Effect of Global Warming on the Yields of Strawberry in Queensland: A Mini-Review
Abstract
:1. Introduction
2. Data Collection
3. Changes in Temperature
4. Relationship between Yield and Temperature
Reference | Type of Exp. | Range in Mean Temp. | Range in Yield (g per plant) | Regression between Yield and Temp. | p Value from Regression | R2 Value from Regression | Slope from Linear Regression (± s.e.) |
---|---|---|---|---|---|---|---|
Bjurman [27] | Field | 13 °C to 17 °C | 33 to 315 | Linear | 0.656 | - | - |
Kumakura and Shishido [28] | CE | 15 °C to 25 °C | 26 to 132 | Linear | <0.001 | 0.86 | −0.0616 (0.0087) |
Le Mière et al. [29] | CE | 12 °C to 28 °C | About 31 to 230 | Linear | <0.001 | 0.85 | −0.0519 (0.0038) |
Kadir et al. [30] | CE | 20 °C to 30 °C | 3.0 to 9.0 | Linear | 0.087 | 0.75 | −0.5110 (0.0161) |
Wagstaffe and Battey [31] | CE | 15 °C to 27 °C | 889 to 1497 | Linear | 0.650 | - | - |
Krüger et al. [32] | Field | 13 °C to 16 °C | 112 to 797 | Linear | 0.723 | - | - |
Krüger et al. [32] | Field | 15 °C to 21 °C | 112 to 797 | Linear | 0.043 | 0.31 | 0.1088 (0.0462) |
Palencia et al. [33] | Field | 9 °C to 15 °C | About 5 to 75 | Linear | <0.05 | 0.86 | - |
Palencia et al. [33] | Field | 9 °C to 15 °C | About 5 to 120 | Quadratic | >0.05 | - | - |
Cocco et al. [34] | Field | 12 °C to 14 °C | 317 to 1139 | Linear | 0.001 | 0.52 | −0.2241 (0.0556) |
Cocco et al. [34] | Field | 11 °C to 14 °C | 317 to 1139 | Linear | 0.006 | 0.41 | −0.1292 (0.0396) |
Taghavi et al. [35] | Field | 15 °C to 20 °C | 67 to 314 | Linear | 0.532 | - | - |
Rahman et al. [36] | Field | 15 °C to 20 °C | 222 to 480 | Linear | 0.019 | 0.51 | −0.1531 (0.0677) |
Rahman et al. [36] | Field | 19 °C to 22 °C | 250 to 650 | Linear | 0.101 | 0.53 | −0.1832 (0.0781) |
Rahman et al. [36] | Field | 20 °C to 23 °C | 172 to 414 | Linear | 0.036 | 0.75 | −0.2264 (0.0626) |
Rahman et al. [36] | Field | 18 °C to 22 °C | 78 to 175 | Linear | 0.018 | 0.84 | −0.1983 (0.0421) |
Condori et al. [37] | Field | - | 0 to 80 | Linear | <0.001 | 0.28 | - |
Condori et al. [37] | Field | - | 0 to 80 | Linear | <0.001 | 0.26 | - |
Condori et al. [37] | Field | - | 0 to 80 | Linear | <0.001 | 0.18 | - |
Condori et al. [37] | Field | - | 0 to 80 | Linear | <0.001 | 0.08 | - |
Sønsteby and Heide [38] | CE | 9 °C to 27 °C | 0 to 372 | Linear | 0.586 | - | - |
Maskey et al. [20] | Field | 9 °C to 21 °C | About 3 to 109 | Linear | - | 0.45 | −0.0755 |
Maskey et al. [20] | Field | 8 °C to 24 °C | About 12 to 870 | Linear | - | 0.27 | −0.0939 |
Butare [39] | CE | 20 °C to 30 °C | 195 to 1131 | Linear | 0.248 | 0.71 | −0.0837 (0.0339) |
Rivero et al. [40] | CE | 9 °C to 27 °C | 590 to 1594 | Linear | 0.077 | 0.10 | −0.0308 (0.0663) |
Zhang et al. [41] | CE | 8 °C to 17 °C | 106 to 871 | Linear | 0.102 | 0.71 | - |
5. Effect of Global Warming on Yields in Queensland
6. Interaction between Elevated CO2 and Temperature on Yield
Temperature | Concentration of CO2 | Net CO2 Assimilation (µmol per m2 per s) | Yield (g per plant) |
---|---|---|---|
25 °C | 400 ppm | 10.3 ± 0.3 | 46.9 ± 9.3 |
25 °C | 650 ppm | 15.1 ± 0.2 | 52.3 ± 5.1 |
25 °C | 950 ppm | 15.0 ± 0.1 | 39.2 ± 1.5 |
30 °C | 400 ppm | 11.1 ± 0.7 | 8.3 ± 0.9 |
30 °C | 650 ppm | 14.2 ± 0.03 | 35.6 ± 1.6 |
30 °C | 950 ppm | 12.0 ± 0.1 | 23.2 ± 4.8 |
Means | |||
Temperature (25 °C) | 13.5 ± 1.3 | 46.2 ± 3.1 | |
Temperature (30 °C) | 12.4 ± 3.7 | 22.4 ± 6.5 | |
CO2 (400 ppm) | 10.7 ± 0.3 | 27.6 ± 13.7 | |
CO2 (650 ppm) | 14.7 ± 0.3 | 43.9 ± 5.9 | |
CO2 (950 ppm) | 13.5 ± 1.1 | 31.2 ± 5.7 |
