Apricot (Prunus armeniaca) Performance under Foliar Application of Humic Acid, Brassinosteroids, and Seaweed Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Vegetative Parameters
2.3. Fruit Set and Yield
2.4. Fruit Quality
2.4.1. Fruit Physical Characteristics
2.4.2. Fruit Chemical Characteristics
2.5. Mineral Content in Apricot Leaves
2.6. Statistical Analysis
3. Results
3.1. Vegetative Growth Parameters
3.2. Fruit Set Percentage, and Yield
3.3. Fruit Quality
3.3.1. Physical Fruit Characteristics
3.3.2. Fruit Chemical Characteristics
3.4. Leaf Mineral Content of Macro- and Micronutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fatima, T.; Bashir, O.; Gani, G.; Bhat, T.; Jan, N. Nutritional and health benefits of apricots. Int. J. Unani. Integ. Med. 2018, 2, 5–9. [Google Scholar]
- Savci, S. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Lv, F.; Song, J.; Giltrap, D.; Feng, Y.; Yang, X.; Zhang, S. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci. Total Environ. 2020, 732, 139321. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xiao, T.; Ning, Z.; Xiao, E.; Sun, W. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Appl. Microbiol. Biotechnol. 2015, 99, 2911–2922. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Ju, X.; Chang, J.; Ge, Y.; Vitousek, P. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. USA 2015, 112, 8792–8797. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Xue, B.; Li, R.; Geng, Y.; Yang, T.; Li, Y.; Dong, H.; Luo, Z.; Tao, W. Emergy-based indicators of the environmental impacts and driving forces of non-point source pollution from crop production in China. Ecol. Indic. 2021, 121, 107023. [Google Scholar] [CrossRef]
- Yang, G.; Tang, H.; Nie, Y.; Zhang, X. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur. J. Agron. 2011, 35, 164–170. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Schlegel, A.J. Implications of inorganic fertilization of irrigated corn on soil properties: Lessons learned after 50 years. J. Environ. Qual. 2013, 42, 861–871. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant biostimulant regulatory framework: Prospects in Europe and current situation at international level. J. Plant Growth Regul. 2019, 38, 438–448. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 1–12. [Google Scholar] [CrossRef]
- Suhail, F.M. Effect of mycorrhizal fungi inoculation and seaweed extract spray on some growth characters and yield of cucumber (Cucumis sativus L.). J. Genet. Environ. Resour. 2013, 1, 209–214. [Google Scholar]
- Olk, D.C.; Dinnes, D.L.; Rene Scoresby, J.; Callaway, C.R.; Darlington, J.W. Humic products in agriculture: Potential benefits and research challenges—A review. J. Soils Sediments 2018, 18, 2881–2891. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Nikbakht, A.; Kafi, M.; Babalar, M.; Xia, Y.P.; Luo, A.; Etemadi, N.-a. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. J. Plant Nut. 2008, 31, 2155–2167. [Google Scholar] [CrossRef]
- De Melo, B.; Motta, F.; Santana, M. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C. 2016, 62, 967–974. [Google Scholar] [CrossRef]
- Chen, J.P.; Wu, S. Simultaneous adsorption of copper ions and humic acid onto an activated carbon. J. Colloid Interface Sci. 2004, 280, 334–342. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 2014, 1, 3. [Google Scholar] [CrossRef]
- Nardi, S.; Tosoni, M.; Pizzeghello, D.; Provenzano, M.; Cilenti, A.; Sturaro, A.; Rella, R.; Vianello, A. Chemical characteristics and biological activity of organic substances extracted from soils by root exudates. Soil Sci. Soc. Am. J. 2005, 69, 2012–2019. [Google Scholar] [CrossRef]
- Cavalcante, I.; Silva-Matos, R.; Albano, F.; Silva Junior, G.; Silva, A.; Costa, L. Foliar spray of humic substances on seedling production of yellow passion fruit. J. Food Agric. Environ. 2013, 11, 301–304. [Google Scholar] [CrossRef]
- Unterholzner, S.J.; Rozhon, W.; Papacek, M.; Ciomas, J.; Lange, T.; Kugler, K.G.; Mayer, K.F.; Sieberer, T.; Poppenberger, B. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 2015, 27, 2261–2272. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Han, Z.; Chai, J. What are brassinosteroids and how do they act in plants? BMC Biol. 2016, 14, 13. [Google Scholar] [CrossRef]
