The Stability of Important Fruit Traits in Strawberry in Queensland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Growing Conditions
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Weather and the Relationship between Temperature and Solar Radiation
3.2. Effect of Cultivar on Yield and Fruit Quality
3.3. Stability of Fruit Quality
3.4. Relationship between Fruit Quality and the Weather
4. Discussion
4.1. Yield
4.2. Effect of Cultivar and the Time of Harvest on Fruit Quality
4.3. The Stability of Fruit Quality
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Husaini, A.M.; Zaki, F.A. Strawberries: A General Account. In Strawberry: Growth, Development and Diseases; Husaini, A.M., Neri, D., Eds.; CABI: Wallingford, UK, 2016; pp. 1–9. [Google Scholar]
- Hancock, J.F. Strawberries; CABI: Wallingford, UK, 2020; p. 237. [Google Scholar]
- Scott, S.; Rye, J.F. Praised, prized, yet penalised: A critical examination of low-wage hiring queues in the global strawberry industry. J. Rural Stud. 2021, 89, 473–481. [Google Scholar] [CrossRef]
- Yuan, B.-Z.; Sun, J. Bibliometric analysis of strawberry (Fragaria × ananassa Duch.) research publications from horticulture category based on web of science. J. Berry Res. 2021, 11, 721–738. [Google Scholar] [CrossRef]
- Hummer, K.E.; Bassil, N.V.; Zurn, J.D.; Amyotte, B. Phenotypic characterization of a strawberry (Fragaria ×ananassa Duchesne ex Rosier) diversity collection. Plants People Planet 2022. [Google Scholar] [CrossRef]
- Sonsteby, A.; Sadojevic, M.; Heide, O.M. Production methods for high yielding plants of everbearing strawberry in the Nordic climate. Horticulturae 2022, 8, 249. [Google Scholar] [CrossRef]
- Brym, M.; Fu, Y.; Frade, N.; Baldwin, E.; Chambers, A.H. Strawberry cultivar trials for yield and fruit quality in subtropical southern Florida. HortTechnology 2022, 32, 388–390. [Google Scholar] [CrossRef]
- Saridaş, M.A. Seasonal variation of strawberry fruit quality in widely grown cultivars under Mediterranean climate condition. J. Food Compos. Anal. 2021, 97, 103733. [Google Scholar] [CrossRef]
- Di Vittori, L.; Mazzoni, L.; Battino, M.; Mezzetti, B. Pre-harvest factors influencing the quality of berries. Sci. Hortic. 2018, 233, 310–322. [Google Scholar] [CrossRef]
- Dong, W.; Lu, Y.; Yang, T.; Trouth, F.; Lewers, K.S.; Daughtry, C.S.T.; Cheng, Z.-M. Effect of genotype and plastic film type on strawberry fruit quality and post-harvest shelf life. Int. J. Fruit Sci. 2020, 20, 750–767. [Google Scholar] [CrossRef]
- Le Mière, P.; Hadley, P.; Darby, J.; Battey, N.H. The effect of thermal environment, planting date and crown size on growth, development and yield of Fragaria × ananassa Duch. cv. Elsanta. J. Hortic. Sci. Biotechnol. 1998, 73, 786–795. [Google Scholar] [CrossRef]
- MacKenzie, S.J.; Chandler, C.K.; Hasing, T.; Whitaker, V.M. The role of temperature in the late-season decline in soluble solids content of strawberry fruit in a subtropical production system. HortScience 2011, 46, 1562–1566. [Google Scholar] [CrossRef]
