A Predictive Model of Nutrient Recovery from RAS Drum-Screen Effluent for Reuse in Aquaponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Existing Data for Nutrient Production Model Development
2.1.1. Aquaponic System Description
2.1.2. Nutrient Analysis of Feed and Effluent Used in Model Development
2.2. Nutrient Production Model Assumptions
- A constant daily fish-feed rate is used;
- The only discharge from the system is through the drum filter;
- A microbial-mineralization treatment process is used to maximize plant availability of nutrients in the effluent by removing OC and TSS;
- The nutrients in the water column occupied by fish and the system stay constant in a mature system with a constant feed rate and, therefore, do not affect mass quantification of the nutrients generated from the fish-feeding system that are collected from the drum filter discharge.
2.3. Daily Loading Rate Equations for Macro- and Micro-Nutrients
2.4. Discharge Rate Calculations for Macro- and Micro-Nutrients in RAS Effluent
3. Results
3.1. Daily Nutrient Loading Rates at KFRAG
3.2. Daily Effluent Discharge Rates at KFRAG
4. Discussion
4.1. Nutrient Recovery for Improved Aquaponic NUE
4.2. Importance of N Recovery and Treatment Method Implications
4.3. Micro-Nutrient Deficiencies in Aquaponics
4.4. Treated Effluents as Hydroponic Nutrient Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2019, 17, 364–376. [Google Scholar] [CrossRef]
- Timmons, M.; Guerdat, T.; Vinci, B.J. Recirculating Aquaculture, 4th ed.; Ithaca Publishing Company, LLC: Vero Beach, FL, USA, 2018; pp. 2–25; 663–707. [Google Scholar]
- Hunter, M.; Smith, R.; Schipanski, M.; Atwood, L.; Mortensen, D. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- EPA (United States Environmental Protection Agency). Effluent Limitations Guidelines and New Source Performance Standards for the Concentrated Aquatic Animal Production Point Source Category; Final Rule. 40 CFR Part 451; EPA: Washington, DC, USA, 2004.
- Tsani, S.; Koundouri, P. A Methodological Note for the Development of Integrated Aquaculture Production Models. Front. Mar. Sci. 2018, 4, 406. [Google Scholar] [CrossRef] [Green Version]
- Sharrer, M.; Rishel, K.; Taylor, A.; Vinci, B.J.; Summerfelt, S.T. The cost and effectiveness of solids thickening technologies for treating backwash and recovering nutrients from intensive aquaculture systems. Bioresour. Technol. 2010, 101, 6630–6641. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; Semmens, K. Waste Management in Aquaculture. Aquac. Inf. Ser. 2002, AQ02-1, 1–10. Available online: https://freshwater-aquaculture.extension.org/wp-content/uploads/2019/08/WasteManagemetninAquaculture.pdf (accessed on 14 December 2020).