- Wei, Z.; Li, J. Brassinosteroids regulate root growth, development, and symbiosis. Mol. Plant 2016, 9, 86–100. [Google Scholar] [CrossRef]
- Karlidag, H.; Yildirim, E.; Turan, M. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × Ananassa). Sci. Hortic. 2011, 130, 133–140. [Google Scholar] [CrossRef]
- Derevyanchuk, M.; Litvinovskaya, R.; Khripach, V.; Kravets, V. Brassinosteroid-induced de novo protein synthesis in Zea mays under salinity and bioinformatic approach for identification of heat shock proteins. Plant Growth Regul. 2016, 78, 297–305. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Colla, G.; Fiorentino, N.; Sabatino, L.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cirillo, V.; Shabani, E. Appraisal of combined applications of Trichoderma virens and a biopolymer-based biostimulant on lettuce agronomical, physiological, and qualitative properties under variable N regimes. Agronomy 2020, 10, 196. [Google Scholar] [CrossRef]
- Coll, Y.; Coll, F.; Amorós, A.; Pujol, M. Brassinosteroids roles and applications: An up-date. Biologia 2015, 70, 726–732. [Google Scholar] [CrossRef]
- Ali, B. Practical applications of brassinosteroids in horticulture-some field perspectives. Sci. Hortic. 2017, 225, 15–21. [Google Scholar] [CrossRef]
- Gomes, M.M.A. Physiological effects related to brassinosteroid application in plants. In Brassinosteroids: A Class of Plant Hormone; Hayat, S., Ahmad, A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 193–242. [Google Scholar]
- Sharma, M.; Irfan, M.; Kumar, A.; Kumar, P.; Datta, A. Recent insights into plant circadian clock response against abiotic stress. J. Plant Growth Reg. 2022, 41, 3530–3543. [Google Scholar] [CrossRef]
- Nolan, T.M.; Vukašinović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 2020, 32, 295–318. [Google Scholar] [CrossRef]
- Caño-Delgado, A.; Yin, Y.; Yu, C.; Vafeados, D.; Mora-García, S.; Cheng, J.-C.; Nam, K.H.; Li, J.; Chory, J. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 2004, 131, 5341–5351. [Google Scholar] [CrossRef]
- Khan, A.S.; Ahmad, B.; Jaskani, M.J.; Ahmad, R.; Malik, A.U. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol. 2012, 14, 383–388. [Google Scholar]
- Zhang, X.; Ervin, E. Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci. 2008, 48, 364–370. [Google Scholar] [CrossRef]
- Norrie, J.; Keathley, J. Benefits of ascophyllum nodosum marine-plant extract applications to Thompson Seedless grape production. Acta Hortic. 2005, 727, 243–248. [Google Scholar] [CrossRef]
- Mosa, W.F.; Sas-Paszt, L.; Górnik, K.; Ali, H.M.; Salem, M.Z. Vegetative growth, yield, and fruit quality of guava (Psidium guajava L.) cv. Maamoura as affected by some biostimulants. Bioresources 2021, 16, 7379–7399. [Google Scholar] [CrossRef]
- Harhash, M.; Abd EL_Megeed, N.; Abaidalah, A.; Mosa, W. Effect of the foliar spraying of fulvic acid, folic acid, and seaweed extract on vegetative growth, yield and fruit quality of grape cv. flame seedless. Plant Arch. 2021, 21, 482–492. [Google Scholar]
- Mosa, W.F.; Sas-Paszt, L.; Głuszek, S.; Górnik, K.; Anjum, M.A.; Saleh, A.A.; Abada, H.S.; Awad, R.M. Effect of some biostimulants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple. Horticulturae 2023, 9, 32. [Google Scholar] [CrossRef]
- Prasad, K.; Das, A.K.; Oza, M.D.; Brahmbhatt, H.; Siddhanta, A.K.; Meena, R.; Eswaran, K.; Rajyaguru, M.R.; Ghosh, P.K. Detection and quantification of some plant growth regulators in a seaweed-based foliar spray employing a mass spectrometric technique sans chromatographic separation. J. Agric. Food Chem. 2010, 58, 4594–4601. [Google Scholar] [CrossRef]
- Parikh, S.J. Introduction to soil chemistry: Analysis and instrumentation. Soil Sci. Soc. Am. J. 2014, 78, 1828. [Google Scholar] [CrossRef]
- Yadava, U.L. A rapid and nondestructive method to determine chlorophyll in intact leaves. Hort. Sci. 1986, 21, 1449–1450. [Google Scholar] [CrossRef]
- Demirsoy, H. Leaf area estimation in some species of fruit tree by using models as a non-destructive method. Fruits 2009, 64, 45–51. [Google Scholar] [CrossRef]
- Magness, J.R.; Taylor, G.F. An Improved Type of Pressure Tester for the Determination of Fruit Maturity; United States Department of Agriculture: Washington, DC, USA, 1925; p. 1982.