- Pyrotis, S.; Abayomi, L.; Rees, D.; Orchard, J. Effect of temperature and humidity on strawberry firmness at two different sites in the Huelva region of Spain. Acta Hortic. 2012, 926, 567–570. [Google Scholar] [CrossRef]
- Ariza, M.T.; Miranda, L.; Gómez-Mora, J.A.; Medina, J.J.; Lozano, D.; Gavilán, P.; Soria, C.; Martínez-Ferri, E. Yield and fruit quality of strawberry cultivars under different irrigation regimes. Agronomy 2021, 11, 261. [Google Scholar] [CrossRef]
- Hopf, A.; Boote, K.J.; Plotto, A.; Asseng, S.; Zhao, X.; Shelia, V.; Hoogenboom, G. Dynamic prediction of preharvest strawberry quality traits as a function of environmental factors. HortScience 2022, 57, 1336–1355. [Google Scholar] [CrossRef]
- Hasing, T.N.; Osorio, L.F.; Whitaker, V.M. Within-season stability of strawberry soluble solids content. J. Am. Soc. Hortic. Sci. 2013, 138, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Gooding, H.J.; Jennings, D.L.; Topham, P.B. A genotype-environment experiment on strawberries in Scotland. Heredity 1975, 34, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Chandler, C.K.; Stoffella, P.J.; Albregts, E.E.; Howard, C.M. Stability of strawberry genotypes in annual hill cultural system. HortScience 1991, 26, 1409–1411. [Google Scholar] [CrossRef] [Green Version]
- Sone, K.; Mochizuki, T.; Noguchi, Y. Variations in ascorbic acid content among strawberry cultivars and their harvest times. J. Jpn. Soc. Hortic. Sci. 1999, 68, 1007–1014. [Google Scholar] [CrossRef]
- Sone, K.; Mochizuki, T.; Noguchi, Y. Relationship between stability of eating quality of strawberry cultivars and their sugar and organic acid content. J. Jpn. Soc. Hortic. Sci. 2000, 69, 736–743. [Google Scholar] [CrossRef]
- Pelayo-Zaldívar, C.; Ebeler, S.E.; Kader, A.A. Cultivar and harvest date effects on flavor and other quality attributes of California strawberries. J. Food Qual. 2005, 28, 78–97. [Google Scholar] [CrossRef]
- Costa, A.F.; Leal, N.R.; Ventura, J.A.; Conçalves, L.S.A.; do Amaral, A.T., Jr.; Costa, H. Adaptability and stability of strawberry cultivars using a mixed model. Acta Sci. 2015, 37, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, A.; Resende, J.T.V.; Zeist, A.R.; Resende, L.V.; Resende, N.C.V.; Galvão, A.G.; Zeist, R.A.; de Lima Filho, R.B.; Corrêa, J.V.W.; Camargo, C.K. Phenotypic stability of strawberry cultivars assessed in three environments. Genetics Mol. Res. 2018, 17, gmr18041. [Google Scholar] [CrossRef]
- Gabriel, A.; de Resende, J.T.V.; Zeist, A.R.; Resende, L.V.; Resende, N.C.V.; Zeist, R.A. Phenotypic stability of strawberry cultivars based on physiochemical traits of fruits. Hortic. Bras. 2019, 37, 75–81. [Google Scholar] [CrossRef]
- Cervantes, L.; Ariza, M.T.; Miranda, L.; Lozano, D.; Medina, J.J.; Soria, C.; Martínez-Ferri, E. Stability of fruit quality traits of different strawberry varieties under variable environmental conditions. Agronomy 2020, 10, 1242. [Google Scholar] [CrossRef]
- Mazzoni, L.; Di Vittori, L.; Balducci, F.; Forbes-Hernández, T.Y.; Giampieri, F.; Battino, M.; Mezzetti, B.; Capocasa, F. Sensorial and nutritional quality of inter and intra-specific strawberry genotypes selected in resilient conditions. Sci. Hortic. 2020, 261, 108945. [Google Scholar] [CrossRef]
