Physical Properties of the Canary Islands’ Volcanic Pyroclastic Materials as Horticultural Substrates
Abstract
:1. Introduction
2. Materials and Methods
- Coarse tephras, normally obtained by classification through sieving and eliminating fine materials; intended mainly as aggregate for public works.
- Fine tephras or “sands”, obtained by sieving eliminating coarse materials or crushing and intended for lightweight concrete block production.
- Intermediate or “mixed up” tephras as dug from the quarry without any classification or handling process.
3. Results and Discussion
3.1. Particle Size Distribution
3.2. Air–Water Relations
3.3. Correlations between Granulometry and Air–Water Relations
- AFP = 0.4288 CI–0.6013; R= 0.523 (p > 0.001).
- EAW = 26.350–0.246 CI; R= 0.723 (p > 0.001).
- AW = 31.899–0.297 CI; R=0.728 (p > 0.001).
3.4. Air–Water Estimates for the Materials Recovered at La Palma
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raviv, M.; Wallach, R.; Blom, T.J. The effect of physical properties of soilless media on plant performance. A review. Acta Hortic. 2004, 644, 251–259. [Google Scholar] [CrossRef]
- Handreck, K.A. Particle size and the physical properties of growing media for containers. Comm. Soil Sci. Plant Anal. 1983, 14, 209–222. [Google Scholar]
- Milks, R.R.; Fonteno, W.F.; Larsons, R.A. Hydrology of horticultural substrates: I. Mathematical models for moisture characteristics of horticultural container media. J. Am. Soc. Hortic. 1989, 114, 48–52. [Google Scholar] [CrossRef]
- Richards, D.M.; Lane, M.; Beardsell, D.W. The influence of particle size distribution in pinebark:sand:brown coal potting mixes on water supply aeration and plant growth. Sci. Hortic. 1986, 29, 1–14. [Google Scholar] [CrossRef]
- Drzal, M.S.; Fonteno, W.C.; Cassel, D.K. Pore fraction analysis: A new tool for substrate testing. Acta Hortic. 1999, 481, 43–54. [Google Scholar] [CrossRef]
- Gizas, G.; Savvas, D. Particle size and hydraulic properties of pumice affect growth and yield of greenhouse crops in soilless culture. HortScience 2007, 42, 1274–1280. [Google Scholar]
- Al-Ajlouni, M.G.; Ayad, J.Y.; Othman, Y.A. Particle size of volcanic tuffs improves shoot growth and flower quality of Asiatic hybrid lily using soilless culture. Hortechnolgy 2017, 27, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Flores, E.; Abel, S.; Nehls, T. Water retention characteristics of coarse porous materials to construct purpose-designed plant growing media. Soil Sci. Plant Nutr. 2018, 64, 181–189. [Google Scholar]
- Blesa, A.C.; Luque, A. Contribución al estudio de los lapillis volcánicos de las islas Canarias para su utilización en los cultivos hidropónicos: 1: Estudio general y de las propiedades físicas y químicas. An. Edafol. Agrobiol. 1972, 31, 583–599. [Google Scholar]
- Luque, A. Physical and physicochemical properties of the volcanic materials used in hydroponics. Acta Hortic. 1981, 126, 51–56. [Google Scholar]
- Cid, M.C.; Díaz, M.A.; Mansito, P.; Socorro, A.R. Recirculación en cultivo sin suelo de rosal en Canarias. In Recirculación en Cultivos sin Suelo; Marfá, O., Ed.; Ediciones de Horticultura: Reus, Spain, 2000; pp. 81–90. [Google Scholar]
