Non-Thermal Plasma and Soilless Nutrient Solution Application: Effects on Nutrient Film Technique Lettuce Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Morphological and Plant Analyses
2.2. Qualitative Analysis
2.3. Determination of Antioxidant Capacity and Total Phenols
2.4. Statistical Analysis
3. Results
3.1. Nutrient Solution
3.2. Biometric Characterization of Plants
3.3. Plant Qualitative Traits
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry–A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing water and nutrient losses from soilless cropping in southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Bai, Y.-H.; Chen, J.-R.; Li, X.-Y.; Zhang, C.-H. Non-thermal Plasmas Chemistry as a Tool for Environmental Pollutants Abatement. Rev. Environ. Contam. Toxicol. 2009, 201, 117–136. [Google Scholar] [CrossRef] [PubMed]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M. Plasma Agriculture from Laboratory to Farm: A Review. Processes 2020, 8, 1002. [Google Scholar] [CrossRef]
- Bradu, C.; Kutasi, K.; Magureanu, M.; Puač, N.; Živković, S. Reactive nitrogen species in plasma-activated water: Generation, chemistry and application in agriculture. J. Phys. D: Appl. Phys. 2020, 53, 223001. [Google Scholar] [CrossRef]
- Laroussi, M.; Mendis, D.A.; Rosenberg, M. Plasma interaction with microbes. New J. Phys. 2003, 5, 41. [Google Scholar] [CrossRef]
- Lii, C.Y.; Liao, C.D.; Stobinski, L.; Tomasik, P. Behaviour of granular starches in low-pressure glow plasma. Carbohydr. Polym. 2002, 49, 499–507. [Google Scholar] [CrossRef]
- Zou, J.-J.; Liu, C.-J.; Eliasson, B. Modification of starch by glow discharge plasma. Carbohydr. Polym. 2004, 55, 23–26. [Google Scholar] [CrossRef]
- Mihai, A.L.; Dobrin, D.; Măgureanu, M.; Popa, M.E. Positive effect of non-thermal plasma treatment on radish seeds. Rom. Rep. Phys. 2014, 66, 1110–1117. [Google Scholar]
- Burchi, G.; Chessa, S.; Gambineri, F.; Kocian, A.; Massa, D.; Milazzo, P.; Rimediotti, L.; Ruggeri, A. Information technology controlled greenhouse: A system architecture. In Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture—Tuscany (IOT Tuscany), Tuscany, Italy, 8–9 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Cannazzaro, S.; Traversari, S.; Cacini, S.; Di Lonardo, S.; Pane, C.; Burchi, G.; Massa, D. Non-Thermal Plasma Treatment Influences Shoot Biomass, Flower Production and Nutrition of Gerbera Plants Depending on Substrate Composition and Fertigation Level. Plants 2021, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Cannazzaro, S.; Di Lonardo, S.; Cacini, S.; Traversari, S.; Burchi, G.; Pane, C.; Massa, D. Opportunities and challenges of using non-thermal plasma treatments in soilless cultures: Experience from greenhouse experiments. In III International Symposium on Soilless Culture and Hydroponics: Innovation and Advanced Technology for Circular Horticulture; Acta Hortic. 1321; 2021; pp. 259–266. [Google Scholar]
- Ranieri, P.; Sponsel, N.; Kizer, J.; Rojas-Pierce, M.; Hernández, R.; Gatiboni, L.; Grunden, A.; Stapelmann, K. Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Process. Polym. 2020, 18, 2000162. [Google Scholar] [CrossRef]
- Fernandez, D. HydroBuddy: An Open Source Nutrient Calculator for Hydroponics and 464 General Agriculture, v1.5. 2013. Available online: http://scienceinhydroponics.com (accessed on 15 February 2017).