- Guevara-Terán, M.; Gonzalez-Paramás, A.M.; Beltrán-Noboa, A.; Giampieri, F.; Battino, M.; Tejera, E.; Alvarez-Suarez, J.M. Influence of altitude on the physiochemical composition and antioxidant capacity of strawberry: A preliminary systematic review and meta-analysis. Phytochem. Rev. 2022. [Google Scholar] [CrossRef]
- Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Eberhart, S.A.; Russell, W.A. Stability parameters for comparing varieties. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.A.; Privé, J.P. Yield stability indices of primocane-fruiting red raspberry (Rubus idaeus L.). Can. J. Plant Sci. 2001, 81, 297–301. [Google Scholar] [CrossRef]
- De Souza, M.H.; Pereira, J.D., Jr.; de Marco Steckling, S.; Mencalha, J.; dos Santos Dias, F.; do Amaral Santos de Carvalho Rocha, J.R.; Carneiro, P.C.S.; de Souza Carneiro, J.E. Adaptability and stability analyses of plants using random regression models. PLoS ONE 2020, 15, e0233200. [Google Scholar] [CrossRef]
- Reckling, M.; Ahrends, H.; Chen, T.-W.; Eugster, W.; Hadasch, S.; Knapp, S.; Laidig, F.; Lindstädter, A.; Macholdt, J.; Piepho, H.-P.; et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Develop. 2021, 41, 27. [Google Scholar] [CrossRef]
- Smutná, P.; Mylonas, I.; Tokatlidis, I.S. The use of stability statistics to analyze genotype x environment interaction in rainfed wheat under diverse agroecosystems. Int. J. Plant Prod. 2021, 15, 261–271. [Google Scholar] [CrossRef]
- Kyratzis, A.; Pallides, A.; Katsiotis, A. Investigating stability parameters for agronomic and quality traits of durum wheat grown under Mediterranean conditions. Agronomy 2022, 12, 1774. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Khalili, M.; Poczai, P.; Olivoto, T. Stability indices to deciphering the genotype-by-environment interaction (GEI) effect: An applicable review for use in plant breeding programs. Plants 2022, 11, 414. [Google Scholar] [CrossRef]
- Zaid, I.U.; Zahra, N.; Habib, M.; Naeem, M.K.; Asghar, U.; Uzair, M.; Latif, A.; Rehman, A.; Ali, G.M.; Khan, M.R. Estimation of genetic variance and stability components of yield-related traits of green super rice at multi-environmental conditions in Pakistan. Agronomy 2022, 12, 1157. [Google Scholar] [CrossRef]
- Chandler, C.K.; Legard, D.E.; Dunigan, D.D.; Crocker, T.E.; Sims, C.A. ‘Strawberry Festival’ strawberry. HortScience 2000, 35, 1366–1367. [Google Scholar] [CrossRef] [Green Version]
- Chandler, C.K.; Santos, B.M.; Peres, N.A.; Jouquand, C.; Plotto, A.; Sims, C.A. ‘Florida Radiance’ strawberry. HortScience 2009, 44, 1769–1770. [Google Scholar] [CrossRef] [Green Version]
- Herrington, M.; Neal, J.; Woolcock, L.; Paynter, M.; Gomez, A.; De Faveri, J. ‘Red Rhapsody’ strawberry. HortScience 2019, 54, 1641–1643. [Google Scholar] [CrossRef] [Green Version]
- Samtani, J.B.; Rom, C.R.; Friedrich, H.; Fennimore, S.A.; Finn, C.E.; Petran, A.; Wallace, R.W.; Pritts, M.P.; Fernandez, G.; Chase, C.A.; et al. The status and future of the strawberry industry in the United States. HortTechnology 2019, 29, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Kallio, H.; Hakala, M.; Pelkkikangas, A.; Lapveteläinen, A. Sugars and acids of strawberry varieties. Eur. Food Res. Technol. 2000, 212, 81–85. [Google Scholar] [CrossRef]
