Effects of LED Lights and New Long-Term-Release Fertilizers on Lettuce Growth: A Contribution for Sustainable Horticulture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Growing Media, and Lighting Conditions
2.2. Morphological and Agronomic Parameters
2.3. Soil and Leaves Chemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, n.l. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Shatilov, M.V.; Razin, A.F.; Ivanova, M.I. Analysis of the world lettuce market. IOP Conf. Ser. Earth Environ. Sci. 2019, 395, 012053. [Google Scholar] [CrossRef] [Green Version]
- ISTAT, AGRISTAT. Coltivazioni, Ortive. Available online: http://dati.istat.it/Index.aspx?QueryId=33703 (accessed on 7 March 2023).
- Congreves, K.A. Urban horticulture for sustainable food systems. Front. Sustain Food Syst. 2022, 6, 974146. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Edmondson, J. L.; et al. The hidden potential of urban horticulture. Nat. Food 2020, 1, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Piedrahita, C.; Howe, C.; de Nazelle, A. Public health benefits from urban horticulture in the global north: A scoping review and framework. Glob. Transit. 2020, 2, 246–256. [Google Scholar] [CrossRef]
- Andersson, E.; Barthel, S.; Ahrné, K. Measuring social-ecological dynamics behind the generation of ecosystem services. Ecol. Appl. 2007, 17, 1267–1278. [Google Scholar] [CrossRef] [Green Version]
- Dobson, M.C.; Edmondson, J.L.; Warren, P.H. Urban food cultivation in the United Kingdom: Quantifying loss of allotment land and identifying potential for restoration. Landsc. Urban Plan. 2020, 199, 103803. [Google Scholar] [CrossRef]
- Hata, F.T.; Sanches, I.A.; Poças, C.E.P.; Rabelo, M.C.; Gouveia, L.C.P.; Silveira, V.H.C.; Ventura, M.U. Iceberg Lettuce and Radicchio Chicory Organic Management of Amendment and Fertigation. Int. J. Plant Biol. 2022, 13, 34. [Google Scholar] [CrossRef]
- World Bank. World Urbanization Prospects. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 7 March 2023).
- UN United Nation. Our Growing Population. Available online: https://www.un.org/en/global-issues/population#:~:text=Our growing population, and 2 billion since 1998 (accessed on 7 March 2023).
- Ronga, D.; Pane, C.; Zaccardelli, M.; Pecchioni, N. Use of Spent Coffee Ground Compost in Peat-Based Growing Media for the Production of Basil and Tomato Potting Plants. Commun. Soil Sci. Plant Anal. 2016, 47, 356–368. [Google Scholar] [CrossRef]
- Ronga, D.; Parisi, M.; Barbieri, L.; Lancellotti, I.; Andreola, F.; Bignami, C. Valorization of spent coffee grounds, biochar and other residues to produce lightweight clay ceramic aggregates suitable for nursery grapevine production. Horticulturae 2020, 6, 58. [Google Scholar] [CrossRef]
- Ronga, D.; Setti, L.; Salvarani, C.; De Leo, R.; Bedin, E.; Pulvirenti, A.; Milc, J.; Pecchioni, N.; Francia, E. Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Sci. Hortic. 2019, 244, 172–181. [Google Scholar] [CrossRef]
- Herrera, F.; Castillo, J.E.; Chica, A.F.; López Bellido, L. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants. Bioresour. Technol. 2008, 99, 287–296. [Google Scholar] [CrossRef]
- Gonnella, M.; Renna, M. The evolution of soilless systems towards ecological sustainability in the perspective of a circular economy. Is it really the opposite of organic agriculture? Agronomy 2021, 11, 950. [Google Scholar] [CrossRef]
- Righi, C.; Barbieri, F.; Sgarbi, E.; Maistrello, L.; Bertacchini, A.; Andreola, F.N.; D’Angelo, A.; Catauro, M.; Barbieri, L. Suitability of Porous Inorganic Materials from Industrial Residues and Bioproducts for Use in Horticulture: A Multidisciplinary Approach. Appl. Sci. 2022, 12, 5437. [Google Scholar] [CrossRef]
- Barbi, S.; Montorsi, M.; Maistrello, L.; Caldironi, M.; Barbieri, L. Statistical optimization of a sustainable fertilizer composition based on black soldier fly larvae as source of nitrogen. Sci. Rep. 2022, 12, 20505. [Google Scholar] [CrossRef]