- Nicoletto, C.; Tosini, F.; Sambo, P. Effect of grafting and ripening conditions on some qualitative traits of ‘Cuore di bue’ tomato fruits. J. Sci. Food Agric. 2012, 93, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Zancan, S.; Cesco, S.; Ghisi, R. Effect of UV-B radiation on iron content and distribution in maize plants. Environ. Exp. Bot. 2006, 55, 266–272. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Kang, H.-M.; Saltveit, M.E. Antioxidant Capacity of Lettuce Leaf Tissue Increases after Wounding. J. Agric. Food Chem. 2002, 50, 7536–7541. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxi-dants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Brar, J.; Jiang, J.; Oubarri, A.; Ranieri, P.; Fridman, A.A.; Fridman, G.; Miller, V.; Peethambaran, B. Non-thermal Plasma Treatment of Flowing Water: A Solution to Reduce Water Usage and Soil Treatment Cost without Compromising Yield. Plasma Med. 2016, 6, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Stoleru, V.; Burlica, R.; Mihalache, G.; Dirlau, D.; Padureanu, S.; Teliban, G.-C.; Astanei, D.; Cojocaru, A.; Beniuga, O.; Patras, A. Plant growth promotion effect of plasma activated water on Lactuca sativa L. cultivated in two different volumes of substrate. Sci. Rep. 2020, 10, 20920. [Google Scholar] [CrossRef] [PubMed]
- Iranbakhsh, A.; Ghoranneviss, M.; Ardebili, Z.O.; Tackallou, S.H.; Nikmaram, H. Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation. Biol. Plant. 2017, 61, 702–708. [Google Scholar] [CrossRef]
- Fernández-Marcos, M.; Sanz, L.; Lewis, D.R.; Muday, G.K.; Lorenzo, O. Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. USA 2011, 108, 18506–18511. [Google Scholar] [CrossRef] [PubMed]
- Baluška, F.; Mancuso, S.; Volkmann, D.; Barlow, P.W. Root apex transition zone: A signalling–response nexus in the root. Trends Plant Sci. 2010, 15, 402–408. [Google Scholar] [CrossRef]
- Puač, N.; Gherardi, M.; Shiratani, M. Plasma agriculture: A rapidly emerging field. Plasma Process. Polym. 2017, 15, 1700174. [Google Scholar] [CrossRef]
- Han, J.; Peethambaran, B.; Balsamo, R.; Fridman, A.; Rabinovich, A.; Miller, V.; Fridman, G. Non-equilibrium plasmas in agriculture. In Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerp, Belgium, 5–10 July 2015. [Google Scholar]
- Li, X.; Li, M.; Ji, N.; Jin, P.; Zhang, J.; Zheng, Y.; Zhang, X.; Li, F. Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. LWT 2019, 115, 108447. [Google Scholar] [CrossRef]
- Muhammad, A.I.; Liao, X.; Cullen, P.J.; Liu, D.; Xiang, Q.; Wang, J.; Chen, S.; Ye, X.; Ding, T. Effects of non-thermal plasma technology on functional food components. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1379–1394. [Google Scholar] [CrossRef]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Bačovčinová, M.; Hensel, K. Effect of Plasma Activated Water, Hydrogen Peroxide, and Nitrates on Lettuce Growth and Its Physiological Parameters. Appl. Sci. 2021, 11, 1985. [Google Scholar] [CrossRef]
Cycle | Air Temperature (°C) | Air Relative Humidity (%) | Global Solar Radiation (MJ/m2) | |||
---|---|---|---|---|---|---|
min | max | min | max | min | max | |
1 cycle | 15 | 25 | 63 | 94 | 118 | 235 |
2 cycles | 15 | 25 | 58 | 92 | 482 | 530 |
Nutrients | mg L−1 |
---|---|
pH MgSO4·7H2O | 6.8 456 |
Fe (EDTA) | 30.77 |
Na2 MoO4·2H2O | 0.125 |
ZnSO4·2H2O | 0.302 |
CuSO4·5H2O | 0.392 |
MnCl2·4H2O | 1.80 |
KH2PO4 | 219 |
H3BO3 | 2.86 |
NH4NO3 | 225 |
K2SO4 | 346 |
Ca(NO3)2 | 1007 |
