Antioxidant Activity of Peptide Fractions from Chickpea Globulin Obtained by Pulsed Ultrasound Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chickpea Flour
2.3. Preparation of Chickpea Protein Concentrates
2.4. Preparation of Chickpea Protein Hydrolysates
2.5. Antioxidant Activity of Protein Concentrates and Protein Hydrolysates
2.5.1. ABTS•+ Scavenging Activity
2.5.2. Evaluation of the Protective Effect on Human Erythrocytes
2.5.3. Ferric Reducing Antioxidant Power (FRAP)
2.6. Ultrasound Pretreatment on Globulin Concentrate
2.7. Ultrafiltration
2.8. Electrophoretic Profile (SDS-PAGE)
2.9. Amino Acid Profile
2.10. Antimicrobial Activity of Protein Hydrolysates
2.10.1. Bacterial Strains and Growth Conditions
2.10.2. Plate Preparation and Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chickpea Protein Concentrates
3.2. Antioxidant Activity of Protein Compounds
3.2.1. ABTS•+ Radical Scavenging Activity
3.2.2. Evaluation of the Protective Effect on Human Erythrocytes
3.2.3. Ferric Reducing Antioxidant Power (FRAP)
3.3. Antioxidant Activity of Ultrasound Pretreated Globulin Hydrolysates
3.4. Antioxidant Activity of Peptide Fractions
3.5. Electrophoretic Profiles
3.6. Amino Acid Composition
3.7. Antimicrobial Activity of Globulin Hydrolysates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhaval, A.; Yadav, N.; Purwar, S. Potential applications of food derived bioactive peptides in management of health. Int. J. Pept. Res. Ther. 2016, 22, 377–398. [Google Scholar] [CrossRef]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding food loss and waste -Why are we losing and wasting food? Foods 2019, 8, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef] [PubMed]
- Nasri, R.; Abdelhedi, O.; Nasri, M.; Jridi, M. Fermented protein hydrolysates: Biological activities and applications. Curr. Opin. Food Sci. 2022, 43, 120–127. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Xue, Z.; Jia, Y.; Li, R.; He, C.; Chen, H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci. Technol. 2021, 109, 103–115. [Google Scholar] [CrossRef]
- Nasri, M. Protein hydrolysates and biopeptides: Production, biological activities, and applications in foods and health benefits. A Review. Adv. Food Nutr. Res. 2017, 81, 109–159. [Google Scholar] [CrossRef]
- Pan, M.; Liu, K.; Yang, J.; Liu, S.; Wang, S.; Wang, S. Advances on food-derived peptidic antioxidants–A review. Antioxidants 2020, 9, 799. [Google Scholar] [CrossRef]
- Sosalagere, C.; Kehinde, B.A.; Sharma, P. Isolation and functionalities of bioactive peptides from fruits and vegetables: A reviews. Food Chem. 2022, 366, 130494. [Google Scholar] [CrossRef] [PubMed]
- Coscueta, E.R.; Amorim, M.M.; Voss, G.B.; Nerli, B.B.; Picó, G.A.; Pintado, M.E. Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis. Food Chem. 2016, 198, 36–44. [Google Scholar] [CrossRef]
- García-Mora, P.; Martín-Martínez, M.; Bonache, M.A.; González-Múniz, R.; Peñas, E.; Frias, J.; Martínez-Villaluenga, C. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem. 2017, 221, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Ghribi, A.M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Attia, H.; Dhulster, P.; Bougatef, A.; Besbes, S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. JFF 2015, 12, 516–525. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Del Mar Contreras, M.; Recio, I.; Alaiz, M.; Vioque, J. Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem. 2015, 180, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Heymich, M.L.; Friedlein, U.; Trollmann, M.; Schwaiger, K.; Böckmann, R.A.; Pischetsrieder, M. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens. Food Chem. 2021, 347, 128917. [Google Scholar] [CrossRef]
- Wang, B.; Atungulu, G.G.; Khir, R.; Geng, J.; Ma, H.; Li, Y.; Wu, B. Ultrasonic treatment effect on enzymolysis kinetics and activities of ACE-inhibitory peptides from oat-isolated protein. Food Biophys. 2015, 10, 244–252. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, S. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Álvarez, C.; O’Donnell, C.P. Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends Food Sci. Technol. 2015, 46, 60–67. [Google Scholar] [CrossRef]
