Immobilization of Pb in Contaminated Soils with the Combination Use of Diammonium Phosphate with Organic and Inorganic Amendments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Experiment
2.2. Experimental Design
2.3. Determination of Pb in Plant Samples
2.4. Determination of Plant Nutrients in Soil Samples
2.5. Statistical Analysis
3. Results
3.1. Dry Yield of Carrot Plants
3.2. Amendments’ Effect on Pb Immobilization
4. Discussion
4.1. Dry Yield of Carrot Plants
4.2. Amendments’ Effect on Pb Immobilization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Li, R.; Deng, H.; Zhang, X.; Wang, J.J.; Awasthi, M.K.; Wang, Q.; Xiao, R.; Zhou, B.; Du, J.; Zhang, Z. High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Bioresour. Technol. 2019, 273, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, J.J.; Gaston, L.A.; Zhou, B.; Li, M.; Xiao, R.; Wang, Q.; Zhang, Z.; Huang, H.; Liang, W.; et al. An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon 2018, 129, 674–687. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soilmicrobe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Brhane, G.; Dargo, H. Assessment of some heavy metals contamination in some vegetable and canned foods: A Review. Int. J. Emerg. Trends Sci. Technol. 2014, 1, 1394–1403. [Google Scholar]
- Lanier, C.; Bernard, F.; Dumez, S.; Leclercq, J.; Lemière, S.; Vandenbulcke, F.; Nesslany, F.; Platel, A.; Devred, I.; Cuny, D.; et al. Combined effect of Cd and Pb spiked field soils on bioaccumulation, DNA damage, and peroxidase activities in Trifolium repens. Environ. Sci. Pollut. Res. 2016, 23, 1755–1767. [Google Scholar] [CrossRef]
- ATSDR. Agency for Toxic Substances & Disease Registry. 2018. Available online: https://www.atsdr.cdc.gov/spl/previous/07list.html (accessed on 1 February 2023).
- Nasreddine, L.; Parent-Massin, D. Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol. Lett. 2002, 127, 29–41. [Google Scholar] [CrossRef]
- Gogoasa, I.; Oprea, G.; Harmanescu, M.; Trasca, T.I.; Rivis, A.; Gergen, I. Some metals (Fe, Mn, Zn, Cu, Pb, Cd) contents in vegetables from a nonpolluted plain area of Cenad-Banat (Romania). J. Fac. Food Eng. 2010, 9, 16–24. [Google Scholar]
- Kumar, A.; Prasad, M.N.V. Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol. Environ. Saf. 2018, 166, 401–418. [Google Scholar] [CrossRef]
- Flora, S.J.S. Lead exposure: Health effects, prevention and treatment. J. Environ. Biol. 2002, 23, 25–41. [Google Scholar]
- Nedelescu, M.; Bălălău, D.; Baconi, D.; Jula, M.; Morar, D.; Gligor, A.; Bălălău, C. Preliminary assessment of heavy metals content of vegetables grown in industrial areas in Romania. Farmacia 2015, 63, 296–300. [Google Scholar]
- Boskabady, M.; Marefati, N.; Farkhondeh, T.; Shakeri, F.; Farshbaf, A.; Boskabady, M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018, 120, 404–420. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.B. Arsenic and Lead Uptake by Vegetable Crops Grown on Historically Contaminated Orchard Soils. Appl. Environ. Soil Sci. 2013, 2013, 283472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, M.B.; Shaylera, H.A.; Russell-Anellia, J.M.; Spliethoffb, H.M.; Marquez-Bravo, L.G. Arsenic and lead uptake by vegetable crops grown on an old orchard site amended with compost. Water Air Soil Pollut. 2015, 226, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peijnenburg, W.J.G.M.; Jager, T. Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicol. Environ. Saf. 2003, 56, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. Arsenic adsorption from aqueous solution on synthetic zeolite. J. Hazard. Mater. 2009, 162, 440–447. [Google Scholar] [CrossRef]