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishizawa, T. Current status and future prospect of strawberry production in East Asia and Southeast Asia. Acta Hortic. 2021, 1309, 395–402. [Google Scholar] [CrossRef]
- de Tommaso, N.; López Aranda, J.M.; Greco, N.; Saporiti, M.; Maccarini, C.; Myrta, A. Sustainability of strawberry nurseries and fruit production in relation to fumigation practices in Europe. Acta Hortic. 2021, 1309, 693–700. [Google Scholar] [CrossRef]
- Clark, S.; Mousavi-Avval, S.H. Global warming potential of organic strawberry production under unheated high tunnels in Kentucky, USA. Sustainability 2022, 14, 1778. [Google Scholar] [CrossRef]
- Enciso-Garay, C.R.; Santacruz-Oviedo, V.R.; Garcia, D.; Guillén, O. Prolificity of strawberry genotypes in subtropical climate. Idesia 2020, 38, 57–63. [Google Scholar] [CrossRef]
- Morkeliüne, A.; Rasiukevičiüte, N.; Valiuškaitè, A. Meteorological conditions in a temperate climate for Colletotrichum acutatum, strawberry pathogen distribution and susceptibility of different cultivars to anthracnose. Agriculture 2021, 11, 80. [Google Scholar] [CrossRef]
- Saridaş, M.A. Seasonal variation of strawberry fruit quality in widely grown cultivars under Mediterranean climate condition. J. Food Compos. Anal. 2021, 97, 103733. [Google Scholar] [CrossRef]
- Sønsteby, A.; Sadojevic, M.; Heide, O.M. Production methods for high yielding plants of everbearing strawberry in the Nordic climate. Horticulturae 2022, 8, 249. [Google Scholar] [CrossRef]
- Hughes, B.R.; Fisher, P.; Jamieson, A.R. Comparison of nine clones of ‘Jewel’ strawberry in Ontario and Nova Scotia. Internat. J. Fruit Sci. 2013, 13, 175–183. [Google Scholar] [CrossRef]
- Estrella, N.; Sparks, T.H.; Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Change Biol. 2007, 13, 1737–1747. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cahill, K.N.; Field, C.B. Historical effects of temperature and precipitation on California crop yields. Clim. Change 2007, 81, 187–203. [Google Scholar] [CrossRef]
- Dale, A. How climate change could influence breeding and modern production systems in berry crops. Acta Hortic. 2009, 838, 161–167. [Google Scholar] [CrossRef]
- Døving, A. Climate change and strawberry season in Norway. Acta Hortic. 2009, 842, 753–756. [Google Scholar] [CrossRef]
- Esitken, A.; Ercisli, S.; Yildiz, H.; Orhan, E. Does climate change have an effect on strawberry yield in colder growing areas? Acta Hortic. 2009, 838, 59–61. [Google Scholar] [CrossRef]
- Deschenes, O.; Kolstad, C. Economic impacts of climate change on California agriculture. Clim. Change 2011, 109, 365–386. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Field, C.B. California perennial crops in a changing climate. Clim. Change 2011, 109, 317–333. [Google Scholar] [CrossRef]
- Neri, D.; Baruzzi, G.; Massetani, F.; Faedi, W. Strawberry production in forced and protected culture in Europe as a response to climate change. Can. J. Plant Sci. 2012, 92, 1021–1036. [Google Scholar] [CrossRef]
- Bethere, L.; Sïle, T.; Seņņikovs, J.; Bethers, U. Impact of climate change on the timing of strawberry phenological processes in the Baltic States. Est. J. Earth Sci. 2016, 65, 48–58. [Google Scholar] [CrossRef]
