Application of Strobilurins and Carboxamides Improves the Physiology and Productivity of Tomato Plants in a Protected Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Experimental
2.2. Crop Management
2.3. Physico-Chemical Properties of the Substrate for Vegetable Production
2.4. Variables Analyzed
2.5. Statistical Analysis
3. Results
3.1. Gas Exchange in Tomato Plants
3.2. Photosynthetic Pigment Content of Tomato Plants
3.3. Antioxidant Defense System of Tomato Plants
3.4. Productive Parameters of Tomato Plants
3.5. Postharvest Quality of Tomato Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Countries by Commodity 2020. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 23 April 2022).
- SIDRA—Sistema Ibge de recuperação automática. Levantamento Sistemático da Produção Agrícola. Available online: https://sidra.ibge.gov.br/home/lspa/brasil (accessed on 23 April 2022).
- Töfoli, J.G.; Domingues, R.J.; Ferrari, J.T. Requeima e mancha de alternaria nas culturas da batata e tomate: Divulgação técnica 76. Inst. Biológico 2013, 75, 33–40. [Google Scholar]
- AGROFIT—Sistema de Agrotóxicos Fitossanitário. Available online: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 23 April 2022).
- HORTIFRUTI BRASIL. Hortaliças—Gestão Sustentável. Available online: https://www.hfbrasil.org.br/br/revista/acessar/completo/especial-hortalicas.aspx (accessed on 25 April 2022).
- Venancio, W.S.; Rodrigues, M.A.T.; Begliomini, E.; Souza, N.L.D. Physiological effects of strobilurin fungicides on plants. Publ. UEPG Ciências Exatas E Da Terra Agrárias E Eng. 2003, 9, 59–68. [Google Scholar]
- Töfoli, J.G.; Domingues, R.J. Severa Pinta Preta. Available online: http://www.biologico.sp.gov.br/artigos_ok.php?id_artigo=59 (accessed on 25 April 2022).
- Fagan, E.B.; Dourado Neto, D.; Vivian, R.; Franco, R.B.; Yeda, M.P.; Massignam, L.F.; Martins, K.V. Efeito da aplicação de piraclostrobina na taxa fotossintética, respiração, atividade da enzima nitrato redutase e produtividade de grãos de soja. Bragantia 2010, 69, 771–777. [Google Scholar] [CrossRef]
- Amaro, A.C.E.; Ramos, A.R.P.; Macedo, A.C.; Ono, E.O.; Rodrigues, J.D. Effects of the fungicides azoxystrobin, pyraclostrobin and boscalid on the physiology of Japanese cucumber. Sci. Hortic. 2018, 228, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Colombari, L.F.; Baldini, L.F.G.; Baldini, V.; Cardoso, A.I.I.; Goto, R. Efeito fisiológico de fungicidas sistémicos em parâmetros agronômicos da cenoura. Rev. Bras. Cienc. Agrar. 2015, 38, 366–371. [Google Scholar] [CrossRef]
- Ramos, R.P.; Amaro, A.C.E.; Macedo, A.C.; Souza, E.R.; Rodrigue, J.D.; Ono, E.O. Acúmulo de carboidratos no desenvolvimento de tomateiro tratado com produtos químicos. Semin. Ciên. Agrár. 2015, 36, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Macedo, A.C.; Amaro, A.C.E.; Ramos, A.R.P.; Ono, E.O.; Rodrigues, J.D. Strobilurin and boscalid in the quality of net melon fruits. Semin Ciên Agrár. 2017, 38, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Rama Devi, S.; Prasad, M.N.V. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci. 1998, 138, 157–165. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Peixoto, H.P.P.; Cambraia, J.; Santana, R.; Mosquim, P.R.; Moreira, M.A. Aluminium effects on lipid peroxidation and the activities of enzymes of oxidative metabolism in sorghum. Rev. Bras. De Fisiol. Veg. 1999, 11, 137–143. [Google Scholar]
- Teisseire, H.; Guy, V. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci. 2000, 153, 65–72. [Google Scholar] [CrossRef]
- Streeter, J.G.; Bosler, M.E. Comparison of in vitro and in vivo assays for nitrate reductase in soybean leaves. Plant Physio. 1972, 49, 448. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Cqh/Ceagesp. Programa Brasileiro para Modernização da Horticultura. In Normas Técnicas de Classificação do Tomate; Centro de qualidade em Horticultura (CQH. Documentos, 26): São Paulo, Brazil, 2003.