- Association of Official Agricultural Chemists, A. Official Methods of Analysis of the Association of Analytical Chemists International; Association of Official Agricultural Chemists (AOAC): Gaithersburg, MD, USA, 2005. [Google Scholar]
- Nielsen, S.S. Vitamin C Determination by Indophenol Method. In Food Analysis Laboratory Manual; Springer International Publishing: Cham, Switzerland, 2017; pp. 143–146. [Google Scholar]
- Nielsen, S.S. (Ed.) Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual; Springer: Boston, MA, USA, 2010; pp. 47–53. [Google Scholar] [CrossRef]
- Arrobas, M.; Afonso, S.; Rodrigues, M.Â. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by Kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry. Plant Methods 2022, 18, 22. [Google Scholar] [CrossRef]
- Asch, J.; Johnson, K.; Mondal, S.; Asch, F. Comprehensive assessment of extraction methods for plant tissue samples for determining sodium and potassium via flame photometer and chloride via automated flow analysis. J. Plant. Nutr. Soil Sci. 2022, 185, 308–316. [Google Scholar] [CrossRef]
- Stafilov, T.; Karadjova, I. Atomic absorption spectrometry in wine analysis. Maced. J. Chem. Chem. Eng. 2009, 28, 17–31. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; Iowa State University Press: Ames, IA, USA, 1990; p. 507. [Google Scholar]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.; Santacruz-Ruvalcaba, F.; Zañudo-Hernández, J.; Hernández-Carmona, G. Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. J. Appl. Phycol. 2016, 28, 2549–2560. [Google Scholar] [CrossRef]
- Billard, V.; Etienne, P.; Jannin, L.; Garnica, M.; Cruz, F.; Garcia-Mina, J.-M.; Yvin, J.-C.; Ourry, A. Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). J. Plant Growth Regul. 2014, 33, 305–316. [Google Scholar] [CrossRef]
- Conselvan, G.; Pizzeghello, D.; Francioso, O.; Di Foggia, M.; Nardi, S.; Carletti, P. Biostimulant activity of humic substances extracted from leonardites. Plant Soil 2017, 420, 119–134. [Google Scholar] [CrossRef]
- Aslam, M.; Sultana, B.; Anwar, F.; Munir, H. Foliar spray of selected plant growth regulators affected the biochemical and antioxidant attributes of spinach in a field experiment. Turk. J. Agric. For. 2016, 40, 136–145. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 2004, 44, 1737–1745. [Google Scholar] [CrossRef]
- Atiyeh, R.; Lee, S.; Edwards, C.; Arancon, N.; Metzger, J. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour. Technol. 2002, 84, 7–14. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, A.; Sánchez-Andreu, J.; Juárez, M.; Jordá, J.; Bermúdez, D. Improvement of iron uptake in table grape by addition of humic substances. J. Plant Nutr. 2006, 29, 259–272. [Google Scholar] [CrossRef]
- Ferrara, G.; Brunetti, G. Influence of foliar applications of humic acids on yield and fruit quality of table grape cv. Itália. J. Int. Sci. Vigne Vin 2008, 42, 79–87. [Google Scholar] [CrossRef]
- Mohamadineia, G.; Farahi, M.H.; Dastyaran, M. Foliar and soil drench application of humic acid on yield and berry properties of ‘Askari’grapevine. Agric. Commun. 2015, 3, 21–27. [Google Scholar]
- Mosa, W.; Abd EL-Megeed, N.A.; Sas Paszt, L. The effect of the foliar application of potassium, calcium, boron and humic acid on vegetative growth, fruit set, leaf mineral, yield and fruit quality of ’Anna† apple trees. J. Exp. Agric. Int. 2015, 8, 224–234. [Google Scholar] [CrossRef]
- Harhash, M.; Saad, R.; Mosa, W. Response of “Wonderful” pomegranate cultivar to the foliar application of some biostimulants. Plant Arch. 2021, 21, 474–487. [Google Scholar]