- Menzel, C.M. Higher temperatures decrease fruit size in strawberry growing in the subtropics. Horticulturae 2021, 7, 34. [Google Scholar] [CrossRef]
- Herrington, M.E.; Hardner, C.; Wegener, M.; Woolcock, L.; Dieters, M.J. Estimating an aggregate economic genotype to facilitate breeding and selection of strawberry genotypes in southeast Queensland. J. Amer. Soc. Hortic. Sci. 2014, 139, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Agüero, J.J.; Salazar, S.M.; Kirschbaum, D.S.; Jerez, E.F. Factors affecting fruit quality in strawberries grown in a subtropical environment. Int. J. Fruit Sci. 2015, 15, 223–234. [Google Scholar] [CrossRef]
- Whitaker, V.M.; Osorio, L.F.; Hasing, T.; Gezan, S. Estimation of genetic parameters for 12 fruit and vegetative traits in the University of Florida strawberry breeding population. J. Amer. Soc. Hortic. Sci. 2012, 137, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Mathey, M.M.; Mookerjee, S.; Mahoney, L.L.; Gündüz, K.; Rosyara, U.; Hancock, J.F.; Stewart, P.J.; Whitaker, V.M.; Bassil, N.V.; Davis, T.M.; et al. Genotype by environment interactions and combining ability for strawberry families grown in diverse environments. Euphytica 2017, 213, 112. [Google Scholar] [CrossRef]
- Crespo, P.; Bordonaba, J.G.; Terry, L.A.; Carlen, C. Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem. 2010, 122, 16–24. [Google Scholar] [CrossRef]
- Basson, C.E.; Groenewald, J.-H.; Kossmann, J.; Cronjé, C.; Bauer, R. Sugar and acid-related quality attributes and enzyme activities in strawberry fruits: Invertase is the main sucrose hydrolysing enzyme. Food Chem. 2010, 121, 1156–1162. [Google Scholar] [CrossRef]
- Sheng, L.; Ni, Y.; Wang, J.; Chen, Y.; Gao, H. Characteristic-aroma-component-based evaluation and classification of strawberry varieties by aroma type. Molecules 2021, 26, 6219. [Google Scholar] [CrossRef]
- Rey-Serra, P.; Mnejja, M.; Monfort, A. Inheritance of esters and other volatile compounds responsible for the fruity aroma in strawberry. Front. Plant Sci. 2022, 13, 959155. [Google Scholar] [CrossRef]
- Topcu, H.; Degirmenci, I.; Sonmez, D.A.; Paizila, A.; Karci, H.; Kafkas, S.; Kafkas, E.; Ercisli, S.; Alatawi, A. Sugar, invertase enzyme activities and invertase gene expression in different developmental stages of strawberry fruits. Plants 2022, 11, 509. [Google Scholar] [CrossRef]
- Guan, W.; Haseman, D.; Ingwell, L.; Egel, D.S. Strawberry cultivar evaluation for fall-planted high tunnel system. HortTechnology 2022, 32, 542–551. [Google Scholar] [CrossRef]
Period | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|
2022 | |||||||
Mean daily maximum temperature (°C) | 25.9 | 25.8 | 21.7 | 19.9 | 21.7 | 24.0 | 24.5 |
Mean daily minimum temperature (°C) | 17.6 | 17.3 | 10.1 | 10.3 | 10.0 | 13.4 | 16.0 |
Mean daily solar radiation (MJ/m2) | 15.6 | 10.4 | 13.4 | 12.0 | 14.8 | 16.8 | 16.8 |