- Pregnolatto, W.; Pregnolatto, N.P. Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos Para Análise de Alimentos; Instituto Adolfo Lutz: São Paulo, Brasil, 1985; 533p. [Google Scholar]
- Instituto Adolfo Lutz. Normas Analíticas: Métodos Químicos e Físicos Para Análise de Alimentos, 2nd ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2008; 371p. [Google Scholar]
- Tressler, D.K.; Joslyn, M.A. Fruits and Vegetables Juice Processing Technology; Conn. AVI: Westport, CT, USA, 1961; 1028p. [Google Scholar]
- Ruela, V.M.; Silva, A.B.; Veiga, A.D.; Souza, T.C.; Marques, D.M.; Costa, C.E.M.; Rezende, T.T. Growth and physiological response of coffee seedlings treated with fungicides. Coffee Sci. 2019, 14, 138–146. [Google Scholar] [CrossRef]
- Grossmann, K.; Retzlaff, G. Bioregulatory Effects of the Fungicidal Strobilurin Kresoxim-methyl in Wheat (Triticum aestivum). Pestic. Sci. 1997, 50, 11–20. [Google Scholar] [CrossRef]
- Bryson, R.J.; Leandro, L.; Jones, D.R. The physiological effects of kresoxim-methyl on wheat leaf greenness and the implication for crop yield. In Proceedings of the Righton Crop Protection Conference—Pests and Diseases, Brighton, UK, 13–16 November 2000. [Google Scholar]
- Amaro, A.C.E.; Baron, D.; Ono, E.O.; Rodrigues, J.D. Physiological effects of strobilurin and carboxamides on plants: An overview. Acta Physiol. Plant. 2020, 42, 4. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Carucci, F.; Nardella, E.; Francavilla, M.; Ricciardi, L.; Lotti, C.; Gatta, G. Combined effects of deficit irrigation and strobilurin application on gas exchange, yield and water use efficiency in tomato (Solanum lycopersicum L.). Sci. Hortic. 2018, 233, 149–158. [Google Scholar] [CrossRef]
- Boari, F.; Cantore, V.; Di Venere, D.; Sergio, L.; Candido, V.; Schiattone, M.I. Pyraclostrobin can mitigate salinity stress in tomato crop. Agric. Water Manag. 2019, 222, 254–264. [Google Scholar] [CrossRef]
- Ajigboye, O.O.; Murchie, E.; Ray, R.V. Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter wheat. Pestic. Biochem. Physiol. 2014, 114, 52–60. [Google Scholar] [CrossRef]
- Köhle, H.; Grossmann, K.; Jabs, T.; Gerhard, M.; Kaiser, W.; Glaab, J.; Conrath., U.; Seehaus, K.; Herms, S. Physiological Effects of the Strobilurin Fungicide F 500 on Plants; Dehne, H.W., Gisi, U., Kuck, K.H., Russell, P.E., Lyr, H., Eds.; Modern Fungicides and Antifungal Compounds III. Andover; AgroConcept GmbH: Bonn, Germany, 2003. [Google Scholar]
- Scandalios, J.G. Oxygen Stress and Superoxide Dismutases. Plant Physiol. 1993, 101, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zkiewicz, M.D.; Ska-Polit, E.S.; Krupa, Z. Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. BioMetals 2004, 17, 379–387. [Google Scholar] [CrossRef]