- El-Hoseiny, H.M.; Helaly, M.N.; Elsheery, N.I.; Alam-Eldein, S.M. Humic acid and boron to minimize the incidence of alternate bearing and improve the productivity and fruit quality of mango trees. HortSci. 2020, 55, 1026–1037. [Google Scholar] [CrossRef]
- Symons, G.M.; Davies, C.; Shavrukov, Y.; Dry, I.B.; Reid, J.B.; Thomas, M.R. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 2006, 140, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Helaly, M.N.; El-Hoseiny, H.M.; Elsheery, N.I.; Kalaji, H.M.; de Los Santos-Villalobos, S.; Wróbel, J.; Hassan, I.F.; Gaballah, M.S.; Abdelrhman, L.A.; Mira, A.M. 5-aminolevulinic acid and 24-epibrassinolide improve the drought stress resilience and productivity of banana plants. Plants 2022, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Baghel, M.; Nagaraja, A.; Srivastav, M.; Meena, N.; Senthil Kumar, M.; Kumar, A.; Sharma, R. Pleiotropic influences of brassinosteroids on fruit crops: A review. Plant Growth Regul. 2019, 87, 375–388. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Mohammadkhani, N. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food Bioproc. Tech. 2014, 7, 909–914. [Google Scholar] [CrossRef]
- Upreti, K.; Murti, G. Effects of brassmosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol. Plant. 2004, 48, 407–411. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Yusuf, M.; Ahmad, I.; Ahmad, A. Brassinosteroids and their role in response of plants to abiotic stresses. Biol. Plant. 2014, 58, 9–17. [Google Scholar] [CrossRef]
- Ali, B.; Hasan, S.; Hayat, S.; Hayat, Q.; Yadav, S.; Fariduddin, Q.; Ahmad, A. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ. Exp. Bot. 2008, 62, 153–159. [Google Scholar] [CrossRef]
- Gomes, M.d.M.d.A.; Torres Netto, A.; Campostrini, E.; Bressan-Smith, R.; Zullo, M.A.T.; Ferraz, T.M.; Siqueira, L.d.N.; Leal, N.R.; Núñez-Vázquez, M. Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theor. Exp. Plant Physiol. 2013, 25, 186–195. [Google Scholar] [CrossRef]
- Bajguz, A.; Hayat, S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Gomes, M.d.M.A.; Campostrini, E.; Leal, N.R.; Viana, A.P.; Ferraz, T.M.; do Nascimento Siqueira, L.; Rosa, R.C.C.; Netto, A.T.; Nunez-Vázquez, M.; Zullo, M.A.T. Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Sci. Hortic. 2006, 110, 235–240. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, D.; Li, K.; Liu, Z.; Liu, X.; Song, C.; Li, G.; Zhao, C.; Ma, J.; Han, M. Effect of exogenous brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Plant Growth Reg. 2017, 82, 391–401. [Google Scholar] [CrossRef]
- Zheng, L.; Gao, C.; Zhao, C.; Zhang, L.; Han, M.; An, N.; Ren, X. Effects of brassinosteroid associated with auxin and gibberellin on apple tree growth and gene expression patterns. Hortic. Plant J. 2019, 5, 93–108. [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, C.; Mao, J.; Song, C.; Ma, J.; Zhang, D.; Han, M.; An, N. Genome-wide identification and expression analysis of brassinosteroid biosynthesis and metabolism genes regulating apple tree shoot and lateral root growth. J. Plant Physiol. 2018, 231, 68–85. [Google Scholar] [CrossRef]
- Seadh, S.; Attia, A.; Badawi, M.; El-Hety, S. Response of seed yield and its components of safflower to sowing dates, nitrogen fertilizer levels and times of foliar application with Milagrow. J. Biol. Sci. 2012, 12, 342–348. [Google Scholar] [CrossRef]
- Roghabadi, M.A.; Pakkish, Z. Role of brassinosteroid on yield, fruit quality and postharvest storage of ’Tak Danehe Mashhad† sweet cherry (Prunus avium L.). Agric. Commun. 2014, 2, 49–56. [Google Scholar]