- Yu, H.C.; Tan, F.J. Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology. Asian-Australas. J. Anim. Sci. 2017, 30, 1612–1619. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.J.; Chen, Z.J.; Fan, W.X.; Chang, M.C.; Meng, J.I.; Liu, J.Y.; Feng, C.P. Research on the physicochemical and digestive properties of Pleurotus eryngii protein. Int. J. Food Prop. 2018, 21, 2785–2806. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Li, Y.; Xie, L.; Sun, H.; Zheng, Z.; Liu, F. Effects of enzymatic cross-linking combined with ultrasound on the oil adsorption capacity of chickpea protein. Food Chem. 2022, 383, 132641. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Li, R.; Wang, Y.; Xiang, Q.; Li, K.; Bai, Y. Effects of combined treatment with ultrasound and pH shifting on foaming properties of chickpea protein isolate. Food Hydrocoll. 2022, 124, 107351. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, K.; Bai, Y.; Li, B.; Xu, W. Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT 2020, 129, 109563. [Google Scholar] [CrossRef]
- Perez-Perez, L.M.; Huerta-Ocampo, J.A.; Ruiz-Cruz, S.; Cinco-Moroyoqui, F.J.; Wong-Corral, F.J.; Rascón-Valenzuela, L.A.; Robles-García, M.A.; González-Vega, R.I.; Rosas-Burgos, E.C.; Corella-Madueño, M.A.G.; et al. Evaluation of quality, antioxidant capacity, and digestibility of chickpea (Cicer arietinum L. cv Blanoro) stored under N2 and CO2 Atmospheres. Molecules 2021, 26, 2773. [Google Scholar] [CrossRef]
- Hayta, M.; İşçimen, M. Optimization of ultrasound-assisted antioxidant compounds extraction from germinated chickpea using response surface methodology. LWT 2017, 77, 208–216. [Google Scholar] [CrossRef]
- Tovar-Pérez, E.G.; Guerrero-Becerra, L.; Lugo-Cervantes, E. Antioxidant activity of hydrolysates and peptide fractions of glutelin from cocoa (Theobroma cacao L.) seed. CYTA J. Food 2017, 15, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Tontul, I.; Kasimoglu, Z.; Asik, S.; Atbakan, T.; Topuz, A. Functional properties of chickpea protein isolates dried by refractance window drying. Int. J. Biol. Macromol. 2018, 109, 1253–1259. [Google Scholar] [CrossRef]
- Garcia-Mora, P.; Peñas, E.; Frias, J.; Martínez-Villaluenga, C. Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties. J. Agric. Food Chem. 2014, 62, 4166–4174. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC: Arlington, VA, USA, 2016. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Protoggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay free radical. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Hernández-Ruiz, K.L.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Gassos-Ortega, L.E.; Ornelas-Paz, J.J.; Del-Toro-Sánchez, C.L.; Márquez-Ríos, E.; López-Mata, M.A.; Rodríguez-Félix, F. Evaluation of antioxidant capacity, protective effect on human erythrocytes and phenolic compound identification in two varieties of plum fruit (Spondias spp.) by UPLC-MS. Molecules 2018, 23, 3200. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Ortiz, F.A.; Caire, G.; Higuera-Ciapara, I.; Hernández, G. High performance liquid chromatographic determination of free amino acids in shrimp. J. Liq. Chromatogr. Relat. Technol. 1995, 18, 2059–2068. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Ornelas-Paz, J.d.J.; López-Mata, M.A.; Del-Toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Márquez-Ríos, E. Total phenolic, flavonoid, tomatine, and tomatidine contents and antioxidant and antimicrobial activities of extracts of tomato plant. Int. J. Anal. Chem. 2015, 2015, 284071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, S.G.; Markham, J.L.; Leach, D.N. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. J. Essent. Oil Res. 2013, 12, 249–255. [Google Scholar] [CrossRef]
- Liu, L.H.; Hung, T.V.; Bennett, L. Extraction and characterization of chickpea (Cicer arietinum) albumin and globulin. J. Food Sci. 2008, 73, 299–305. [Google Scholar] [CrossRef]