- Hussain Lahori, A.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Kumar Awasthi, M.; Ali Sial, T.; Kumbhar, F.; Wang, P.; Shen, F.; et al. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicol. Environ. Saf. 2017, 145, 313–323. [Google Scholar] [CrossRef]
- Codling, E.E. Long-term effects of lime, phosphorus, and iron amendments on water-extractable arsenic, lead, and bioaccessible lead from contaminated orchard soils. Soil Sci. 2007, 172, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Ngole, V.M. Using soil heavy metal enrichment and mobility factors to determine potential uptake by vegetables. Plant Soil Environ. 2011, 57, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, Y.; Hu, C.; Zhou, S.; Xu, H.; Zhang, Q.; Wang, G. Ca-containing amendments to reduce the absorption and translocation of Pb in rice plants. Sci. Total Environ. 2018, 637–638, 971–979. [Google Scholar] [CrossRef]
- Mehmood, S.; Saeed, D.A.; Rizwan, M.; Khan, M.N.; Aziz, O.; Bashir, S.; Ibrahim, M.; Ditta, A.; Akmal, M.; Mumtaz, M.A.; et al. Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol. Biochem. 2018, 132, 345–355. [Google Scholar] [CrossRef]
- Chisholm, D. Lead, arsenic, and copper content of crops grown on lead arsenate-treated and untreated soils. Can. J. Plant Sci. 1972, 52, 583–588. [Google Scholar] [CrossRef]
- Peryea, F.J.; Kammereck, R. Phosphate enriched movement of arsenic out of lead arsenate contaminated topsoil and through uncontaminated subsoil. Water Air Soil Pollut. 1997, 93, 243–254. [Google Scholar] [CrossRef]
- MacLean, K.S.; Langille, W.M. Arsenic in orchard and potato soils and plant tissue. Plant Soil. 1981, 61, 413–418. [Google Scholar] [CrossRef]
- Hood, E. The Apple Bites Back: Claiming Old Orchards for Residential Development. Environ. Health Perspect. 2006, 114, A470–A476. [Google Scholar] [CrossRef]
- Intawongse, M.; Dean, J.R. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit. Contam. 2006, 23, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Lima, F.S.; Nascimento, C.W.A.; Silva, F.B.V.; Carvalho, V.G.B.; Filho, M.R.R. Lead concentration and allocation in vegetable crops grown in a soil contaminated by battery residues. Hortic. Bras. 2009, 27, 362–365. [Google Scholar] [CrossRef]
- Nguyen, H.S.; Huong, B.T.L.; Truong, T.A. Research on Heavy Metal Accumulation of Cu, Pb, Cd and Zn of the carrot. Int. J. Agric. Technol. 2015, 11, 1119–1127. [Google Scholar]
- Miretzky, P.; Fernandez-Cirelli, A. Phosphates for Pb immobilization in soils: A review. Environ. Chem. Lett. 2008, 6, 121–133. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soil, 13th ed.; Upper, S.R., Ed.; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Zheljazkov, V.D.; Astatkie, T. Effect of plant species and benomyl on lead concentration and removal from lead-enriched soil. HortScience 2011, 46, 1604–1607. [Google Scholar] [CrossRef] [Green Version]