- Kerr, A.; Dialesandro, J.; Steenwerth, K.; Lopez-Brody, N.; Elias, E. Vulnerability of California specialty crops to projected mid-century temperature changes. Clim. Change 2018, 148, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Pathak, T.B.; Maskey, M.L.; Dahlberg, J.A.; Kearns, F.; Bali, K.M.; Zaccaria, D. Climate change trends and impacts on California agriculture: A detailed review. Agronomy 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Maskey, M.L.; Pathak, T.B.; Dara, S.K. Weather based strawberry yield forecasts at field scale using statistical and machine learning models. Atmosphere 2019, 10, 378. [Google Scholar] [CrossRef]
- Heide, O.M.; Sønsteby, A. Climate-photothermographs, a tool for ecophysiological assessment of effects of climate warming in crop plants: Examples with three berry crops. J. Berry Res. 2020, 10, 439–445. [Google Scholar] [CrossRef]
- Hong, C.; Mueeler, N.D.; Burney, J.A.; Zhang, Y.; AghaKouchak, A.; Moore, F.C.; Qin, Y.; Tong, D.; Davis, S.J. Impacts of ozone and climate change on yields of perennial crops in California. Nat. Food 2020, 1, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M. GISS analysis of surface temperature change. J. Geophys. Res. 1999, 104, 30997–31022. [Google Scholar] [CrossRef]
- Olesen, T. Late 20th century warming in a coastal horticultural region and its effects on tree phenology. N. Z. J. Crop Hortic. Sci. 2011, 39, 119–129. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Osbrough, S.L. Tipping points and changes in Australia climate and extremes. Climate 2022, 10, 73. [Google Scholar] [CrossRef]
- Pereira, S.C.; Carvalho, D.; Rocha, A. Temperature and precipitation extremes over the Iberian Peninsula under climate change scenarios: A review. Climate 2021, 9, 139. [Google Scholar] [CrossRef]
- Bjurman, B. Environmental influence on the vegetative and generative development of the strawberry plant. Swed. J. Agric. Sci. 1975, 5, 163–173. [Google Scholar]
- Kumakura, H.; Shishido, Y. The effect of daytime, nighttime, and mean diurnal temperatures on the growth of ‘Morioka-16′ strawberry fruit and plants. J. Jap. Soc. Hortic. Sci. 1994, 62, 827–832. [Google Scholar] [CrossRef]
- Le Mière, P.; Hadley, P.; Darby, J.; Battey, N.H. The effect of thermal environment, planting date and crown size on growth, development and yield of Fragaria × ananassa Duch. cv. Elsanta. J. Hortic. Sci. Biotechnol. 1998, 73, 786–795. [Google Scholar] [CrossRef]
- Kadir, S.; Sidhu, G.; Al-Khatib, K. Strawberry (Fragaria × ananassa Duch.) growth and productivity as affected by temperature. HortScience 2006, 41, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Wagstaffe, A.; Battey, N.H. The optimum temperature for long-season cropping in the everbearing strawberry ‘Everest’. Acta Hortic. 2006, 708, 45–49. [Google Scholar] [CrossRef]
- Kruger, E.; Josuttis, M.; Nestby, R.; Toldam-Andersen, T.B.; Carlen, C.; Mezzetti, B. Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality. J. Berry Res. 2012, 2, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Palencia, P.; Martínez, F.; Medina, J.J.; López-Medina, J. Strawberry yield efficiency and its correlation with temperature and solar radiation. Hortic. Bras. 2013, 31, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Cocco, C.; Magnani, S.; Maltoni, M.L.; Quacquarelli, I.; Cacchi, M.; Antunes, L.E.C.; D’Antuono, L.F.; Faedi, W.; Baruzzi, G. Effects of site and genotype on strawberry fruits quality traits and bioactive compounds. J. Berry Res. 2015, 5, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Taghavi, T.; Dale, A.; Hughes, B.; Zandstra, J. The performance of dayneutral strawberries differs between environments in Ontario. Can. J. Plant Sci. 2016, 96, 662–669. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Saha, M.G.; Islam, M.N.; Ullah, M.A.; Quamruzzaman, A.K.M. Phenology and yield of strawberry as influenced by planting time and genotypes in sub-tropical region. Pak. J. Sci. Ind. Res. Ser. B Biol Sci. 2016, 59, 126–132. [Google Scholar] [CrossRef]