- Thapliyal, V.S.; Rai, P.; Bora, L. Influence of pre-harvest application of gibberellin and brassinosteroid on fruit growth and quality characteristics of pear (Pyrus pyrifolia (Burm.) Nakai) cv. Gola. J. Appl. Nat. Sci. 2016, 8, 2305–2310. [Google Scholar] [CrossRef]
- Kumari, S.; Thakur, A. The effects of water stress and brassinosteroid on apple varieties. Int. J. Econ. Plants 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Sotomayor, C.; Mandava, N.; Mandava, S. Effects of brassinosteroids on walnut trees fruit set, nut weight and pollen germination. Acta Hortic. 2022, 1344, 115–122. [Google Scholar] [CrossRef]
- Salvi, L.; Brunetti, C.; Cataldo, E.; Niccolai, A.; Centritto, M.; Ferrini, F.; Mattii, G.B. Effects of Ascophyllum nodosum extract on Vitis vinifera: consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem. 2019, 139, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Colavita, G.; Spera, N.; Blackhall, V.; Sepulveda, G. Effect of seaweed extract on pear fruit quality and yield. Acta Hortic. 2011, 601–607. [Google Scholar] [CrossRef]
- Marrez, D.; Naguib, M.; Sultan, Y.; Daw, Z.; Higazy, A. Evaluation of chemical composition for Spirulina platensis in different culture media. Res. J. Pharm. Biol. Che. 2014, 5, 1161–1171. [Google Scholar]
- Corino, C.; Modina, S.C.; Di Giancamillo, A.; Chiapparini, S.; Rossi, R. Seaweeds in pig nutrition. Animals 2019, 9, 1126. [Google Scholar] [CrossRef]
- El-Miniawy, S.; Ragab, M.; Youssef, S.; Metwally, A. Influence of foliar spraying of seaweed extract on growth, yield and quality of strawberry plants. J. Appl. Sci. Res. 2014, 10, 88–94. [Google Scholar]
- Omar, A.; Ahmed, M.A.; Al-Saif, A.M. Influences of seaweed extract and potassium nitrate foliar application on yield and fruit quality of date palms (Phoenix dactylifera L. cv. sukary). Adv. Agric. Sci. 2017, 5, 16–22. [Google Scholar]
- De Sousa, A.; Ayub, R.; Botelho, R. Fruit set and yield of apple trees cv. Gala treated with seaweed extract of Ascophyllum nodosum and thidiazuron. Rev. Bras. Frutic. 2019, 41, e072. [Google Scholar] [CrossRef]
Clay (%) | Silt (%) | Sand (%) | Soil Texture | Sum of Bases |
---|---|---|---|---|
12.2 | 22.80 | 65 | Sandy loam | 9.33 meq/L |
pH (1 Soil:1 H2O) | EC dsm1− (1 Soil:1 H2O) | Total CaCO32− | Organic Matter | Cation exchange capacity (CEC) |
7.9 | 0.94 | 2.23% | 1.46% | 13.39 meq/100 g soil |
Available Macronutrients (g/kg soil) | ||||
N | P | K | ||
0.149 | 0.019 | 0.698 | ||
Soluble Anions (%) | ||||
HCO3− | Cl− | SO42− | ||
3.96 | 2.45 | 2.65 | ||
Soluble Cations (%) | ||||
Na+ | Mg2+ | K+ | Ca2+ | |
2.05 | 1.80 | 2.38 | 3.10 |
Months December 2020 to March 2022 | Chilling Hours during 2020–2021 | Chilling Hours during 2021–2022 | ||||
Total Hours in Season | Chilling Total Hours | Chilling % | Total Hours in Season | Chilling Total Hours | Chilling % | |
2904 | 390 | 13.43 | 2904 | 965 | 33.23 |
2021 | 2022 | |||||||
---|---|---|---|---|---|---|---|---|
Months | Average Temperature (°C) | Average Relative Humidity (%) | Precipitation (mm) | Average Wind Speed (m/s) | Average Temperature (°C) | Average Relative Humidity (%) | Precipitation (mm) | Average Wind Speed (m/s) |
January | 14.61 | 63.97 | 4.50 | 2.57 | 11.11 | 68.41 | 35.10 | 2.60 |
February | 14.60 | 64.92 | 28.80 | 2.24 | 12.74 | 67.33 | 9.10 | 2.48 |
March | 15.88 | 63.22 | 81.40 | 2.75 | 13.75 | 62.39 | 25.40 | 2.89 |
April | 19.92 | 53.97 | 0.40 | 2.98 | 22.19 | 46.60 | 0.80 | 3.16 |
May | 26.63 | 44.08 | 0.00 | 2.90 | 24.87 | 46.54 | 3.80 | 3.36 |
June | 27.74 | 47.40 | 0.00 | 3.24 | 28.85 | 48.54 | 1.40 | 3.33 |
July | 30.53 | 48.29 | 0.20 | 3.01 | 29.73 | 49.53 | 2.00 | 3.20 |