- Zheljazkov, V.; Warman, P. Application of high Cu compost to swiss chard and basil. Sci. Total Environ. 2003, 302, 13–26. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; Wiley: New York, NY, USA, 2020. [Google Scholar]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived from the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Burducea, M.; Lobiuc, A.; Asandulesa, M.; Zaltariov, M.-F.; Burducea, I.; Popescu, S.M.; Zheljazkov, V.D. Effects of Sewage Sludge Amendments on the Growth and Physiology of Sweet Basil. Agronomy 2019, 9, 548. [Google Scholar] [CrossRef] [Green Version]
- Burducea, M.; Lobiuc, A.; Dirvariu, L.; Oprea, E.; Olaru, S.M.; Teliban, G.-C.; Stoleru, V.; Poghirc, V.A.; Cara, I.G.; Filip, M.; et al. Assessment of the Fertilization Capacity of the Aquaculture Sediment for Wheat Grass as Sustainable Alternative Use. Plants 2022, 11, 634. [Google Scholar] [CrossRef]
- Zhang, B.; Fuqing, S.; John, Y.; Suqin, Y.; Peng, Z. Effects of inorganic and organic soil amendments on yield and grain cadmium content of wheat and corn. Environ. Eng. Sci. 2016, 33, 11–16. [Google Scholar] [CrossRef]
- Burducea, M.; Zheljazkov, V.D.; Dincheva, I.; Lobiuc, A.; Teliban, G.C.; Stoleru, V.; Zamfirache, M.M. Fertilization modifies the essential oil and physiology of basil varieties. Ind. Crops Prod. 2018, 121, 282–293. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Warman, P.R. Application of high Cu compost to dill and peppermint. J. Agr. Food Chem. 2004, 52, 2615–2622. [Google Scholar] [CrossRef]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Phy. 2005, 17, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Nicoloso, F.; Schetinger, M.; Rossato, L.; Pereira, L.; Castro, G.; Srivastava, S.; Tripathi, R. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater. 2009, 172, 479–484. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Z.; Zhang, Y.; Wei, Y.; Jiang, Z. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS ONE 2018, 13, e0191139. [Google Scholar] [CrossRef] [Green Version]
- Hamid, Y.; Tang, L.; Yaseen, M.; Hussain, B.; Zehra, A.; Aziz, M.Z.; He, Z.; Yang, X. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere 2019, 214, 259–268. [Google Scholar] [CrossRef]
- Rate, A.W.; Lee, K.M.; French, P.A. Application of biosolids in mineral sands mine rehabilitation: Use of stockpiled topsoil decreases trace element uptake by plants. Bioresour. Technol. 2004, 91, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Z.; Chang, L.; Yang, H.H.; Chen, C.M.; Liu, M.C. Absorption characteristics of lead onto soils. J. Hazard. Mater. 1998, 63, 37–49. [Google Scholar] [CrossRef]
- Blaylock, M.J.; Salt, D.E.; Dushenkov, S.; Zakarova, O.; Gussman, C.; Kapulnik, Y.; Ensley, B.D.; Raskin, I. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 1997, 31, 860–865. [Google Scholar] [CrossRef]
- Cao, X.D.; Ammar, L.W.; Bing, M.; Yongliang, L.Y. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J. Hazard. Mater. 2009, 164, 555–564. [Google Scholar] [CrossRef]
Inorganic | Low * | High * | Organic | Low * | High * |
---|---|---|---|---|---|
Bonemeal | 10 | 100 | Sludge | 26 | 130 |
Zeolite | 10 | 100 | Biocompost | 29 | 116 |
Lime | 5 | 10 | Yard Compost | 29 | 116 |
Wood Ash | 10 | 20 | Peat | 3 | 6 |
Organic | P | Ca | Mg | Na | K | Mn | Fe | S |
---|---|---|---|---|---|---|---|---|
Sludge | 7533 | 8823 | 1601 | 407 | 978 | 270 | 4310 | 6355 |
Sludge Compost | 3336 | 3560 | 893 | 180 | 1102 | 434 | 3356 | 2857 |
Yard Compost | 3624 | 7168 | 2514 | 440 | 3344 | 239 | 2784 | 4222 |
Peat | 115 | 2048 | 1039 | 451 | 51 | 10 | 1201 | 2898 |