- Liang, S.; Xu, X.; Lu, Z. Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves. J. Ginseng. Res. 2018, 42, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, L.A.; Corpas, F.J.; Lopez–Huertas, E.; Palma, J.M. Plant Superoxide Dismutases: Function under Abiotic Stress Conditions. In Antioxidants and Antioxidant Enzymes in Higher Plants; Gupta, D., Palma, J., Corpas, F., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–26. [Google Scholar]
- Farooq, M.A.; Niazi, A.K.; Akhtar, J.; Saifullah; Farooq, M.; Souri, Z.; Karimi, N.; Rengel, Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem. 2019, 141, 353–369. [Google Scholar] [CrossRef]
- Tuzet, A.; Rahantaniaina, M.S.; Noctor, G. Analyzing the function of catalase and the ascorbate-glutathione pathway in H2O2 processing: Insights from an experimentally constrained kinetic model. Antioxid. Redox. Signal. 2019, 30, 1238–1268. [Google Scholar] [CrossRef] [PubMed]
- Factor, T.L.S.L.; Júnior, S.L.; Purquerio, L.F.V. Secondary effects of fungicides in tomato seedlings production. Acta Hortic. 2011, 923, 269–275. [Google Scholar] [CrossRef]
- Bhatla, S.C.; Lal, M.A. Plant Physiology, Development and Metabolism; Springer Nature Singapore Pte Ltd.: Singapore, 2018. [Google Scholar]
- Ruske, R.E.; Gooding, M.J.; Jones, S.A. The effects of triazole and strobilurin fungicide programmes on nitrogen uptake, partitioning, remobilization and grain N accumulation in winter wheat cultivars. J. Agric. Sci. 2003, 140, 395–407. [Google Scholar] [CrossRef]
- Marek, J.; Azevedo, D.; Ono, E.O.; Rodrigues, J.D.; Faria, C.M.D.R. Photoynthetic and productive increase in tomato plants treated with strobilurins and carboxamides for the control of Alternaria solani. Sci. Hortic. 2018, 242, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Antunes, M.C.; Cuquel, F.L.; Zawadneak, M.A.C.; Mogor, A.F.; Resende, J.T.V. Postharvest quality of strawberry produced during two consecutive seasons. Hortic. Bras. 2014, 32, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Chitarra, M.I.F.; Chitarra, A.B. Pós-Colheita de Frutas e Hortaliças: Fisiologia e Manuseio, 2nd ed.; UFLA: Lavras, Brasil, 2005; 785p. [Google Scholar]
- Hörtensteiner, S.; Kräutler, B. Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta BBABioenerg 2005, 1807, 977–988. [Google Scholar] [CrossRef]
- Rodrigues, M.A.T. Avaliação do Efeito Fisiológico do Uso de Fungicidas na Cultura de Soja. In Tese de Doutorado em Fitotecnia—Escola Superior de Agricultura “Luiz de Queiroz”; Universidade de São Paulo: Piracicaba, Brazil, 2009. [Google Scholar]