Average | 21.42 | 55.12 | 115.30 | 2.81 | 20.46 | 55.62 | 77.60 | 3.00 |
Treatments | Shoot Length (cm) | Leaf Area (cm2) | Chlorophyll Content (SPAD) | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 37.53e ±0.44 | 38.16e ±0.60 | 31.15e ±0.55 | 31.62 ±0.62 | 43.60g ±0.41 | 44.37e ±0.56 |
HA | 500 mg/L | 39.49d ±0.60 | 40.94d ±0.96 | 32.95cde ±0.25 | 33.57cd ±0.72 | 47.06ef ±0.61 | 47.93d ±0.43 |
1000 mg/L | 42.45bc ±0.87 | 43.40bc ±0.45 | 34.47bcd ±0.56 | 35.86bc ±0.18 | 48.60de ±0.90 | 50.08c ±0.89 | |
2000 mg/L | 43.42ab ±0.33 | 45.11ab ±0.65 | 37.03ab ±0.86 | 38.03ab ±0.47 | 51.64ab ±0.57 | 52.50a ±0.50 | |
Brs | 0.5 mg/L | 40.28d ±0.87 | 41.70cd ±0.59 | 32.45de ±1.05 | 33.73cd ±0.85 | 46.89ef ±0.22 | 46.37d ±0.59 |
1 mg/L | 41.25cd ±0.59 | 43.47bc ±0.31 | 35.55abc ±0.69 | 36.58ab ±0.38 | 48.97cde ±0.81 | 47.95d ±0.42 | |
2 mg/L | 43.24ab ±0.39 | 44.73ab ±0.31 | 36.55ab ±1.19 | 38.21ab ±1.15 | 50.90abc ±1.16 | 52.07ab ±1.02 | |
SWE | 1000 mg/L | 39.6d ±0.59 | 41.38d ±0.65 | 32.89cde ±0.87 | 34.24c ±0.74 | 46.26f ±0.58 | 46.89d ±0.85 |
2000 mg/L | 42.26bc ±0.89 | 44.13b ±0.97 | 35.27abc ±0.92 | 36.90ab ±0.57 | 49.83bcd ±0.90 | 50.78bc ±0.10 | |
3000 mg/L | 44.88a ±0.33 | 46.32a ±1.00 | 37.73a ±0.58 | 38.72a ±0.82 | 52.78a ±0.87 | 53.57a ±0.72 | |
LSD 0.05 | 1.70 | 182 | 2.48 | 2.17 | 2.07 | 1.60 |
Treatment | Fruit Set % | Fruit Yield/Tree (kg) | Fruit Yield/Hectare (tons) | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 20.43f ±1.01 | 21.53e ±0.88 | 36.52f ±0.74 | 38.07f ±0.70 | 21.91f ±0.44 | 22.84f ±0.42 |
HA | 500 mg/L | 22.43ef ±0.50 | 24.15de ±1.15 | 38.96de ±0.83 | 39.80ef ±0.91 | 23.37de ±0.50 | 23.88ef ±0.55 |
1000 mg/L | 25.98cd ±1.00 | 25.13cd ±0.66 | 40.96cd ±0.49 | 42.55d ±0.38 | 24.57cd ±0.29 | 25.53d ±0.23 | |
2000 mg/L | 28.95ab ±0.87 | 30.50ab ±1.42 | 43.24ab ±0.67 | 45.14abc ±0.65 | 25.95ab ±0.40 | 27.08abc ±0.39 | |
Brs | 0.5 mg/L | 23.45de ±0.61 | 23.05de ±0.65 | 38.50ef ±1.19 | 38.36ef ±1.17 | 23.10ef ±0.72 | 23.01ef ±0.70 |
1 mg/L | 25.04cde ±0.66 | 25.75cd ±0.56 | 39.78cde ±0.63 | 42.97cd ±0.47 | 23.87cde ±0.38 | 25.78cd ±0.28 | |
2 mg/L | 29.30a ±0.79 | 30.20ab ±1.02 | 43.23ab ±0.81 | 45.70ab ±0.98 | 25.94ab ±0.48 | 27.42ab ±0.59 | |
SWE | 1000 mg/L | 23.78cde ±0.74 | 24.64d ±1.18 | 38.76ef ±0.98 | 40.45e ±1.32 | 23.26e ±0.59 | 24.27e ±0.79 |
2000 mg/L | 26.45bc ±0.59 | 27.69bc ±0.57 | 41.46bc ±1.02 | 43.52bcd ±0.45 | 24.88bc ±0.61 | 26.11bcd ±0.27 | |
3000 mg/L | 31.48a ±1.18 | 32.97a ±1.17 | 43.97a ±0.93 | 46.92a ±0.76 | 26.38a ±0.56 | 28.15a ±0.46 | |
LSD 0.05 | 2.55 | 2.73 | 1.99 | 2.09 | 1.19 | 1.25 |
Treatments | Fruit Weight (g) | Fruit Size (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Firmness (Ib/inch2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 26.97d ±071 | 26.48f ±0.50 | 38.40e ±0.58 | 40.01d ±0.25 | 2.88f ±0.08 | 2.91c ±0.03 | 3.01g ±0.05 | 3.04d ±0.05 | 11.00e ±0.29 | 10.87e ±0.24 |
HA | 500 mg/L | 27.24d ±0.96 | 29.90e ±0.69 | 41.30d ±0.61 | 44.17c ±0.52 | 3.06e ±0.06 | 3.08c ±0.06 | 3.15fg ±0.03 | 3.07cd ±0.03 | 12.03cd ±0.28 | 12.40d ±0.11 |
1000 mg/L | 32.19b ±1.29 | 33.49cd ±0.60 | 46.63bc ±1.22 | 47.97b ±0.55 | 3.25d ±0.03 | 3.69b ±0.09 | 3.31ef ±0.05 | 3.25c ±0.06 | 12.11cd ±0.05 | 13.00c ±0.23 | |
2000 mg/L | 34.61ab ±0.86 | 35.40abc ±0.65 | 48.97ab ±0.60 | 48.87b ±0.64 | 3.74b ±0.04 | 3.85ab ±0.09 | 3.74b ±0.07 | 3.93a ±0.01 | 12.17bcd ±0.1 | 13.61ab ±0.01 | |
Brs | 0.5 mg/L | 27.23d ±1.20 | 30.02e ±1.29 | 40.30de ±1.23 | 43.83c ±2.32 | 2.89f ±0.03 | 3.09c ±0.06 | 3.05g ±0.06 | 3.13cd ±0.05 | 11.70de ±0.15 | 12.33d ±0.18 |
1 mg/L | 31.85bc ±0.82 | 34.84bc ±0.60 | 45.57c ±0.64 | 48.46b ±0.64 | 3.40c ±0.03 | 3.77b ±0.06 | 3.35de ±0.08 | 3.58b ±0.01 | 12.16bcd ±0.04 | 12.97c ±0.27 | |