- Condori, B.; Fleisher, D.H.; Lewers, K. Relationship of strawberry yield with microclimate factors in open and covered raised-bed production. Trans. ASABE 2017, 60, 1511–1525. [Google Scholar] [CrossRef]
- Sønsteby, A.; Heide, O.M. Flowering performance and yield of established and recent strawberry cultivars (Fragaria × ananassa) as affected by raising temperature and photoperiod. J. Hortic. Sci. Biotechnol. 2017, 92, 367–375. [Google Scholar] [CrossRef]
- Butare, D. Effect of temperature on plant growth and yield in ever-bearing strawberry Fragaria × ananassa, cv. Florentina. Master’s Thesis, Swedish University of Agricultural Sciences, Alnap, Sweden, 2020. [Google Scholar]
- Rivero, R.; Remberg, S.F.; Heide, O.M.; Sønsteby, A. Effect of temperature and photoperiod preconditioning on flowering and yield performance of three everbearing strawberry cultivars. Horticulturae 2022, 8, 504. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Zheng, Q.; Yao, M.; Yang, Z. Characteristics of compound low-temperature and limited-light events in southern China and their effects on greenhouse grown strawberry. Theor. Appl. Climatol. 2022, 150, 155–165. [Google Scholar] [CrossRef]
- Poorter, H.; Fiorani, F.; Pieruschka, R.; Wojciechowski, T.; van der Putten, W.; Kleyer, M.; Schurr, U.; Postma, J. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 2016, 212, 838–855. [Google Scholar] [CrossRef] [PubMed]
- Abdussamatov, H.I. Climate sensitivity to an increase in the carbon dioxide concentration in the atmosphere decreases with an increase in the water vapor concentration upon warming. Geomagn. Aeron. 2021, 61, 978–984. [Google Scholar] [CrossRef]
- Ruiz-Vera, U.M.; Siebers, M.; Gray, S.B.; Drag, D.W.; Rosenthal, D.M.; Kimball, B.A.; Ort, D.R.; Bernacchi, C.J. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol. 2013, 162, 410–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Cai, C.; He, J.; Gu, J.; Zhu, G.; Zhang, W.; Zhu, J.; Liu, G. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Res. 2020, 248, 107605. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 2021, 27, 27–49. [Google Scholar] [CrossRef]
- Keutgen, N.; Chen, K.; Lenz, F. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol. 1997, 150, 395–400. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Iwasaki, Y.; Funayama, M.; Ninomiya, S.; Fuke, M.; Nwe, Y.Y.; Yamada, M.; Ogiwara, I. Analysis of a high-yielding strawberry (Fragaria × ananassa Duch.) cultivar ‘Benihoppe’ with focus on dry matter production and leaf photosynthetic rate. J. Jpn. Soc. Hortic. Sci. 2013, 82, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Bunce, J.A. Seasonal patterns of photosynthetic response and acclimation to elevated carbon dioxide in field-grown strawberry. Photosynth. Res. 2001, 68, 237–245. [Google Scholar] [CrossRef]
- Oda, Y. Effects of light intensity, CO2 concentration and leaf temperature on gas exchange of strawberry plants—Feasibility studies on CO2 enrichment in Japanese conditions. Acta Hortic. 1997, 439, 563–573. [Google Scholar] [CrossRef]
- Wada, Y.; Soeno, T.; Inaba, Y. Effects of light and temperature on photosynthetic enhancement by high CO2 concentration of strawberry cultivar Tochiotome leaves under forcing or half-forcing culture. Jpn. J. Crop Sci. 2010, 79, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Jun, H.; Jung, H.; Imai, K. Gas exchange characteristics of a leading cultivar of Korean strawberry (Fragaria × ananassa, ‘Sulhyang’). Sci. Hortic. 2017, 221, 10–15. [Google Scholar] [CrossRef]
