 5: 522. https://doi.org/10.3390/horticulturae9050522
APA StyleWu, R., Ran, K., Zhao, S., & Cheng, F. (2023). Genome-Wide Identification of the Light-Harvesting Chlorophyll a/b Binding Protein Gene Family in Pyrus bretschneideri and Their Transcriptomic Features under Drought Stress. Horticulturae, 9(5), 522. https://doi.org/10.3390/horticulturae9050522