- Lages Barbosa, G.; Almeida Gadelha, F.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.; Halden, R. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [Green Version]
- FAO. Emissions Due to Agriculture. Global, Regional and Country Trends 2000–2018; FAOSTAT Analytical Brief Series No. 18; FAO: Rome, Italy, 2020. [Google Scholar]
- Henckens, M.L.C.M.; van Ierland, E.; Driessen, P.P.J.; Worrell, E. Mineral resources: Geological scarcity, market price trends, and future generations. Resour. Policy 2016, 49, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Rakocy, J.; Masser, P.; Losordo, T. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture; SRAC-454; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2006. [Google Scholar]
- Chen, S.; Coffin, D.; Malone, R. Sludge Production and Management for Recirculating Aquacultural Systems. J. World Aquac. Soc. 1997, 28, 303–315. [Google Scholar] [CrossRef]
- Guerdat, T.C.; Losordo, T.M.; Delong, D.P.; Jones, R.D. An evaluation of solid waste capture from recirculating aquaculture systems using a geotextile bag system with a flocculant-aid. Aquac. Eng. 2013, 54, 1–8. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.P.; Joyce, A.; Wuertz, S.; Jijakli, M.H.; Gross, A.; Eding, E.H.; Bläser, I.; Reuter, M.; Keizer, L.P.; et al. Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquac. Eng. 2018, 83, 10–19. [Google Scholar] [CrossRef]
- Delaide, B.; Goddek, S.; Keesman, K.J.; Jijakli, M.H.M. A methodology to quantify the aerobic and anaerobic sludge digestion performance for nutrient recycling in Aquaponics. Biotechnol. Agron. Soc. Environ. 2018, 22, 106–112. [Google Scholar] [CrossRef]
- Monsees, H.; Keitel, J.; Paul, M.; Kloas, W.; Wuertz, S. Potential of aquacultural sludge treatment for aquaponics: Evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquac. Environ. Interact. 2017, 9, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Conroy, J.; Couturier, M. Dissolution of minerals during hydrolysis of fish waste solids. Aquaculture 2010, 298, 220–225. [Google Scholar] [CrossRef]
- Delaide, B.; Panana, E.; Teerlinck, S.; Bleyaert, P. Suitability of supernatant of aerobic and anaerobic pikeperch (Sander lucioperca L.) sludge as a water source for hydroponic production of lettuce (Lactuca sativa L. var. capitata). Aquacult Int. 2021, 29, 1721–1735. [Google Scholar] [CrossRef]
- Tetreault, J.; Fogle, R.; Guerdat, T. Towards a Capture and Reuse Model for Aquaculture Effluent as a Hydroponic Nutrient Solution Using Aerobic Microbial Reactors. Horticulturae 2021, 7, 334. [Google Scholar] [CrossRef]
- Tetreault, J.; Fogle, R.; Guerdat, T. Anaerobic Mineralization of Recirculating Aquaculture Drum Screen Effluent for Use as a Naturally-Derived Nutrient Solution in Hydroponic Cropping Systems. Conservation 2021, 1, 151–167. [Google Scholar] [CrossRef]
- Fogarty, S. Foodborne Pathogens and Water Quality in Commercial-Scale Aquaponic Systems with Rapid Micro Screen Solids Removal. Master’s Thesis, University of New Hampshire, Durham, NH, USA, 2021. [Google Scholar]
- Tetreault, J.; Fogle, R.; Fogarty, S.; Guerdat, T. Coupled aquaponics: Optimizing hydraulic retention times using a parallel unit process water treatment approach. Front. Hortic 2023, 2, 1140998. [Google Scholar] [CrossRef]
- Losordo, T.M.; Hobbs, A.O.; DeLong, D.P. The design and operational characteristics of the CP&L/EPRI fish barn: A demonstration of recirculating aquaculture technology. Aquac. Eng. 2000, 22, 3–16. [Google Scholar]
- McGinty, A.; Rakocy, J. Cage Culture of Tilapia; SRAC-281; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2015. [Google Scholar]
- Mattson, N.; Peters, C. A Recipe for Hydroponic Success. Inside Grower. January 2014, pp. 16–19. Available online: https://dokumen.tips/documents/a-recipe-for-hydroponic-successpdf.html (accessed on 14 December 2020).