- Carlen, C.; Potel, A.M.; Ançay, A. Photosynthetic response of strawberry leaves to changing temperatures. Acta Hortic. 2009, 838, 73–76. [Google Scholar] [CrossRef]
- Chabot, B.F.; Chabot, J.F. Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia 1977, 26, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Sung, F.J.M.; Chen, J.J. Gas exchange rate and yield response of strawberry to carbon dioxide enrichment. Sci. Hortic. 1991, 48, 241–251. [Google Scholar] [CrossRef]
- Deng, X.; Woodward, F.I. The growth and yield responses of Fragaria ananassa to elevated CO2 and N supply. Ann. Bot. 1998, 81, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Itani, Y.; Hara, T.; Phun, W.; Fujime, Y.; Yoshida, Y. Effects of CO2 enrichment and planting density on the yield, fruit quality and absorption of water and mineral nutrients in strawberry grown in peat bag culture. Environ. Control Biol. 1999, 37, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, K.; Nakahara, S.; Yasutake, D.; Zhang, Y.; Okayasu, T.; Dan, K.; Kitano, M.; Sone, K. Crop-load CO2 enrichment improves strawberry yield and fuel use efficiency in protected cultivations. Sci. Hortic. 2022, 301, 111104. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Murakami, S.; Kobayashi, T.; Worarad, K.; Yonezu, Y.; Umeda, H.; Okayama, T.; Inoue, E. Local CO2 application within strawberry plant canopy increased dry matter production and fruit yield in summer and autumn. Int. J. Fruit Sci. 2022, 22, 675–685. [Google Scholar] [CrossRef]
- Tagawa, A.; Ehara, M.; Ito, Y.; Araki, T.; Ozaki, Y.; Shishido, Y. Effects of CO2 enrichment on yield, photosynthetic rate, translocation and distribution of photoassimilates in strawberry ‘Sagahonoka’. Agronomy 2022, 12, 473. [Google Scholar] [CrossRef]
- Balasooriya, H.N.; Dassanayake, K.B.; Seneweera, S.; Ajlouni, S. Interaction of elevated carbon dioxide and temperature on strawberry (Fragaria × ananassa) growth and fruit yield. Int. J. Sci. Eng. Technol. 2018, 12, 279–287. [Google Scholar]
- Sun, P.; Mantri, N.; Lou, H.; Hu, Y.; Sun, D.; Zhu, Y.; Dong, T.; Lu, H. Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (Fragaria × ananassa Duch.) at two levels of nitrogen application. PLoS ONE 2012, 7, e41000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Zhang, X.-C.; Busteed, P.; Flanagan, D.C. Simulating the potential effects of elevated CO2 concentration and temperature coupled with storm intensification on crop yield, surface runoff, and soil loss based on 25 GCMs ensemble: A site-specific case study in Oklahoma. Catena 2022, 214, 106251. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menzel, C.M. Effect of Global Warming on the Yields of Strawberry in Queensland: A Mini-Review. Horticulturae 2023, 9, 142. https://doi.org/10.3390/horticulturae9020142
Menzel CM. Effect of Global Warming on the Yields of Strawberry in Queensland: A Mini-Review. Horticulturae. 2023; 9(2):142. https://doi.org/10.3390/horticulturae9020142
Chicago/Turabian StyleMenzel, Christopher Michael. 2023. "Effect of Global Warming on the Yields of Strawberry in Queensland: A Mini-Review" Horticulturae 9, no. 2: 142. https://doi.org/10.3390/horticulturae9020142
APA StyleMenzel, C. M. (2023). Effect of Global Warming on the Yields of Strawberry in Queensland: A Mini-Review. Horticulturae, 9(2), 142. https://doi.org/10.3390/horticulturae9020142