- Catauro, M.; Poggetto, G.D.; Pacifico, S.; Andreola, F.; Lancellotti, I.; Barbieri, L. ; A New System of Sustainable Silico-Aluminous and Silicate Materials for Cultivation Purpose within Sustainable Buildings: Chemical-Physical, Antibacterial and Cytotoxicity Properties. Appl. Sci. 2022, 12, 434. [Google Scholar] [CrossRef]
- Mosheim, R.; Sickles, R.C. Spatial effects of nutrient pollution on drinking water production. Empir. Econ. 2021, 60, 2741–2764. [Google Scholar] [CrossRef]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Chen, X.; Guo, W.Z.; Xue, X.Z.; Wang, L.C.; Qiao, X.J. Growth and quality responses of “Green Oak Leaf” lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci. Hortic. 2014, 172, 168–175. [Google Scholar] [CrossRef]
- Zha, L.; Zhang, Y.; Liu, W. Dynamic Responses of Ascorbate Pool and Metabolism in Lettuce to Long-term Continuous Light Provided by Red and Blue LEDs. Environ. Exp. Bot. 2019, 163, 15–23. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, Q.C.; Song, W.P.; Wang, L.C.; Guo, W.Z.; Xue, X.Z. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Sci. Hortic. 2017, 223, 44–52. [Google Scholar] [CrossRef]
- Jishi, T.; Kimura, K.; Matsuda, R.; Fujiwara, K. Effects of temporally shifted irradiation of blue and red LED light on cos lettuce growth and morphology. Sci. Hortic. 2016, 198, 227–232. [Google Scholar] [CrossRef]
- Spalholz, H.; Perkins-Veazie, P.; Hernández, R. Impact of sun-simulated white light and varied blue:red spectrums on the growth, morphology, development, and phytochemical content of green- and red-leaf lettuce at different growth stages. Sci. Hortic. 2020, 264, 109195. [Google Scholar] [CrossRef]
- Viršilė, A.; Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Miliauskienė, J.; Jankauskienė, J.; Novičkovas, A.; Laužikė, K.; Samuolienė, G. The distinct impact of multi-color LED light on nitrate, amino acid, soluble sugar and organic acid contents in red and green leaf lettuce cultivated in controlled environment. Food Chem. 2020, 310, 125799. [Google Scholar] [CrossRef] [PubMed]
- Razzak, M.A.; Asaduzzaman, M.; Tanaka, H.; Asao, T. Effects of supplementing green light to red and blue light on the growth and yield of lettuce in plant factories. Sci. Hortic. 2022, 305, 111429. [Google Scholar] [CrossRef]
- Karami, A.; Ansari, N.A.; Hasibi, P. Evaluation of some chemical/biochemical compounds of leaf lettuce (Lactuca sativa L.) to the quality of radiant light in floating system. Sci. Hortic. 2022, 304, 111319. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, S.Y.; Oh, M.M. Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Hortic. Environ. Biotechnol. 2015, 56, 186–194. [Google Scholar] [CrossRef]
- Lee, M.J.; Son, K.H.; Oh, M.M. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic. Environ. Biotechnol. 2016, 57, 139–147. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Hu, D.; Yu, J.; Liu, H. Effect of green, yellow and purple radiation on biomass, photosynthesis, morphology and soluble sugar content of leafy lettuce via spectral wavebands “knock out”. Sci. Hortic. 2018, 236, 10–17. [Google Scholar] [CrossRef]
- Contreras, S.; Bennett, M.A.; Metzger, J.D.; Tay, D.; Nerson, H. Red to far-red ratio during seed development affects lettuce seed germinability and longevity. Hortic. Sci. 2009, 44, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Meth. Enzymol. 1987, 148, 350–382. [Google Scholar]
- Ministero per le Politiche Agricole e Forestali, DM 185-13/09/1999. Gazzetta Ufficiale della Repubblica Italiana. Available onlinehttps://www.gazzettaufficiale.it/eli/gu/1999/10/21/248/so/185/sg/pdf (accessed on 7 March 2023).
- S.I.S.S. Società Italiana della Scienza del Suolo. Metodi Normalizzati di Analisi; Edagricole: Bologna, Italy, 1985; pp. 1–110. [Google Scholar]
- Istituto Superiore di Sanità, Metodi di Analisi Utilizzati per il Controllo Chimico degli Alimenti—Rapporti ISTISAN 96/34, Available online:. Available online: https://www.iss.it/documents/20126/45616/Rapp_ISTISAN_96_34_def.pdf (accessed on 7 March 2023).
