Performance of Wild Tomato Accessions and Elucidation of Resistance against Invasive Pest Phthorimaea absoluta Damage under Tropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sampling for Insects and Damage
2.3. Trichome Type and Density Analysis
2.4. Acylsugar Analysis
2.5. Rearing of P. absoluta and Maintenance of the Colonies
2.6. No Choice Bioassay (Larval Feeding)
2.7. Choice Bioassay (Oviposition Preference)
2.8. Data Analysis
3. Results
3.1. Field Trials
3.2. Choice Assay
3.3. No-Choice Assay
3.4. Morphological Bases of Resistance
3.5. Acylsugar Content
3.6. Correlation between P. absoluta Damage and Morphological or Biochemical Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandrashekar, K.; Shashank, P.R. Invasive Pest Alert. 2014. Available online: http://www.iari.res.in/files/Latest-News/INVASIVE_PEST_ALERT-05022015.pdf (accessed on 25 March 2015).
- Biondi, A.; Guedes, R.; Wan, F.; Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: Past, present, and future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Shashank, P.R.; Suroshe, S.; Singh, P.K.; Chandrashekar, K.; Nebapure, S.; Meshram, N.M. Report of invasive tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae) from northern India. Indian J. Agric. Sci. 2016, 86, 1635–1636. [Google Scholar]
- Lucini, T.; Marcos, V.F.; Cristhiane, R.; Juliano, T.V.R.; Joao Ronaldo, F.D. Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod-Plant Interact. 2015, 9, 45–53. [Google Scholar] [CrossRef]
- Mohamed, E.S.I.; Mahmoud, M.E.E.; Elhaj, M.A.M.; Mohamed, S.A.; Ekesi, S. Host plants record for tomato leaf miner Tuta absoluta (Meyrick) in Sudan. EPPO Bull. 2015, 45, 108–111. [Google Scholar] [CrossRef]
- Dicke, M.; Baldwin, I.T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends Plant Sci. 2010, 15, 167–175. [Google Scholar] [CrossRef]
- CABI. Tomato Leafminer (Tuta absoluta): Impacts and Coping Strategies for Africa. Evidence Note. 2019. Available online: https://www.cabi.org/isc/search/ (accessed on 19 May 2019).
- Solomon, J.D. Characters for determining sex in elm span worm pupae. J. Econ. Entomol. 1962, 55, 269–270. [Google Scholar] [CrossRef]
- Simmons, A.T.; Gurr, G.M. Trichomes of Lycopersicon species and their hybrids: Effects on pests and natural enemies. Agric. For. Entomol. 2005, 7, 265–276. [Google Scholar] [CrossRef]
- Prasannakumar, N.R.; Jyothi, N.; Kumar, G.R.; Saroja, S.; Sridhar, V. Studies on outbreak of tomato pinworm, Tuta absoluta (Meyrick) in South India and its differential susceptibility to insecticides. Pest Manag. Hort. Ecosys. 2020, 26, 97–103. [Google Scholar] [CrossRef]
- Prasannakumar, N.R.; Jyothi, N.; Saroja, S.; Ram Kumar, G. Relative toxicity and insecticide resistance of different field population of tomato leaf miner, Tuta absoluta (Meyrick). Int. J. Trop. Insect Sci. 2021, 41, 1397–1405. [Google Scholar] [CrossRef]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Galdino, T.V.S.; Picanço, M.C.; Ferreira, D.O.; Silva, G.A.R.; Souza, T.C.; Silva, G.A. Is the performance of a specialist herbivore affected by female choices and the adaptability of the offspring? PLoS ONE 2015, 10, e0143389. [Google Scholar] [CrossRef]
- Gill, M.A. Insect resistance in tomato (Solanum spp.). Cultiv. Trop. 2015, 36, 100–110. [Google Scholar]
- Rakha, M.; Hanson, P.; Ramasamy, S. Identification of resistance to Bemisia tabaci (Genn.) in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genet. Resour. Crop Evol. 2017, 64, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Rakha, M.; Zekeya, N.; Sevgan, S.; Musembi, M.; Srinivasan, R.; Hanson, P. Screening recently identified whitefly/spider mite-resistant wild tomato accessions for resistance to Tuta absoluta. Plant Breed. 2017, 136, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Salama, H.S.A.; Ismail, I.A.; Fouda, M.; Ebadah, I.; Shehata, I. Some ecological and behavioral aspects of the tomato leaf miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Ecol. Balk. 2015, 7, 35–44. [Google Scholar]
- Baldin, E.L.; Eneduzzi, R.A. Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Homoptera: Aleyrodidae) in several squash varieties. J. Pest Sci. 2010, 83, 221–227. [Google Scholar] [CrossRef]