- Singh, U.; Jambunathan, R. Distribution of seed protein fractions and amino acids in different anatomical parts of chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.). Plant Foods Hum. Nutr. 1982, 31, 347–354. [Google Scholar] [CrossRef]
- Paredes-López, O.; Ordorica-Falomir, C.; Olivares-Vázquez, M.R. Chickpea protein isolates: Physicochemical, functional and nutritional characterization. J. Food Sci. 1991, 56, 726–729. [Google Scholar] [CrossRef]
- Ahmed, M.A. Protein isolates from chickpea (Cicer arietinum L.) and its application in cake. Int. J. Biol. Vet. Agric. Food Eng. 2014, 8, 1101–1107. [Google Scholar]
- Evangelho, J.A.D.; Vanier, N.L.; Pinto, V.Z.; Berrios, J.J.; Dias, A.R.G.; Zavareze, E.D.R. Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chem. 2017, 214, 460–467. [Google Scholar] [CrossRef]
- Ngoh, Y.Y.; Gan, C.Y. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chem. 2016, 190, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Guerra-A., C.M.; Murillo, W.; Méndez-A., J.J. Antioxidant potential use of bioactive peptides derived from mung bean hydrolysates (Vigna radiata). Afr. J. Food Sci. 2017, 11, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Almonacid, C.M.; Torruco-Uco, J.G.; Murillo-Arango, W.; Méndez-Arteaga, J.J.; Rodríguez-Miranda, J. Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis. Emir. J. Food Agric. 2019, 31, 288–296. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Luo, X.Y.; Liu, G.Z.; Chen, Y.P.; Wang, Z.C.; Sun, Y.X. In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes. J. Agric. Food Chem. 2003, 51, 2555–2558. [Google Scholar] [CrossRef]
- Sbroggio, M.F.; Montilha, M.S.; Figueiredo, V.R.G.; Georgetti, S.R.; Kurozawa, L.E. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci. Technol. 2016, 36, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Dong, H.; Su, G.; Zhao, Q.; Zhao, M. Radical scavenging activities of Tyr, Trp-, Cys- and Met-Gly and their protective effects against AAPH-induced oxidative damage in human erythrocytes. Food Chem. 2016, 197, 807–813. [Google Scholar] [CrossRef]
- Zhan, Q.; Wang, Q.; Liu, Q.; Guo, Y.; Gong, F.; Hao, L.; Dong, Z. The antioxidant activity of protein fractions from Sacha inchi seeds after a simulated gastrointestinal digestion. LWT 2021, 145, 111356. [Google Scholar] [CrossRef]
- Santos-Aguilar, J.G.; de Castro, R.; Sato, H.H. Optimization of the enzymatic hydrolysis of rice protein by different enzymes using the response surface methodology. 3 Biotech 2018, 8, 372. [Google Scholar] [CrossRef]
- Piñuel, L.; Vilcacundo, E.; Boeri, P.; Barrio, D.A.; Morales, D.; Pinto, A.; Moran, R.; Samaniego, I.; Carrillo, W. Extraction of protein concentrate from red bean (Phaseolus vulgaris L.): Antioxidant activity and inhibition of lipid peroxidation. J. Appl. Pharm. Sci. 2019, 9, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Xia, E.; Zhai, L.; Huang, Z.; Liang, H.; Yang, H.; Song, G.; Li, W.; Tang, H. Optimization and identification of antioxidant peptide from underutilized Dunaliella salina protein: Extraction, in vitro gastrointestinal digestion, and fractionation. BioMed Res. Int. 2019, 2019, 6424651. [Google Scholar] [CrossRef] [Green Version]
- Misir, G.B.; Koral, S. Effects of ultrasound treatment on structural, chemical and functional properties of protein hydrolysate of rainbow trout (Onchorhynchus mykiss) by-products. Ital. J. Food Sci. 2019, 31, 205–223. [Google Scholar]
- Guo, J.; Zhang, T.; Jiang, B.; Miao, M.; Wu, W. The effects of and antioxidative pentapeptide derived from chickpea protein hydrolysates on oxidative stress in Caco-2 and HT-29 cell lines. JFF 2014, 7, 719–726. [Google Scholar] [CrossRef]
- Papalamprou, E.M.; Doxastakis, G.I.; Biliaderis, C.G.; Kiosseoglou, V. Influence of preparation methods on physicochemical and gelation properties of chickpea protein isolates. Food Hydrocoll. 2009, 23, 337–343. [Google Scholar] [CrossRef]