Treatments | A (μmolCO2 m−2s−1) | gs (mol m−2s−1) | Ci (μmolCO2 mol−1ar) | E (mmol Water Vapor m−2s−1) | EUA μmolCO2 (mmol H2O)−1 | A/Ci |
---|---|---|---|---|---|---|
T0—Control | 12.47 d | 0.313 a | 274.40 a | 6.00 a | 2.10 c | 0.046 d |
T1—Azoxystrobin | 15.09 c | 0.269 b | 229.10 b | 5.83 a | 2.62 b | 0.067 c |
T2—Boscalid | 21.27 a | 0.269 b | 207.18 c | 5.76 a | 3.71 a | 0.103 a |
T3—Pyraclostrobin | 19.69 a | 0.299 a | 222.64 b | 5.83 a | 3.39 a | 0.089 b |
T4—Fluxapyroxad | 18.45 b | 0.318 a | 241.76 b | 6.17 a | 3.01 a | 0.076 b |
T5—Fluxapyroxad + Pyraclostrobin | 18.14 b | 0.296 a | 227.99 b | 5.71 a | 3.21 a | 0.080 b |
CV (%) | 8.07 | 7.09 | 5.15 | 7.04 | 10.89 | 10.95 |
30 DAT | 60 DAT | 120 DAT | ||||
---|---|---|---|---|---|---|
Treatments | Cl a (µg/g) | Cl b (µg/g) | Cl a (µg/g) | Cl b (µg/g) | Cl a (µg/g) | Cl b (µg/g) |
T0—Control | 464.67 d | 210.06 d | 522.98 f | 595.02 a | 753.36 b | 507.76 c |
T1—Azoxystrobin | 395.91 d | 177.98 d | 642.48 e | 483.10 b | 1153.66 a | 791.88 a |
T2—Boscalid | 814.77 b | 414.55 c | 1169.82 b | 682.56 a | 846.93 b | 669.68 b |
T3—Pyraclostrobin | 627.74 c | 526.23 b | 1282.36 a | 619.89 a | 897.90 b | 683.65 b |
T4—Fluxapyroxad | 769.96 b | 513.99 b | 806.07 d | 621.80 a | 948.46 b | 651.35 b |
T5—Fluxapyroxad + Pyraclostrobin | 1091.90 a | 600.21 a | 942.55 c | 576.29 a | 1156.86 a | 565.72 c |
CV (%) | 10.94 | 10.81 | 5.61 | 9.52 | 9.15 | 8.23 |
30 DAT | |||||
---|---|---|---|---|---|
Treatments | TBARS (nmol/g MF) | SOD (U/mg prot.) | CAT (mKat µg prot.) | POD (µmol/min/mg prot.) | NR (µg nitrito/min/g MF) |
T0—Control | 7.70 a | 2906.71 c | 0.85 c | 31.22 c | 4.94 b |
T1—Azoxystrobin | 7.60 a | 3090.72 c | 0.79 c | 155.62 a | 5.87 b |
T2—Boscalid | 7.36 a | 6585.28 a | 1.88 b | 131.27 a | 6.79 a |
T3—Pyraclostrobin | 7.38 a | 4744.58 b | 1.69 b | 135.42 a | 8.06 a |
T4—Fluxapyroxad | 7.74 a | 5884.36 a | 2.26 a | 78.38 b | 7.07 a |
T5—Fluxapyroxad + Pyraclostrobin | 6.65 a | 2836.29 c | 2.44 a | 55.18 b | 6.43 a |
CV (%) | 10.95 | 13.13 | 13.33 | 16.57 | 13.01 |
60 DAT | |||||
T0—Control | 7.58 b | 1421.22 d | 0.77 d | 146.22 b | 3.75 c |
T1—Azoxystrobin | 13.48 a | 3990.48 c | 4.01 c | 143.54 b | 8.93 a |
T2—Boscalid | 8.33 b | 6124.88 b | 4.54 c | 271.81 a | 7.95 a |
T3—Pyraclostrobin | 10.62 b | 9860.88 a | 7.52 b | 145.40 b | 6.95 b |
T4—Fluxapyroxad | 9.30 b | 5907.59 b | 12.56 a | 112.67 c | 6.82 b |
T5—Fluxapyroxad + Pyraclostrobin | 9.05 b | 4324.46 c | 2.01 d | 94.50 c | 6.74 b |
CV (%) | 13.71 | 13.56 | 19.40 | 7.99 | 12.72 |
120 DAT | |||||
T0—Control | 10.44 b | 3254.68 b | 2.66 c | 47.37 e | 3.99 c |
T1—Azoxystrobin | 11.64 b | 2234.13 b | 4.30 b | 114.68 d | 6.48 b |
T2—Boscalid | 7.16 c | 3589.37 b | 4.36 b | 129.14 d | 9.57 a |