- Anderson, T. Biological Responses of Lettuce to Hydroponic and Aquaponic Conditions. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2016. [Google Scholar]
- Pattillo, D.A.; Hager, J.V.; Cline, D.J.; Roy, L.A.; Hanson, T.R. System Design and Production Practices of Aquaponic Stakeholders. PLoS ONE 2022, 17, e0266475. [Google Scholar] [CrossRef]
- Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An International Survey of Aquaponics Practitioners. PLoS ONE 2014, 9, e102662. [Google Scholar] [CrossRef] [Green Version]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial Aquaponics Production and Profitability: Findings from an International Survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Colt, J.; Schuur, A.M. Comparison of Nutrient Costs from Fish Feeds and Inorganic Fertilizers for Aquaponics Systems. Aquac. Eng. 2021, 95, 102205. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, B.Y.; Lee, H.J. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci. Hortic. 2006, 110, 119–128. [Google Scholar] [CrossRef]
- Yaron, S.; Römling, U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb. Biotechnol. 2014, 7, 496–516. [Google Scholar] [CrossRef]
- Garland, J.L.; Mackowiak, C.L.; Strayer, R.F.; Finger, B.W. Integration of waste processing and biomass production systems as part of the KSC Breadboard project. Adv. Space Res. 1997, 20, 1821–1826. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 135–150. [Google Scholar]
- Del Pozo, R.; Diez, V. Organic matter removal in combined anaerobic–aerobic fixed-film bioreactors. Water Res. 2003, 37, 3561–3568. [Google Scholar] [CrossRef]
- Gunaseelan, V.N. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997, 13, 83–114. [Google Scholar] [CrossRef]
- Rodgers, D.; Won, E.; Timmons, M.B.; Mattson, N. Complementary Nutrients in Decoupled Aquaponics Enhance Basil Performance. Horticulturae 2022, 8, 111. [Google Scholar] [CrossRef]
- Roosta, H.R. Comparison of the Vegetative Growth, Eco-Physiological Characteristics and Mineral Nutrient Content of Basil Plants in Different Irrigation Ratios of Hydroponic: Aquaponic Solutions. J. Plant Nutr. 2014, 37, 1782–1803. [Google Scholar] [CrossRef]
- Ebeling, J.M.; Welsh, C.F.; Rishel, K.L. Performance Evaluation of an Inclined Belt Filter Using Coagulation/Flocculation Aids for the Removal of Suspended Solids and Phosphorus from Microscreen Backwash Effluent. Aquac. Eng. 2006, 35, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Heiderscheidt, E.; Tesfamariam, A.; Pulkkinen, J.; Vielma, J.; Ronkanen, A. Solids Management in Freshwater-Recirculating Aquaculture Systems: Effectivity of Inorganic and Organic Coagulants and the Impact of Operating Parameters. Sci. Total Environ. 2020, 742, 140398. [Google Scholar] [CrossRef] [PubMed]
- Goddek, S.; Schmautz, Z.; Scott, B.; Delaide, B.; Keesman, K.; Wuertz, S.; Junge, R. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce. Agronomy 2016, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Ezziddine, M.; Liltved, H.; Seljåsen, R. Hydroponic Lettuce Cultivation Using Organic Nutrient Solution from Aerobic Digested Aquacultural Sludge. Agronomy 2021, 11, 1484. [Google Scholar] [CrossRef]
- Ahmed, Z.F.R.; Alnuaimi, A.K.H.; Askri, A.; Tzortzakis, N. Evaluation of Lettuce (Lactuca sativa L.) Production under Hydroponic System: Nutrient Solution Derived from Fish Waste vs. Inorganic Nutrient Solution. Horticulturae 2021, 7, 292. [Google Scholar] [CrossRef]