- Papadopoulos, A.P.; Bar-Tal, A.; Silber, A.; Saha, U.K.; Raviv, M. Inorganic and synthetic organic components of soilless culture and potting mixes. In Soiless Culture. Theory and Practice; Raviv, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 505–544. [Google Scholar]
- Feigin, A.; Dasberg, S.; Singer, A. Rose culture in scoria. Acta Hortic. 1980, 99, 131–138. [Google Scholar] [CrossRef]
- Ünver, I.; Ataman, Y.; Munsuz, N. Water retention characteristics of some substrates used in Turkey. Acta Hortic. 1983, 150, 161–167. [Google Scholar] [CrossRef]
- Lemaire, F.; Dartigues, A.; Riviere, L.M.; Charpentier, S. Cultures en Pots et Conteneurs; INRA: Paris, France, 1989. [Google Scholar]
- Vargas, P.; Castellanos, J.; Muñoz, J.; Sánchez, P.; Tijerina, L.; López, R.; Martínez, C.; Ojodeagua, J.L. Efecto del tamaño de partícula sobre algunas propiedades físicas del tezontle de Guanajuato, México. Agric. Técnica México 2008, 34, 323–331. [Google Scholar]
- Ross, J. Hydroponic Tomato Production; Casper Publishing: Narrabeen, Australia, 1998; 207p. [Google Scholar]
- León, D.W.E. Evaluación Ambiental de la Producción del Cultivo de Tomate (Lycopersicum esculentum Mill.) Bajo Condiciones Protegidas en Las Palmas de Gran Canaria, España, Mediante la Utilización de la Metodología del Análisis del Ciclo de Vida (ACV) 2007–2009. Ph.D. Thesis, Universidad Autónoma de Barcelona, Barcelona, Spain, 2009. [Google Scholar]
- Raviv, M. Substrate’s end-of-life: Environmental and horticultural considerations. Acta Hortic. 2016, 1112, 281–290. [Google Scholar] [CrossRef]
- Rodriguez, J.; Díaz, D.; Rodríguez, E.; Díaz, C. Physico-chemical changes during ripening of conventionally, ecologically and hydroponically cultivated Tyrlain (T10016) tomatoes. Int. J. Agric. Res. 2006, 1, 453–461. [Google Scholar]
- Blesa, A.C.; Luque, A.C. Contribución al estudio de los lapillis volcánicos de las islas Canarias para su utilización en los cultivos hidropónicos: 2: Tratamiento con soluciones nutritivas. An. Edafol. Agrobiol. 1976, 35, 1079–1091. [Google Scholar]
- Luque, A. Retention of ions in volcanic sand used in hydroponic cultures. Acta Hortic. 1981, 126, 57–61. [Google Scholar]
- Cid, M.C.; Socorro, A.R.; Zieslin, N. Changes in nutrient solution caused by volcanic cinder media of soilless greenhouse roses in the Canary Islands. Acta Hortic. 1996, 423, 107–110. [Google Scholar]
- Hernández, C.D.; Socorro, A.R.; Cid, M.C.; Santos, B.; Ríos, D. Effects of preplant phosphoric acid treatment on P retention of tuffs of Canary Islands. Acta Hortic. 2005, 697, 499–503. [Google Scholar] [CrossRef]
- Caballero, M.; Mansito, P.; Zieslin, N.; Rodrigo, J.; Melián, J.; Renz, O. Water use and crop productivity of roses growing on volvanic lapilli (picon) in Canary Island. Acta Hortic. 1996, 450, 41–44. [Google Scholar] [CrossRef]
- Bech, J.; Abelló, N.; Longan, L.; Andrés, J. Some physical and chemical properties of volcanic tuff from Olot (Girona, Spain). Acta Hortic. 1983, 150, 169–173. [Google Scholar] [CrossRef]