- Buta, G.J.; Lusby, W.R.; Neal, J.W.J.; Waters, R.M.; Pittarelli, G.W. Sucrose esters from Nicotiana gossei active against the greenhouse whitefly Trialeuroides vaporarium. Phytochemistry 1993, 32, 859–864. [Google Scholar] [CrossRef]
- Leckie, B.M.; Dejong, D.M.; Mutschler, M.A. Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silver leaf whiteflies. Mol. Breed. 2012, 30, 1621–1634. [Google Scholar] [CrossRef]
- Kim, J.; Kang, K.; Gonzales, V.E.; Shi, F.; Daniel, J.A.; Barry, C.S.; Last, R.L. Striking natural diversity in glandular trichome acylsugar composition is shaped by variation at the acyltransferase2 locus in the wild tomato Solanum habrochaites. Plant Physiol. 2012, 160, 1854–1870. [Google Scholar] [CrossRef] [Green Version]
- Ayalew, G. Effect of the insect growth regulator novaluron on diamondback moths, Plutella xylostella (Lepidoptera: Plutellidae), and its indigenous parasitoids. Crop Prot. 2011, 30, 1087–1090. [Google Scholar] [CrossRef]
- Carter, C.D.; Gianfagna, T.J.; Sacalis, J.N. Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. J. Agric. Food Chem. 1989, 37, 1425–1428. [Google Scholar] [CrossRef]
- Luckwill, L.C. The Genus Lycopersicon: An Historical, Biological, and Taxonomic Survey of the Wild and Cultivated Tomatoes; Aberdeen University: Aberdeen, UK, 1943; p. 44. [Google Scholar]
- Rakha, M.; Bouba, N.; Ramasamy, S.; Regnard, J.; Hanson, P. Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acyl sugar content. Genet. Resour. Crop Evol. 2015, 64, 1011–1022. [Google Scholar] [CrossRef] [Green Version]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24. [Google Scholar] [CrossRef]
- Karnowsky, M.J. A formaldehyde–glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 1965, 27, 137A. [Google Scholar]
- Eric, A.P.; Ward, M.T. Hooked trichomes: A physical plant barrier to a major agricultural pest. Science 1976, 193, 482–484. [Google Scholar]
- Setter, T.L.; Flannigan, B.A.; Melkonian, J. Loss of kernel set due to water deficit and shade in maize: Carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci. 2001, 41, 1530–1540. [Google Scholar] [CrossRef]
- Silva, J.E.; Assis, C.P.; Rebeiro, M.S.; Herbert, A.S. Field-Evolved Resistance and Cross-Resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) Populations to Diamide Insecticides. J. Econ. Entomol. 2016, 109, 2190–2195. [Google Scholar] [CrossRef]
- Peterson, R.G. Agriculture Field Experiments: Design and Analysis; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 November 2019).
- McDonald, J.F.; Moffitt, R.A. The uses of tobit analysis. Rev. Econ. Stat. 1980, 62, 318. [Google Scholar] [CrossRef]
- Kant, M.R.; Ament, K.; Sabelis, M.W.; Harin, M.A.; Schuurink, R.C. Differential timing of spider mite-induced direct and indirect defences in tomato plants. Plant Physiol. 2004, 135, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Gharekhani, G.H.; Salek-Ebrahimi, H. Evaluating the damage of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on some cultivars of tomato under greenhouse condition. Arch. Phytopathol. Pflanzenschutz 2014, 47, 429–436. [Google Scholar] [CrossRef]
- Peter, A.J.; Shanower, T.G.; Romeis, J. The role of plant trichomes in insect-resistance: A selective review. Phytophaga 1995, 7, 41–64. [Google Scholar]
- Levin, D.A. The role of trichomes in plant defense. Q. Rev. Biol. 1973, 48, 3–15. [Google Scholar] [CrossRef]
- De Oliveira, C.M.; De Rade, V.C.J.; Maluf, W.R.; Neiva, I.P.; Maciel, G.M. Resistance of tomato strains to the moth Tuta absoluta imparted by allelochemicals and trichome density. Ciênc. Agrotec. 2012, 36, 45–52. [Google Scholar] [CrossRef]
- Torres, J.B.; Faria, C.A.; Evangelista, W.S.; Pratissoli, D. Within-plant distribution of the leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology. Int. J. Pest Manag. 2001, 47, 173–178. [Google Scholar] [CrossRef]
- Watson, J.S. Recent progress in breeding for insect resistance in three types of cotton. In Cotton Breeding, 2nd ed.; Singh, P., Ed.; Kalyani Publishers: New Delhi, India, 2004; pp. 136–146. [Google Scholar]