Macro-Nutrients | ||||||
---|---|---|---|---|---|---|
Nutrient | N * | P * | K * | Ca * | Mg * | |
Feed | 6.44 | 0.97 | 0.96 | 1.17 | 0.14 | |
Micro-nutrients | ||||||
Nutrient | Fe † | Mn † | B † | Cu † | Zn † | Na † |
Feed | 209 | 91.8 | 5.90 | 46.5 | 89.6 | 2051 |
Nutrient | Total Drum-Screen Effluent (mg/L) | Aqueous (%) | Particulate (%) |
---|---|---|---|
Macro-nutrient | |||
N | 143 | 88.54 | 11.46 |
P | 5.13 | 31.76 | 68.24 |
Ca | 21.3 | 72.80 | 27.20 |
Mg | 17.6 | 96.93 | 3.07 |
Micro-nutrient | |||
Mn | 0.16 | 80.43 | 19.57 |
B | 0.00 | N/A | N/A |
Cu | 0.15 | 80.04 | 19.96 |
Zn | 0.74 | 94.20 | 5.80 |
Nutrient | Untreated Effluent (% Aqueous) | Post Treatment (% Aqueous) |
---|---|---|
Macro-nutrient | ||
N | 88.54 | 93.83 ± 4.23 |
P | 31.76 | 99.53 ± 0.20 |
Ca | 72.80 | 98.93 ± 0.45 |
Mg | 96.93 | 99.78 ± 0.07 |
Micro-nutrient | ||
Mn | 80.43 | 99.52 ± 0.26 |
B | 0.00 | N/A |
Cu | 80.04 | 91.61 ± 11.7 |
Zn | 94.20 | 86.85 ± 5.18 |
Nutrient | KFRAG Loading Rate (g/day) | Loading Rate (g Nutrient/kg Feed) |
---|---|---|
N | 83.72 | 64.4 |
P | 12.61 | 9.7 |
Ca | 15.21 | 11.7 |
Mg | 1.82 | 1.4 |
Mn | 0.11934 | 0.0918 |
B | 0.00767 | 0.0059 |
Cu | 0.06045 | 0.0465 |
Zn | 0.11648 | 0.0896 |
Nutrient | KFRAG Discharge Rate (g/day) | % of Loading Rate |
---|---|---|
Macro-nutrient | ||
N | 9.533 | 11.4 |
P | 0.342 | 2.71 |
Ca | 1.420 | 9.34 |
Mg | 1.173 | 64.5 |
Micro-nutrient | ||
Mn | 0.011 | 8.94 |
B | 0.000 | 0.0 |
Cu | 0.010 | 16.5 |
Zn | 0.0493 | 42.4 |
(A) | Untreated Effluent | Post-Mineralization | ||
Macro-nutrient | % of mass in aqueous fraction | Plant-available discharge rate (g nutrient/kg feed) | % of mass in aqueous fraction | Plant-available discharge rate (g nutrient/kg feed) |
N | 88.54 | 6.49 | 93.83 | 6.88 |
P | 31.76 | 0.08 | 99.53 | 0.26 |
Ca | 72.80 | 0.80 | 98.93 | 1.08 |
Mg | 96.93 | 0.87 | 99.78 | 0.90 |
(B) | Untreated Effluent | Post-Mineralization | ||
Micro-nutrient | % of mass in aqueous fraction | Plant-available discharge rate (mg nutrient/kg feed) | % of mass in aqueous fraction | Plant-available discharge rate (mg nutrient/kg feed) |
Mn | 80.43 | 6.60 | 99.52 | 8.17 |
B | N/A | 0.00 | N/A | 0.00 |
Cu | 80.04 | 6.16 | 91.61 | 7.05 |
Zn | 94.20 | 35.7 | 86.85 | 35.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetreault, J.; Fogle, R.L.; Ramos, A.; Timmons, M.B. A Predictive Model of Nutrient Recovery from RAS Drum-Screen Effluent for Reuse in Aquaponics. Horticulturae 2023, 9, 403. https://doi.org/10.3390/horticulturae9030403
Tetreault J, Fogle RL, Ramos A, Timmons MB. A Predictive Model of Nutrient Recovery from RAS Drum-Screen Effluent for Reuse in Aquaponics. Horticulturae. 2023; 9(3):403. https://doi.org/10.3390/horticulturae9030403
Chicago/Turabian StyleTetreault, Joseph, Rachel L. Fogle, Ashly Ramos, and Michael B. Timmons. 2023. "A Predictive Model of Nutrient Recovery from RAS Drum-Screen Effluent for Reuse in Aquaponics" Horticulturae 9, no. 3: 403. https://doi.org/10.3390/horticulturae9030403
APA StyleTetreault, J., Fogle, R. L., Ramos, A., & Timmons, M. B. (2023). A Predictive Model of Nutrient Recovery from RAS Drum-Screen Effluent for Reuse in Aquaponics. Horticulturae, 9(3), 403. https://doi.org/10.3390/horticulturae9030403