T3—Pyraclostrobin | 14.25 a | 11197.49 a | 3.35 c | 155.40 c | 7.66 b |
T4—Fluxapyroxad | 10.13 b | 4173.26 b | 7.86 a | 316.56 a | 10.74 a |
T5—Fluxapyroxad + Pyraclostrobin | 7.71 c | 5126.82 b | 2.53 c | 234.92 b | 7.59 b |
CV (%) | 13.46 | 78.86 | 18.95 | 11.13 | 13.88 |
Treatments | FW (g/Fruit) | PP (kg/Plant) | NF (N° Fruits/Plant) |
---|---|---|---|
T0—Control | 139.42 b | 7.73 d | 7.50 d |
T1—Azoxystrobin | 158.20 a | 11.60 b | 8.62 b |
T2—Boscalid | 129.28 b | 9.99 c | 8.85 b |
T3—Pyraclostrobin | 158.29 a | 13.90 a | 9.43 a |
T4—Fluxapyroxad | 152.62 a | 11.09 b | 8.59 b |
T5—Fluxapyroxad + Pyraclostrobin | 151.02 a | 9.77 c | 8.10 c |
CV (%) | 8.23 | 8.93 | 3.78 |
Treatments | Brix | pH | Ac (g Critic Acid/100 g Pulp) | Ratio |
---|---|---|---|---|
T0—Control | 3.76 a | 4.42 a | 0.13 a | 31.86 c |
T1—Azoxystrobin | 3.46 b | 4.41 a | 0.10 b | 46.71 b |
T2—Boscalid | 3.62 b | 4.28 a | 0.16 a | 25.10 d |
T3—Pyraclostrobin | 3.88 a | 4.28 a | 0.15 a | 27.01 d |
T4—Fluxapyroxad | 3,66 b | 4.42 a | 0.10 b | 61.82 a |
T5—Fluxapyroxad + Pyraclostrobin | 3.52 b | 4.42 a | 0.13 a | 34.26 c |
CV (%) | 4.18 | 4.10 | 19.88 | 11.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobelis, W., Jr.; Aires, E.S.; Ferraz, A.K.L.; Marques, I.C.d.S.; Freitas, F.G.B.F., Jr.; Silva, D.M.R.; Ono, E.O.; Rodrigues, J.D. Application of Strobilurins and Carboxamides Improves the Physiology and Productivity of Tomato Plants in a Protected Environment. Horticulturae 2023, 9, 141. https://doi.org/10.3390/horticulturae9020141
Jacobelis W Jr., Aires ES, Ferraz AKL, Marques ICdS, Freitas FGBF Jr., Silva DMR, Ono EO, Rodrigues JD. Application of Strobilurins and Carboxamides Improves the Physiology and Productivity of Tomato Plants in a Protected Environment. Horticulturae. 2023; 9(2):141. https://doi.org/10.3390/horticulturae9020141
Chicago/Turabian StyleJacobelis, Walter, Jr., Eduardo Santana Aires, Andrew Kim Lopes Ferraz, Isabelly Cristina da Silva Marques, Francisco Gilvan Borges Ferreira Freitas, Jr., Dayane Mércia Ribeiro Silva, Elizabeth Orika Ono, and João Domingos Rodrigues. 2023. "Application of Strobilurins and Carboxamides Improves the Physiology and Productivity of Tomato Plants in a Protected Environment" Horticulturae 9, no. 2: 141. https://doi.org/10.3390/horticulturae9020141
APA StyleJacobelis, W., Jr., Aires, E. S., Ferraz, A. K. L., Marques, I. C. d. S., Freitas, F. G. B. F., Jr., Silva, D. M. R., Ono, E. O., & Rodrigues, J. D. (2023). Application of Strobilurins and Carboxamides Improves the Physiology and Productivity of Tomato Plants in a Protected Environment. Horticulturae, 9(2), 141. https://doi.org/10.3390/horticulturae9020141