- Chang, Y.W. Isolation and Characterization of Protein Fractions from Chickpea (Cicer arietinum L.) and Oat (Avena sativa L.) Seeds Using Proteomic Techniques. Doctoral Thesis, McGill University, Montreal, QC, Canada, July 2010. [Google Scholar]
- Chang, Y.W.; Alli, I.; Molina, A.T.; Konishi, Y.; Boyce, J.I. Isolation and characterization of chickpea (Cicer arietinum L.) seed protein fractions. Food Bioprocess Technol. 2012, 5, 618–625. [Google Scholar] [CrossRef]
- Shilhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
Protein Concentrate | Quantity of Protein (g/100 g Flour *) | Protein Content (g/100 g Concentrate) |
---|---|---|
Al | 1.93 ± 0.26 b | 82.73 ± 1.19 a |
Gb | 2.93 ± 0.64 ab | 82.25 ± 4.77 a |
Gt | 3.51 ± 0.56 a | 85.23 ± 6.58 a |
Concentrate | ABTS Inhibition (%) | Hemolysis Inhibition (%) | FRAP (µmol TE/g d s) | |||
---|---|---|---|---|---|---|
Protein | Hydrolysate | Protein | Hydrolysate | Protein | Hydrolysate | |
Al | 10.68 ± 1.53 cB | 92.37 ± 0.12 aA | 80.38 ± 2.84 aA | 58.76 ±8.24 bB | 128.07 ± 13.06 bB | 1624.41 ± 131.92 bA |
Gb | 33.10 ± 0.76 bB | 91.44 ± 0.55 bA | 67.38 ± 2.40 bB | 73.04 ± 3.10 aA | 644.27 ± 150.28 aB | 5185.57 ± 698.59 aA |
Gt | 37.07 ± 0.68 aB | 87.75 ± 0.66 cA | 64.89 ± 2.99 bB | 77.40 ± 6.27 aA | 446.07 ± 45.89 aB | 1323.83 ± 178.18 bA |
Amino Acid | HGb | HGb-20 |
---|---|---|
Aspartic acid | 119 ± 0.92 a | 106 ± 1.15 b |
Glutamic acid | 18 ± 0.15 a | 15 ± 0.28 b |
Histidine | 37 ± 0.15 b | 39 ± 0.70 a |
Serine | 147 ± 0.49 a | 144 ± 1.07 b |
Arginine | 96 ± 0.06 b | 99 ± 0.04 a |
Glycine | 113 ± 0.22 a | 114 ± 0.75 a |
Threonine | 169 ± 0.28 b | 174 ± 0.94 a |
Alanine | 105 ± 0.29 b | 106 ± 0.01 a |
Tyrosine | 25 ± 0.19 b | 27 ± 0.03 a |
Methionine | 7 ± 0.01 b | 8 ± 0.02 a |
Valine | 18 ± 0.01 b | 22 ± 0.02 a |
Phenylalanine | 33 ± 0.12 a | 31 ± 0.04 b |
Isoleucine | 7 ± 0.01 b | 9 ± 0.04 a |
Leucine | 48 ± 0.18 a | 43 ± 4.83 a |
Lysine | 58 ± 0.01 b | 64 ± 0.08 a |
Total | 1000 | 1000 |
Concentration (mg/mL) | Salmonella enterica (CFU) | Staphylococcus aureus (CFU) | ||
---|---|---|---|---|
HGb | HGb-20 | HGb | HGb-20 | |
0 | 76 ± 6.93 aA | 76 ± 6.93 aA | 109 ± 8.50 aA | 109 ± 8.50 aA |
1 | 73 ± 3 aA | 68 ± 2.89 aA | 79 ± 1.41 bA | 65 ± 2.83 bB |
5 | 59 ± 2.3 bA | 35 ± 3.05 cB | 58 ± 4 cA | 65 ± 4.16 bA |
10 | 38 ± 2.08 cB | 56 ± 2.08 bA | 66 ± 2.81 cA | 48 ± 2.64 cB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Osuna, M.F.; Torres-Arreola, W.; Márquez-Ríos, E.; Wong-Corral, F.J.; Lugo-Cervantes, E.; Rodríguez-Figueroa, J.C.; García-Sánchez, G.; Ezquerra-Brauer, J.M.; Soto-Valdez, H.; Castillo, A.; et al. Antioxidant Activity of Peptide Fractions from Chickpea Globulin Obtained by Pulsed Ultrasound Pretreatment. Horticulturae 2023, 9, 415. https://doi.org/10.3390/horticulturae9040415
González-Osuna MF, Torres-Arreola W, Márquez-Ríos E, Wong-Corral FJ, Lugo-Cervantes E, Rodríguez-Figueroa JC, García-Sánchez G, Ezquerra-Brauer JM, Soto-Valdez H, Castillo A, et al. Antioxidant Activity of Peptide Fractions from Chickpea Globulin Obtained by Pulsed Ultrasound Pretreatment. Horticulturae. 2023; 9(4):415. https://doi.org/10.3390/horticulturae9040415
Chicago/Turabian StyleGonzález-Osuna, María Fernanda, Wilfrido Torres-Arreola, Enrique Márquez-Ríos, Francisco Javier Wong-Corral, Eugenia Lugo-Cervantes, José Carlos Rodríguez-Figueroa, Guillermina García-Sánchez, Josafat Marina Ezquerra-Brauer, Herlinda Soto-Valdez, Alejandro Castillo, and et al. 2023. "Antioxidant Activity of Peptide Fractions from Chickpea Globulin Obtained by Pulsed Ultrasound Pretreatment" Horticulturae 9, no. 4: 415. https://doi.org/10.3390/horticulturae9040415
APA StyleGonzález-Osuna, M. F., Torres-Arreola, W., Márquez-Ríos, E., Wong-Corral, F. J., Lugo-Cervantes, E., Rodríguez-Figueroa, J. C., García-Sánchez, G., Ezquerra-Brauer, J. M., Soto-Valdez, H., Castillo, A., & Del-Toro-Sánchez, C. L. (2023). Antioxidant Activity of Peptide Fractions from Chickpea Globulin Obtained by Pulsed Ultrasound Pretreatment. Horticulturae, 9(4), 415. https://doi.org/10.3390/horticulturae9040415