- ANPA—Dipartimento Stato dell’Ambiente, VISTAN. Verso l’Annuario dei Dati Ambientali; ANPA—Dipartimento Stato dell’Ambiente: Roma, Italy, 2001. [Google Scholar]
- European Food Safety Authority (EFSA),Statement on possible public health risks for infants and young children from the presence of nitrates in leafy vegetables. EFSA J. 2010, 8, 2010–2012.
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018, 613–614, 829–839. [Google Scholar] [CrossRef]
- Paoli, R.; Feofilovs, M.; Kamenders, A.; Romagnoli, F. Peat production for horticultural use in the Latvian context: Sustainability assessment through LCA modeling. J. Clean. Prod. 2022, 378, 134559. [Google Scholar] [CrossRef]
- Machado, T.O.; Grabow, J.; Sayer, C.; de Araújo, P.H.H.; Ehrenhard, M.L.; Wurm, F.R. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv. Colloid Interface Sci. 2022, 303, 102645. [Google Scholar] [CrossRef]
- Amoozgar, A.; Mohammadi, A.; Sabzalian, M.R. Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica 2017, 55, 85–95. [Google Scholar] [CrossRef]
- Han, T.; Vaganov, V.; Cao, S.; Li, Q.; Ling, L.; Cheng, X.; Peng, L.; Zhang, C.; Yakovlev, A.N.; Zhong, Y.; et al. Improving “color rendering” of LED lighting for the growth of lettuce. Sci. Rep. 2017, 7, 45944. [Google Scholar] [CrossRef] [Green Version]
- Son, K.H.; Oh, M.M. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic. Environ. Biotechnol. 2015, 56, 639–653. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006;Available online:. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 7 March 2023).
Time of Application (days) | Hours of Application (h d−1) | Wavelengths (PPFD%) | ||||
---|---|---|---|---|---|---|
Blue (450 nm) | Green (521 nm) | Hyper-Red (660 nm) | Far-Red (730 nm) | White 2700 K | ||
LED-1 | ||||||
1–28 | 1–16 | 50.0% | 50.0% | 0% | 0% | |
LED-2 | ||||||
1–7 | 1–16 | 66.6% | 33.3% | 0% | ||
8–28 | 1–8 | 59.3% | 14.0% | 0.0% | 7.3% | 19.3% |
9–16 | 14.0% | 59.3% | 7.3% | 19.3% |
LED-1 | |||||
---|---|---|---|---|---|
APV50_0 | APV50_3 | APV50_6 | APNUT_0 | APNUT_3 | APNUT_6 |
93.3 ± 11.5 | 86.7 ± 10.3 | 88.0 ± 11.0 | 86.7 ± 11.5 | 93.3 ± 16.3 | 84.0 ± 6.7 |
LED-2 | |||||
APV50_0 | APV50_3 | APV50_6 | APNUT_0 | APNUT_3 | APNUT_6 |
100.0 ± 0.0 | 91.4 ± 22.7 | 88.6 ± 10.7 | 90.0 ± 11.5 | 97.1 ± 7.6 | 97.1 ± 7.6 |
LED-1 | 1_APV50_0 | 1_APV50_3 | 1_APV50_6 | 1_APNUT_0 | 1_APNUT_3 | 1_APNUT_6 |
---|---|---|---|---|---|---|
Height (cm) | 4.2 a | 5.6 c | 5.9 c | 3.7 a | 6.1 c | 6.7 c |
±S.D. | ±1.0 | ±0.9 | ±0.8 | ±1.0 | ±1.0 | ±1.3 |
LED-2 | 2_APV50_0 | 2_APV50_3 | 2_APV50_6 | 2_APNUT_0 | 2_APNUT_3 | 2_APNUT_6 |
Height (cm) | 7.5 b | 8.5 bd | 9.0 d | 6.6 bc | 8.1 d | 8.2 d |
±S.D. | ±1.4 | ±1.0 | ±1.1 | ±0.9 | ±1.1 | ±1.2 |
P (mg/kg) | K (mg/kg) | Si (mg/kg) | NO3 (mg/kg) | ||
---|---|---|---|---|---|
t0 | 320 | 1254 | 1381 | 85.7 | |