NTP Treatment | Total Soluble Solids (Brix°) | pH | EC (mS cm−1) | Titratable Acidity (% Citric Acid 100 g−1 fw) | |
---|---|---|---|---|---|
Aerial biomass | Control | 3.45 ± 0.155 b | 5.19 ± 0.028 a | 5.64 ± 0.138 b | 0.0755 ± 0.0016 b |
LI | 4.12 ± 0.294 a | 5.27 ± 0.082a | 5.81 ± 0.394 b | 0.0870 ± 0.0022 ab | |
HI | 3.88 ± 0.154 ab | 5.29 ± 0.048 a | 7.26 ± 0.353 a | 0.0941 ± 0.0047 a | |
Root biomass | Control | 1.53 ± 0.047 a | 5.83 ± 0.039 a | 3.52 ± 0.115 b | 0.0211 ± 0.0022 b |
LI | 1.73 ± 0.108 a | 5.75 ± 0.119 a | 4.03 ± 0.270 b | 0.0262 ± 0.0049 ab | |
HI | 1.38 ± 0.047 a | 5.83 ± 0.179 a | 5.20 ± 0.065 a | 0.0461 ± 0.0068 a |
NTP Treatment | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | |
---|---|---|---|---|---|---|
(mg kg−1 dw) | ||||||
Aerial biomass | Control | 2597 ± 95 a | 349 ± 26 | 38,889 ± 3231 | 5057 ± 400 | 8167 ± 850 |
LI | 1299 ± 154 b | 367 ± 7 | 43,141 ± 1959 | 5368 ± 159 | 11,398 ± 287 | |
HI | 1067 ± 93 b | 388 ± 16 | 51,178 ± 4238 | 4673 ± 381 | 9859 ± 1378 | |
Root biomass | Control | 14,916 ± 252 a | 262 ± 29 b | 10,488 ± 1835 b | 4750 ± 47 a | 2776 ± 127 |
LI | 12,051 ± 1191 a | 333 ± 27 ab | 16,681 ± 3443 b | 4155 ± 487 ab | 2869 ± 234 | |
HI | 3368 ± 1609 b | 465 ± 44 a | 51,690 ± 3892 a | 2502 ± 589 b | 2236 ± 127 |
NTP Treatment | Cl− | NO2− | NO3− | PO₄³⁻ | SO₄²− | |
---|---|---|---|---|---|---|
(mg kg−1 dw) | ||||||
Aerial biomass | Control | 4315 ± 147 | 29 ± 4 | 38,342 ± 2466 | 3314 ± 520 b | 3282 ± 171 |
LI | 3985 ± 296 | 29 ± 5 | 40,982 ± 4102 | 4251 ± 524 ab | 3036 ± 345 | |
HI | 4853 ± 208 | 42 ± 8 | 46,582 ± 8952 | 6200 ± 686 a | 2162 ± 422 | |
Root biomass | Control | 1200 ± 57 ab | 16 ± 3 | 31,968 ± 2941 b | 2826 ± 90 b | 16,173 ± 1039 |
LI | 1422 ± 56 a | 15 ± 4 | 31,480 ± 1391 b | 3964 ± 259 b | 14,556 ± 631 | |
HI | 976 ± 120 b | 53 ± 4 | 52,059 ± 1963 a | 7758 ± 851 a | 17,584 ± 1170 |
NTP Treatment | Chlorophyll a (µg g−1 dw) | Chlorophyll b (µg g−1 dw) | Xanthophyll and Carotenoids(µg g−1 dw) | DPPH (TEAC g−1 dw) | Total Antioxidant Capacity (mg Fe2+ E kg−1 dw) | Total Phenols (mg GAE dw) | |
---|---|---|---|---|---|---|---|
Aerial biomass | Control | 772 ± 37 b | 231 ± 25 b | 175 ± 12 b | 94.2 ± 24 a | 1938 ± 124 a | 4154 ± 257 a |
LI | 841 ± 45 a | 233 ± 19 b | 197 ± 9 a | 127 ± 32 a | 2749 ± 167 a | 4268 ± 316 a | |
HI | 903 ± 54 a | 292 ± 15 a | 199 ± 16 a | 145 ± 28 a | 3147 ± 245 a | 4324 ± 485 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletto, C.; Falcioni, V.; Locatelli, S.; Sambo, P. Non-Thermal Plasma and Soilless Nutrient Solution Application: Effects on Nutrient Film Technique Lettuce Cultivation. Horticulturae 2023, 9, 208. https://doi.org/10.3390/horticulturae9020208
Nicoletto C, Falcioni V, Locatelli S, Sambo P. Non-Thermal Plasma and Soilless Nutrient Solution Application: Effects on Nutrient Film Technique Lettuce Cultivation. Horticulturae. 2023; 9(2):208. https://doi.org/10.3390/horticulturae9020208
Chicago/Turabian StyleNicoletto, Carlo, Valentina Falcioni, Silvia Locatelli, and Paolo Sambo. 2023. "Non-Thermal Plasma and Soilless Nutrient Solution Application: Effects on Nutrient Film Technique Lettuce Cultivation" Horticulturae 9, no. 2: 208. https://doi.org/10.3390/horticulturae9020208
APA StyleNicoletto, C., Falcioni, V., Locatelli, S., & Sambo, P. (2023). Non-Thermal Plasma and Soilless Nutrient Solution Application: Effects on Nutrient Film Technique Lettuce Cultivation. Horticulturae, 9(2), 208. https://doi.org/10.3390/horticulturae9020208