Total monthly rainfall (mm) | 124 | 586 | 12 | 238 | 28 | 120 | 171 |
Long-term average | |||||||
Mean daily maximum temperature (°C) | 26.1 | 23.5 | 21.3 | 20.8 | 22.3 | 24.6 | 26.5 |
Mean daily minimum temperature (°C) | 15.0 | 11.7 | 8.5 | 7.0 | 7.4 | 9.8 | 13.2 |
Mean daily solar radiation (MJ/m2) | 16.2 | 13.7 | 11.7 | 13.1 | 16.1 | 18.9 | 20.9 |
Total monthly rainfall (mm) | 160 | 109 | 110 | 57 | 45 | 48 | 128 |
Cultivar | Marketable Yield (g/plant) | Fruit Weight (g) | Soluble Solids Content (%) | Titratable Acidity (%) |
---|---|---|---|---|
Festival | 379 ± 8 a | 21.3 ± 0.2 a | 8.3 ± 0.1 d | 0.66 ± 0.02 bc |
Fortuna | 363 ± 14 a | 25.0 ± 0.4 c | 7.5 ± 0.1 c | 0.58 ± 0.003 a |
Red Rhapsody | 352 ± 27 a | 24.7 ± 0.4 c | 7.4 ± 0.05 c | 0.67 ± 0.01 c |
Fronteras | 416 ± 21 a | 27.6 ± 0.4 d | 7.1 ± 0.1 b | 0.55 ± 0.01 a |
Grenada | 362 ± 20 a | 23.7 ± 0.2 b | 6.9 ± 0.1 a | 0.69 ± 0.01 c |
Petaluma | 353 ± 8 a | 27.8 ± 0.5 d | 7.2 ± 0.1 b | 0.63 ± 0.01 b |
Cultivar | Range in Fruit Weight (g) | p Value from the Regression | R2 Value from the Regression | Stability Index (±s.e.) |
---|---|---|---|---|
Festival | 18.3 to 27.5 | <0.001 | 0.67 | 0.84 ± 0.17 |
Fortuna | 22.1 to 29.7 | 0.004 | 0.54 | 0.74 ± 0.20 |
Red Rhapsody | 20.3 to 28.7 | <0.001 | 0.74 | 0.80 ± 0.14 |
Fronteras | 21.4 to 33.6 | <0.001 | 0.86 | 1.10 ± 0.13 |
Grenada | 18.5 to 29.1 | <0.001 | 0.78 | 1.19 ± 0.19 |
Petaluma | 20.4 to 36.1 | <0.001 | 0.90 | 1.27 ± 0.13 |
Cultivar | Range in Soluble Solids Content (%) | p Value from the Regression | R2 Value from the Regression | Stability Index (±s.e.) |
---|---|---|---|---|
Festival | 7.5 to 9.1 | 0.011 | 0.44 | 0.53 ± 0.17 |
Fortuna | 7.2 to 8.2 | 0.006 | 0.50 | 0.45 ± 0.13 |
Red Rhapsody | 6.8 to 8.3 | <0.001 | 0.89 | 0.84 ± 0.09 |
Fronteras | 5.8 to 8.4 | <0.001 | 0.91 | 1.69 ± 0.16 |
Grenada | 5.8 to 8.5 | <0.001 | 0.89 | 1.75 ± 0.18 |
Petaluma | 6.6 to 8.2 | <0.001 | 0.90 | 0.88 ± 0.09 |
Cultivar | Range in Titratable Acidity (%) | p Value from the Regression | R2 Value from the Regression | Stability Index (±s.e.) |
---|---|---|---|---|
Festival | 0.56 to 0.92 | <0.001 | 0.64 | 1.16 ± 0.15 |
Fortuna | 0.53 to 0.62 | 0.037 | 0.30 | 0.33 ± 0.14 |
Red Rhapsody | 0.52 to 0.91 | <0.001 | 0.90 | 1.33 ± 0.13 |
Fronteras | 0.47 to 0.62 | <0.001 | 0.71 | 0.60 ± 0.11 |
Grenada | 0.54 to 0.86 | <0.001 | 0.87 | 1.29 ± 0.15 |
Petaluma | 0.51 to 0.80 | <0.001 | 0.78 | 1.11 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menzel, C.M. The Stability of Important Fruit Traits in Strawberry in Queensland. Horticulturae 2023, 9, 296. https://doi.org/10.3390/horticulturae9030296
Menzel CM. The Stability of Important Fruit Traits in Strawberry in Queensland. Horticulturae. 2023; 9(3):296. https://doi.org/10.3390/horticulturae9030296
Chicago/Turabian StyleMenzel, Christopher Michael. 2023. "The Stability of Important Fruit Traits in Strawberry in Queensland" Horticulturae 9, no. 3: 296. https://doi.org/10.3390/horticulturae9030296
APA StyleMenzel, C. M. (2023). The Stability of Important Fruit Traits in Strawberry in Queensland. Horticulturae, 9(3), 296. https://doi.org/10.3390/horticulturae9030296