LED-1 | t0LED-1 | 160 | 305 | 19.2 | 42.9 |
tAPV50_3 | 169 | 208 | 94 | 55.8 | |
tAPV50_6 | 208 | 244 | 111 | 46.8 | |
tAPNUT_3 | 201 | 168 | 117 | 65.8 | |
tAPNUT_6 | 288 | 254 | 286 | 39.6 | |
LED-2 | t0LED-2 | 226 | 615 | 117 | 264 |
tAPV50_3 | 431 | 547 | 534 | 174 | |
tAPV50_6 | 280 | 540 | 655 | 227 | |
tAPNUT_3 | 351 | 517 | 466 | 224 | |
tAPNUT_6 | 288 | 519 | 381 | 260 |
LED-1 | |||||||
---|---|---|---|---|---|---|---|
APV50_0 | APV50_3 | APV50_6 | APNUT_0 | APNUT_3 | APNUT_6 | ||
% | C | 4.2 ± 0.1 | 4.4 ± 1.5 | 3.2 ± 0.3 | 5.2 ± 1.1 | 3.9 ± 1.3 | 3.3 ± 0.9 |
mg/kg | NO3 | <200 | <200 | <200 | <200 | <200 | <200 |
mg/kg | Al | 3.1 ± 0.8 | 2.7 ± 1.0 | 2.3 ± 0.7 | 3.2 ± 0.0 | 2.7 ± 0.2 | 2.3 ± 0.3 |
mg/kg | Si | 73.0 ± 46.6 | 76.3 ± 22.3 | 61.6 ± 20.7 | 74.3 ± 1.1 | 62.6 ± 6.2 | 53.0 ± 18.8 |
mg/kg | Cr | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
mg/kg | Pb | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
mg/kg | Cu | <1.0 | <1.0 | <1.2 | <3.6 | <1.0 | 1.3 |
LED-2 | |||||||
APV50_0 | APV50_3 | APV50_6 | APNUT_0 | APNUT_3 | APNUT_6 | ||
% | C | 3.5 ± 0.2 | 3.1 ± 0.3 | 3.1 ± 0.4 | 3.1 ± 0.3 | 2.8 ± 0.3 | 2.9 ± 0.3 |
mg/kg | NO3 | <200 | <200 | <200 | <200 | <200 | <200 |
mg/kg | Al | 1.5 ± 0.8 | 1.1 ± 0.1 | 1.0 ± 0.2 | 0.9 ± 0.4 | 1.7 ± 0.9 | 1.2 ± 0.1 |
mg/kg | Si | 44.5 ± 8.8 | 56.9 ± 9.8 | 64.5 ± 17.5 | 56.9 ± 8.1 | 72.9 ± 25.1 | 58.0 ± 22.6 |
mg/kg | Cr | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
mg/kg | Pb | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
mg/kg | Cu | <1.4 | <1.0 | <1.0 | <2.1 | <1.0 | <1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgarbi, E.; Santunione, G.; Barbieri, F.; Montorsi, M.; Lancellotti, I.; Barbieri, L. Effects of LED Lights and New Long-Term-Release Fertilizers on Lettuce Growth: A Contribution for Sustainable Horticulture. Horticulturae 2023, 9, 404. https://doi.org/10.3390/horticulturae9030404
Sgarbi E, Santunione G, Barbieri F, Montorsi M, Lancellotti I, Barbieri L. Effects of LED Lights and New Long-Term-Release Fertilizers on Lettuce Growth: A Contribution for Sustainable Horticulture. Horticulturae. 2023; 9(3):404. https://doi.org/10.3390/horticulturae9030404
Chicago/Turabian StyleSgarbi, Elisabetta, Giulia Santunione, Francesco Barbieri, Monia Montorsi, Isabella Lancellotti, and Luisa Barbieri. 2023. "Effects of LED Lights and New Long-Term-Release Fertilizers on Lettuce Growth: A Contribution for Sustainable Horticulture" Horticulturae 9, no. 3: 404. https://doi.org/10.3390/horticulturae9030404
APA StyleSgarbi, E., Santunione, G., Barbieri, F., Montorsi, M., Lancellotti, I., & Barbieri, L. (2023). Effects of LED Lights and New Long-Term-Release Fertilizers on Lettuce Growth: A Contribution for Sustainable Horticulture. Horticulturae, 9(3), 404. https://doi.org/10.3390/horticulturae9030404