- Wallach, R.; Da Silva, F.F.; Chen, Y. Hydraulic characteristics of tuff (scoria) used as a container medium. J. Am. Soc. Hortic. Sci. 1992, 117, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Raviv, M.; Wallach, R.; Silber, A.; Medina, S.; Krasnovsky, A. The effect of hydraulic characteristics of volcanic materials on yield of roses grown in soiless culture. J. Am. Soc. Hortic. Sci. 1999, 124, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Longpré, M.A. Reactivation of Cumbre Vieja volcano. Science 2021, 374, 1197–1198. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Díaz, R.; Zumbado, M.; Bernal, M.M.; Acosta, A.; Macías, A.; Travieso, M.M.; Rial, C.; Henríquez, L.A.; Boada, L.D.; et al. Impact of chemical elements released by the volcanic eruption of La Palma (Canary Islands, Spain) on banana agriculture and europan consumers. Chemosphere 2022, 293, 133508. [Google Scholar] [CrossRef] [PubMed]
- Blake, G.R.; Hartge, K.H. Particle density. In Methods of Soil Analysis. Part I.: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; ASA SSSA: Madison, WI, USA, 1986; Volume 3, pp. 377–382. [Google Scholar]
- Boodt, M.d.; Verdonck, O.; Cappaert, I. A method for measuring the water release curve of organic substrates. Acta Hortic. 1974, 37, 2054–2062. [Google Scholar] [CrossRef]
- Genuchten, M.T.V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Wallach, R. Physical characteristics of soilless media. In Soilless Culture. Theory and Practice, 1st ed.; Raviv, M., Lieth, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 41–116. [Google Scholar]
- Galin, T.; Singer, A. Changes in tuff lapilli from the Golan Heights resulting from their use as growth medium. Soil. Cult. 1988, 4, 3–22. [Google Scholar]
- Trejo, L.; Ramirez, M.; Gómez, F.C.; García, J.C.; Baca, G.A.; Tejeda, O. Physical and chemical evaluation of volcanic rocks and its use for tulip production. Rev. Mex. Cienc. Agric. Pub. Esp. 2013, 5, 863–876. [Google Scholar]
- Anicua, R.; Gutiérrez, M.C.; Sánchez, P. Physical and micromorphological properties of organic and inorganic materials for preparing growing media. Acta Hortic. 2008, 779, 577–582. [Google Scholar] [CrossRef]
- Abad, M.; Fornes, F.; Carrón, C.; Noguera, V.; Noguera, P.; Maqueira, A.; Puchades, R. Physical properties of various coconut coir dusts compared to peat. HortScience 2005, 40, 2138–2144. [Google Scholar] [CrossRef] [Green Version]
- Bunt, A.C. Media and Mixes for Container Grown Plants; Unwyn Hyman: London, UK, 1988; 309p. [Google Scholar]
- Prasad, M.; Chualain, D.N. Relationship between particle size and air space in growing media. Acta Hortic. 2004, 648, 161–166. [Google Scholar] [CrossRef]
Type | θs | θr | α | n | R |
---|---|---|---|---|---|
Coarse | 53.5 | 3.778 | 0.0042 | 1.308 | 0.994 |
Intermediate | 46.7 | 5.405 | 0.1373 | 1.510 | 0.981 |
Fine | 50.3 | 2.958 | 0.7846 | 1.622 | 0.998 |
Sample | CI | Pe | AFP | EAW | WBC | UW |
---|---|---|---|---|---|---|
% (Weight) | % (Vol.) | % (Vol.) | ||||
Coarse Tephras | ||||||
P2 | 100 | 50.0 | 38.7 | 1.50 | 0.22 | 9.61 |
P32 | 99 | 57.7 | 48.1 | 2.58 | 0.63 | 6.47 |
P13 | 98 | 52.0 | 39.2 | 4.13 | 0.90 | 7.71 |
P14 | 98 | 52.5 | 40.3 | 3.03 | 0.55 | 8.63 |
P18 | 98 | 60.8 | 49.0 | 2.48 | 0.77 | 7.65 |
P27 | 97 | 52.0 | 37.8 | 2.79 | 0.46 | 10.93 |
P19 | 95 | 53.3 | 36.5 | 5.31 | 1.99 | 9.53 |
P15 | 94 | 50.4 | 39.8 | 3.95 | 1.05 | 5.54 |
P5 | 93 | 52.5 | 52.2 | 2.82 | 0.40 | 8.21 |