2 mg/L | 34.97ab ±0.84 | 37.62ab ±0.90 | 48.00abc ±1.03 | 51.23ab ±0.99 | 3.91a ±0.05 | 3.85ab ±0.10 | 3.57bc ±0.06 | 3.91a ±0.01 | 12.93ab ±0.30 | 13.77a ±0.14 | |
SWE | 1000 mg/L | 29.00cd ±0.94 | 31.32de ±0.93 | 42.00d ±0.94 | 44.37c ±0.55 | 3.02e ±0.06 | 3.04c ±0.02 | 3.09g ±0.06 | 3.17d ±0.03 | 11.80d ±0.11 | 12.37d ±0.18 |
2000 mg/L | 33.53ab ±0.35 | 35.69abc ±0.60 | 46.60bc ±0.30 | 49.20b ±0.61 | 3.42c ±0.01 | 3.76b ±0.03 | 3.53cd ±0.14 | 3.61b ±0.09 | 12.13cd ±0.18 | 13.13bc ±0.13 | |
3000 mg/L | 35.4a ±0.87 | 38.14a ±1.48 | 49.80a ±0.53 | 52.98a ±1.55 | 3.97a ±0.06 | 4.04a ±0.06 | 4.00a ±0.06 | 4.00a ±0.08 | 13.07a ±0.52 | 13.87a ±0.12 | |
LSD 0.05 | 2.86 | 2.68 | 2.51 | 3.07 | 0.13 | 0.21 | 0.18 | 0.15 | 0.74 | 0.54 |
Treatments | TSS (%) | Vitamin C (mL/100 mL) | Total Acidity (%) | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 11.16e ±0.3 | 10.83d ±0.32 | 12.50f ±0.25 | 12.59d ±0.16 | 0.76a ±0.01 | 0.75a ±0.01 |
HA | 500 mg/L | 12.42d ±0.23 | 11.43d ±0.22 | 13.73de ±0.54 | 14.33bc ±0.22 | 0.68bcd ±0.01 | 0.72a ±0.01 |
1000 mg/L | 13.17bc ±0.14 | 12.13c ±0.24 | 15.13bc ±0.32 | 15.21b ±0.47 | 0.65de ±0.01 | 063b ±0.01 | |
2000 mg/L | 14.76a ±0.17 | 13.97a ±0.27 | 17.10a ±0.20 | 16.87a ±0.57 | 0.60f ±0.01 | 0.60bc ±0.02 | |
Brs | 0.5 mg/L | 11.59e ±0.30 | 11.17d ±0.30 | 13.42ef ±0.28 | 14.56bc ±0.46 | 0.70b ±0.01 | 0.70a ±0.01 |
1 mg/L | 12.72cd ±0.09 | 12.10c ±0.1 | 14.78bcd ±0.16 | 15.25b ±0.22 | 0.66bcde ±0.01 | 0.63b ±0.01 | |
2 mg/L | 14.66a ±0.11 | 13.14b ±0.18 | 16.51a ±0.38 | 16.99a ±0.50 | 0.63ef ±0.02 | 0.57c ±0.01 | |
SWE | 1000 mg/L | 12.32d ±0.24 | 11.37d ±0.12 | 14.11cde ±0.26 | 13.56cd ±0.34 | 0.70bc ±0.01 | 0.70a ±0.01 |
2000 mg/L | 13.59b ±0.35 | 12.57bc ±0.09 | 15.33b ±0.31 | 15.04b ±0.32 | 0.66cde ±0.01 | 0.61bc ±0.01 | |
3000 mg/L | 14.80a ±0.10 | 14.00a ±0.17 | 17.46a ±0.64 | 17.24a ±0.61 | 0.56g ±0.02 | 0.57c ±0.01 | |
LSD 0.05 | 0.59 | 0.64 | 1.06 | 1.25 | 0.04 | 0.04 |
Treatments | Total Sugars % | Reduced Sugars % | Nonreduced Sugars % | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 7.66f ±0.29 | 7.63f ±0.27 | 5.11f ±0.19 | 5.09f ±0.18 | 2.55f ±0.10 | 2.55f ±0.09 |
HA | 500 mg/L | 8.97de ±0.17 | 9.12d ±0.25 | 5.98de ±0.11 | 6.08d ±0.16 | 2.99de ±0.06 | 3.04d ±0.08 |
1000 mg/L | 9.48cd ±0.29 | 10.37c ±0.20 | 6.32cd ±0.19 | 6.91c ±0.13 | 3.16cd ±0.09 | 3.46c ±0.07 | |
2000 mg/L | 11.32a ±0.14 | 11.13b ±0.26 | 7.54a ±0.09 | 7.42b ±0.17 | 3.77a ±0.05 | 3.71b ±0.09 | |
Brs | 0.5 mg/L | 8.50e ±0.36 | 8.06e ±0.27 | 5.66e ±0.24 | 5.37e ±0.18 | 2.84e ±0.12 | 2.69e ±0.09 |
1 mg/L | 9.83bcd ±0.26 | 10.46c ±0.07 | 6.55bcd ±0.17 | 6.97c ±0.05 | 3.28bcd ±0.09 | 3.48c ±0.02 | |
2 mg/L | 10.38b ±0.31 | 11.32b ±0.32 | 6.92b ±0.20 | 7.55b ±0.22 | 3.46b ±0.10 | 3.77b ±0.10 | |
SWE | 1000 mg/L | 9.40cd ±0.15 | 8.35e ±0.29 | 6.27cd ±0.10 | 5.57e ±0.20 | 3.13cd ±0.05 | 2.78e ±0.10 |
2000 mg/L | 10.14bc ±0.26 | 10.59c ±0.30 | 6.76bc ±0.17 | 7.06c ±0.20 | 3.38bc ±0.09 | 3.53c ±0.10 | |
3000 mg/L | 11.44a ±0.29 | 11.83a ±0.31 | 7.62a ±0.19 | 7.89a ±0.21 | 3.82a ±0.10 | 3.94a ±0.10 | |
LSD 0.05 | 0.80 | 0.41 | 0.53 | 0.28 | 0.27 | 0.14 |
Treatments | N % | P % | K % | Ca % | Mg % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 2.28d ±0.17 | 2.40g ±0.06 | 0.33e ±0.01 | 0.34g ±0.01 | 2.19e ±0.01 | 2.26f ±0.04 | 1.62d ±0.05 | 1.73f ±0.04 | 0.60e ±0.03 | 0.64e ±0.01 |
HA | 500 mg/L | 2.64c ±0.09 | 2.67ef ±0.02 | 0.37d ±0.01 | 0.37f ±0.01 | 2.33de ±0.14 | 2.37e ±0.04 | 1.77c ±0.03 | 1.81e ±0.02 | 0.69cd ±0.02 | 0.69cd ±0.02 |