Inorganic | ||||||||
Zeolite | 424 | 16,680 | 6042 | 3553 | 1991 | 178 | 16,957 | 174 |
Bonemeal | 42,740 | 88,444 | 1597 | 2217 | 185 | nd * | 41 | 1756 |
Wood Ash | 3918 | 73,544 | 8592 | 744 | 6983 | 10,577 | 2032 | 453 |
Organic | Pb | Cu | Zn | Cd | Cr | Ni | B |
---|---|---|---|---|---|---|---|
Sludge | 18.25 | 431 | 328 | 0.45 | 8.77 | 5.42 | 4.09 |
Sludge Compost | 7.78 | 103 | 90 | nd * | 3.67 | 4.51 | 4.89 |
Yard Compost | 14.55 | 26 | 90 | nd | 0.61 | 3.03 | 9.67 |
Peat | 1.66 | 2 | 7 | nd | nd | 1.26 | 5.86 |
Inorganic | |||||||
Zeolite | 8.10 | 48 | 34 | 0.18 | 5.90 | 10.12 | 150 |
Bonemeal | 1.42 | 2 | 49 | nd | nd | 0.61 | 0.61 |
Wood Ash | 7.33 | 35 | 166 | 1.36 | 3.36 | 6.20 | 57.5 |
Source of Variation | Yield | Pb TC | P TC | Pb TU | P TU | Pb SA | P SA |
---|---|---|---|---|---|---|---|
A | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
R | 0.043 | 0.003 | 0.131 | 0.068 | 0.002 | 0.001 | 0.001 |
A*R | 0.001 | 0.001 | 0.001 | 0.141 | 0.001 | 0.001 | 0.001 |
DAP | 0.001 | 0.471 | 0.009 | 0.001 | 0.001 | 0.001 | 0.001 |
A*DAP | 0.001 | 0.066 | 0.081 | 0.044 | 0.009 | 0.550 | 0.537 |
R*DAP | 0.001 | 0.006 | 0.541 | 0.001 | 0.011 | 0.851 | 0.908 |
A*R*DAP | 0.001 * | 0.799 | 0.956 | 0.120 | 0.005 | 0.534 | 0.498 |
Rate | DAP | Pb TC | Pb TU | Amendment | Pb TU from the 3 DAP Levels | ||
No | No | 1.16 b * | 2.66 d | No | Low | High | |
No | Low | 1.43 ab | 6.92 a | I-BoneMeal | 3.13 cd | 4.07 a–d | 2.06 cd |
No | High | 1.85 a | 4.80 abc | I-Lime | 3.20 cd | 3.73 bcd | 2.82 cd |
Low | No | 1.66 ab | 4.32 bcd | I-WoodAsh | 3.62 bcd | 4.06 a–d | 3.99 a–d |
Low | Low | 1.35 ab | 6.08 ab | I-Zeolite | 1.79 d | 5.70 abc | 4.25 a–d |
Low | High | 1.41 ab | 3.68 cd | O-Biocompo | 5.52 abc | 8.19 ab | 3.81 a–d |
High | No | 1.27 ab | 4.34 bcd | O-Peat | 4.05 a–d | 8.35 a | 4.70 a–d |
High | Low | 1.12 b | 4.54 bc | O-Sludge | 5.83 abc | 8.39 a | 4.39 a–d |
High | High | 1.08 b | 2.85 cd | O-YardComp | 3.49 bcd | 5.17 abc | 4.30 a–d |
DAP | P TC | Pb SA | P SA |
---|---|---|---|
No | 2765 a * | 18.86 a | 23.32 b |
Low | 2585 b | 18.92 a | 23.86 b |
High | 2659 ab | 18.28 b | 26.61 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, S.M.; Zheljazkov, V.D.; Astatkie, T.; Burducea, M.; Termeer, W.C. Immobilization of Pb in Contaminated Soils with the Combination Use of Diammonium Phosphate with Organic and Inorganic Amendments. Horticulturae 2023, 9, 278. https://doi.org/10.3390/horticulturae9020278
Popescu SM, Zheljazkov VD, Astatkie T, Burducea M, Termeer WC. Immobilization of Pb in Contaminated Soils with the Combination Use of Diammonium Phosphate with Organic and Inorganic Amendments. Horticulturae. 2023; 9(2):278. https://doi.org/10.3390/horticulturae9020278
Chicago/Turabian StylePopescu, Simona M., Valtcho D. Zheljazkov, Tess Astatkie, Marian Burducea, and Walter C. Termeer. 2023. "Immobilization of Pb in Contaminated Soils with the Combination Use of Diammonium Phosphate with Organic and Inorganic Amendments" Horticulturae 9, no. 2: 278. https://doi.org/10.3390/horticulturae9020278
APA StylePopescu, S. M., Zheljazkov, V. D., Astatkie, T., Burducea, M., & Termeer, W. C. (2023). Immobilization of Pb in Contaminated Soils with the Combination Use of Diammonium Phosphate with Organic and Inorganic Amendments. Horticulturae, 9(2), 278. https://doi.org/10.3390/horticulturae9020278