P7 | 93 | 63.7 | 39.9 | 4.42 | 0.74 | 9.26 |
P1 | 93 | 54.3 | 43.4 | 0.64 | 0.14 | 8.27 |
P4 | 92 | 56.9 | 45.8 | 3.35 | 0.83 | 6.02 |
P31 | 92 | 52.5 | 43.0 | 2.28 | 0.51 | 6.74 |
P3 | 90 | 55.3 | 44.8 | 3.84 | 0.96 | 5.69 |
P12 | 90 | 48.3 | 37.6 | 2.66 | 0.69 | 7.36 |
Intermediate tephras | ||||||
P29 | 85 | 47.6 | 30.5 | 6.24 | 1.80 | 8.26 |
P20 | 82 | 46.0 | 25.1 | 12.71 | 1.57 | 6.30 |
P10 | 80 | 43.5 | 28.9 | 3.89 | 1.22 | 9.57 |
P30 | 80 | 39.7 | 11.8 | 14.32 | 2.28 | 11.30 |
P26 | 78 | 47.9 | 28.2 | 6.82 | 0.89 | 13.42 |
P21 | 76 | 50.4 | 41.1 | 2.59 | 0.55 | 6.22 |
P28 | 75 | 45.0 | 23.7 | 7.04 | 2.36 | 11.90 |
P6 | 74 | 45.4 | 24.7 | 4.58 | 0.78 | 15.62 |
P23 | 74 | 50.7 | 32.7 | 8.79 | 1.02 | 9.17 |
P24 | 74 | 46.3 | 25.8 | 8.55 | 1.38 | 10.86 |
P22 | 73 | 46.5 | 29.9 | 5.80 | 1.21 | 9.56 |
P11 | 71 | 52.3 | 37.9 | 5.69 | 0.89 | 8.05 |
P25 | 66 | 49.0 | 32.1 | 7.90 | 1.45 | 7.59 |
Fine tephras | ||||||
P8 | 53 | 41.7 | 29.9 | 11.65 | 2.25 | 13.89 |
P9 | 55 | 54.4 | 10.3 | 16.12 | 4.32 | 13.82 |
P16 | 30 | 55.7 | 19.5 | 20.96 | 5.16 | 9.86 |
P17 | 26 | 49.5 | 12.1 | 21.21 | 3.05 | 13.14 |
Type | Pe | AFP | EAW | WBC |
---|---|---|---|---|
% (Vol.) | ||||
Coarse | 54.1 | 43.0 | 3.1 | 0.7 |
Intermediate | 47.0 | 28.6 | 7.3 | 1.3 |
Fine | 50.0 | 17.9 | 17.5 | 3.7 |
Red tuff (RTB) 0–8 mm [27] | 58.7 | 38.7 | 7.5 | 1.3 |
Tezontle 0–3 mm [36]. | 56.6 | 44.4 | 2.9 | 7.8 |
Pumice 0–8 mm [6] | 53.0 | 19.7 | 4.8 | 1.5 |
Property | CI | Grain Fractions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
>16 | 16–8 | 8–4 | 4–2 | 2–0.1 | 1–0.5 | 0.5–0.25 | 0.25–0.125 | <0.125 | ||
Pearson’s “r” Coefficient | ||||||||||
AFP | 0.762 | 0.054 | 0.105 | 0.546 | 0.589 | −0.366 | −0.676 | −0.749 | −0.755 | −0.762 |
EAW | −0.881 | −0.067 | −0.252 | −0.701 | −0.521 | 0.470 | 0.812 | 0.885 | 0.858 | 0.767 |
WBC | −0.799 | −0.123 | −0.256 | −0.627 | −0.401 | 0.354 | 0.661 | 0.809 | 0.811 | 0.782 |
AW | −0.880 | −0.077 | −0.256 | −0.703 | −0.506 | 0.457 | 0.799 | 0.886 | 0.863 | 0.783 |
UW | −0.487 | −0.070 | −0.113 | −0.323 | −0.315 | 0.136 | 0.378 | 0.502 | 0.551 | 0.564 |
Sample | CI | AFP | EAW | AW |
---|---|---|---|---|
% (Weight) | % (Vol.) | |||
LP1 | 23 | 9.3 | 20.7 | 25.1 |
LP2 | 15 | 5.9 | 22.7 | 27.4 |
LP3 | 27 | 11.0 | 19.7 | 23.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Coello, B.; Ríos Mesa, D. Physical Properties of the Canary Islands’ Volcanic Pyroclastic Materials as Horticultural Substrates. Horticulturae 2023, 9, 414. https://doi.org/10.3390/horticulturae9040414
Santos Coello B, Ríos Mesa D. Physical Properties of the Canary Islands’ Volcanic Pyroclastic Materials as Horticultural Substrates. Horticulturae. 2023; 9(4):414. https://doi.org/10.3390/horticulturae9040414
Chicago/Turabian StyleSantos Coello, Belarmino, and Domingo Ríos Mesa. 2023. "Physical Properties of the Canary Islands’ Volcanic Pyroclastic Materials as Horticultural Substrates" Horticulturae 9, no. 4: 414. https://doi.org/10.3390/horticulturae9040414
APA StyleSantos Coello, B., & Ríos Mesa, D. (2023). Physical Properties of the Canary Islands’ Volcanic Pyroclastic Materials as Horticultural Substrates. Horticulturae, 9(4), 414. https://doi.org/10.3390/horticulturae9040414