1000 mg/L | 2.68c ±0.04 | 2.79de ±0.05 | 0.41bc ±0.01 | 0.40de ±0.01 | 2.41bcd ±0.07 | 2.56cd ±0.02 | 1.88b ±0.02 | 1.91cd ±0.02 | 0.72abc ±0.01 | 0.72bcd ±0.01 | |
2000 mg/L | 2.83abc ±0.09 | 3.10ab ±0.06 | 0.44ab ±0.01 | 0.44ab ±0.01 | 2.58b ±0.06 | 2.67b ±0.05 | 2.02a ±0.02 | 2.03b ±0.02 | 0.75ab ±0.01 | 0.80a ±0.01 | |
Brs | 0.5 mg/L | 2.63c ±0.06 | 2.60f ±0.06 | 0.38cd ±0.01 | 0.38ef ±0.01 | 2.33de ±0.01 | 2.46de ±0.02 | 1.74c ±0.02 | 1.87de ±0.01 | 0.66cd ±0.01 | 0.68cde ±0.01 |
1 mg/L | 2.80bc ±0.06 | 2.99bc ±0.07 | 0.40cd ±0.01 | 0.41cd ±0.01 | 2.58b ±0.01 | 2.63bc ±0.05 | 1.87b ±0.03 | 1.97bc ±0.01 | 0.68cd ±0.02 | 0.73bc ±0.02 | |
2 mg/L | 3.00ab ±0.06 | 3.10ab ±0.06 | 0.41bc ±0.01 | 0.43abc ±0.01 | 2.77a ±0.01 | 2.68b ±0.03 | 2.01a ±0.02 | 2.03b ±0.02 | 0.74ab ±0.02 | 0.77ab ±0.01 | |
SWE | 1000 mg/L | 2.65c ±0.03 | 2.72def ±0.06 | 0.38cd ±0.01 | 0.37f ±0.01 | 2.38cd ±0.04 | 2.42e ±0.02 | 1.79c ±0.02 | 1.87de ±0.01 | 0.65d ±0.01 | 0.67de ±0.02 |
2000 mg/L | 2.80bc ±0.03 | 2.88cd ±0.06 | 0.41bc ±0.01 | 0.43bc ±0.01 | 2.54bc ±0.11 | 2.63bc ±0.05 | 1.88b ±0.01 | 1.99b ±0.01 | 0.70bcd ±0.1 | 0.75ab ±0.02 | |
3000 mg/L | 3.06a ±0.03 | 3.20a ±0.02 | 0.45a ±0.01 | 0.45a ±0.01 | 2.81a ±0.04 | 2.80a ±0.02 | 2.08a ±0.01 | 2.11a ±0.02 | 0.77a ±0.01 | 0.80a ±0.02 | |
LSD 0.05 | 0.24 | 0.16 | 0.03 | 0.02 | 0.16 | 0.10 | 0.08 | 0.07 | 0.05 | 0.05 |
Treatments | Fe ppm | Zn ppm | Mn ppm | ||||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Control | 0 | 100.4d ±1.25 | 102.07e ±0.93 | 20.21e ±1.16 | 22.43d ±0.91 | 31.52d ±0.64 | 31.63e ±1.02 |
HA | 500 mg/L | 104.33c ± 1.03 | 105.63cde ±1.29 | 23.28cd ±1.46 | 24.12cd ±0.79 | 34.54c ±0.84 | 34.06de ±0.89 |
1000 mg/L | 108.37b ±0.32 | 108.67bcd ±2.24 | 27.51b ±0.60 | 26.67c ±0.63 | 37.74b ±0.44 | 39.25bc ±0.89 | |
2000 mg/L | 110.7b ±1.10 | 111.83ab ±0.78 | 30.30a ±0.26 | 31.09b ±1.43 | 40.48a ±0.97 | 41.79ab ±0.54 | |
Brs | 0.5 mg/L | 103.07c ±0.12 | 104.67de ±1.41 | 22.10de ±0.98 | 23.27d ±0.99 | 34.82c ±0.49 | 34.48d ±0.88 |
1 mg/L | 105.43c ±0.47 | 106.57cde ±2.14 | 25.39bc ±0.32 | 26.48c ±0.91 | 38.92ab ±1.14 | 38.27c ±0.32 | |
2 mg/L | 108.60b ±0.98 | 113.47ab ±1.91 | 30.80a ±1.16 | 29.38b ±1.39 | 39.72ab ±0.82 | 42.04ab ±0.92 | |
SWE | 1000 mg/L | 104.4c ±0.93 | 106.03cde ±0.77 | 22.01de ±0.95 | 23.65d ±0.87 | 34.64c ±0.61 | 34.84d ±0.88 |
2000 mg/L | 110.6b ±1.36 | 110.63bc ±1.47 | 26.94b ±0.86 | 26.70c ±0.40 | 37.37b ±0.89 | 39.19bc ±1.20 | |
3000 mg/L | 114.07a ±1.07 | 116.40a ±104 | 32.32a ±1.05 | 34.14a ±1.11 | 41.52a ±1.19 | 43.31a ±0.25 | |
LSD 0.05 | 2.58 | 4.55 | 2.40 | 2.45 | 2.50 | 2.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saif, A.M.; Sas-Paszt, L.; Awad, R.M.; Mosa, W.F.A. Apricot (Prunus armeniaca) Performance under Foliar Application of Humic Acid, Brassinosteroids, and Seaweed Extract. Horticulturae 2023, 9, 519. https://doi.org/10.3390/horticulturae9040519
Al-Saif AM, Sas-Paszt L, Awad RM, Mosa WFA. Apricot (Prunus armeniaca) Performance under Foliar Application of Humic Acid, Brassinosteroids, and Seaweed Extract. Horticulturae. 2023; 9(4):519. https://doi.org/10.3390/horticulturae9040519
Chicago/Turabian StyleAl-Saif, Adel M., Lidia Sas-Paszt, Rehab M. Awad, and Walid F. A. Mosa. 2023. "Apricot (Prunus armeniaca) Performance under Foliar Application of Humic Acid, Brassinosteroids, and Seaweed Extract" Horticulturae 9, no. 4: 519. https://doi.org/10.3390/horticulturae9040519
APA StyleAl-Saif, A. M., Sas-Paszt, L., Awad, R. M., & Mosa, W. F. A. (2023). Apricot (Prunus armeniaca) Performance under Foliar Application of Humic Acid, Brassinosteroids, and Seaweed Extract. Horticulturae, 9(4), 519. https://doi.org/10.3390/horticulturae9040519