- Sohrabi, F.; Nooryazdan, H.R.; Gharati, B.; Saeidi, Z. Plant resistance to the moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato cultivars. Neotrop. Entomol. 2016, 46, 203–209. [Google Scholar] [CrossRef]
- Oliveira, F.A.; Da Silva, D.J.H.; Leite, G.L.D.; Jham, G.N.; Picanço, M. Resistance of 57 greenhouse-grown accessions of Lycopersicon esculentum and three cultivars to Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Sci. Hortic. 2009, 119, 182–187. [Google Scholar] [CrossRef]
- Vosman, B.; Wendy, P.C.; Westende, V.; Henken, B.; Henriëtte, D.L.M.; Eekelenric, V.; Vosroel, C.H.D.; Voorrips, E. Broad spectrum insect resistance and metabolites in close relatives of the cultivated tomato. Euphytica 2018, 214, 46. [Google Scholar] [CrossRef] [Green Version]
- Lucatti, A.F.; Heusden, V.A.W.; Vos, R.C.; Visser, R.G.; Vosman, B. Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evol. Biol. 2013, 13, 175. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.R.; Hansen, B.T.; Nair, V.; Hoyt, F.H.; Dorward, D.W. Scanning Electron Microscopy. Curr. Protoc. Microbiol. 2012, 25, 2B. [Google Scholar] [CrossRef]
- Darbain, S.; Emam, A.K.; Helmi, A.; El-Badawy, S.S.; Moussa, S. Susceptibility of certain tomato cultivars to infestation with Tuta absoluta (meyrick) (Lepidoptera: Gelechiidae) in relation to leaflet trichomes. Egypt J. Agric. Res. 2016, 94, 829–839. [Google Scholar]
- Jayaraj, S.; Uthamasamy, S.; Parameswaran, S. Host plant resistance to insects with reference to biochemical parameters. In Dynamics of Insect-Plant Interaction—Recent Advances and Future Trends; Ananthakrishnan, T.N., Raman, A., Eds.; Oxford and IBH Publishing Company: New Delhi, India, 1988; pp. 29–43. [Google Scholar]
- Jenkins, J.N. State of the art in host plant resistance in cotton. In Cotton Breeding, 2nd ed.; Singh, P., Ed.; Kalyani Publishers: New Delhi, India, 1992; Volume 2, pp. 627–633. [Google Scholar]
- Moore, J.K.; Dixon, P.M. Analysis of combined experiments revisited. Agron. J. 2015, 107, 763–777. [Google Scholar] [CrossRef]
- Kamel, S.A. Relationship between leaf hairiness and resistance to cotton leaf worm. Emp. Cotton Grow. Rev. 1965, 42, 41–48. [Google Scholar]
- Giustolin, T.A.; Vendramim, J.D.; Alves, S.B.; Vieira, S.A.; Pereira, R.M. Susceptibility of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) reared on two species of Lycopersicon to Bacillus thuringiensis var. kurstaki. J. Appl. Entomol. 2001, 125, 551–556. [Google Scholar] [CrossRef]
- Mehta, R.C. Survival and egg production of the cotton spotted bollworm, Earias fabia Stoll. (Lepidoptera: Noctuidae) in relation to plant infestation. Appl. Entomol. Zool. 1971, 6, 206–209. [Google Scholar] [CrossRef]
- Cruz, P.L.; Baldin, E.L.L.; de Castro, J.P.M. Characterization of antibiosis to the silverleaf whitefly Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in cowpea entries. J. Pest Sci. 2015, 87, 639–645. [Google Scholar] [CrossRef]
- Salazar, E.R.; Araya, J.E. Tomato moth, Tuta absoluta (Meyrick) response to insecticides in Arica, Chile. Agric. Tec. 2001, 61, 429–435. [Google Scholar]
- Desneux, N.; Wajnberg, E.; Wyckhuys, K.A.; Burgio, G.; Arpaia, S.; Narváez-Vasquez, C.A.; González-Cabrera, J.; Catalán Ruescas, D.; Tabone, E.; Frandon, J.; et al. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Fernandes, M.E.F.; Fernandes, F.L.; Silva, D.J.H.; Picanço, M.; Jhamc, G.N.; Carneiro, P.; Queiroz, R.B. Trichomes and hydrocarbons associated with the tomato plant antixenosis to the leafminer. An. Acad. Bras. Ciências. 2012, 84, 201–210. [Google Scholar] [CrossRef]
- Borisade, O.A.; Kolawole, A.O.; Adebo, G.M.; Uwaidem, Y.I. The tomato leafminer (Tuta absoluta) (Lepidoptera: Gelechiidae) attack in Nigeria: Effect of climate change on over-sighted pest or agro bioterrorism? J. Agric. Ext. Rural Dev. 2017, 9, 163–171. [Google Scholar] [CrossRef]
- Han, P.; Bayram, Y.; Shaltiel-Harpaz, L.; Sohrabi, F.; Saji, A.; Esenali, U.T.; Jalilov, A.; Ali, A.; Shashank, P.R.; Ismoilov, K. Tuta absoluta continues to disperse in Asia: Damage, ongoing management, and future challenges. J. Pest Sci. 2019, 92, 1317–1327. [Google Scholar] [CrossRef]
- Proffit, M.; Birgersson, G.; Bengtsson, M.; Reis, R.; Witzgall, P.; Lima, E. Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J. Chem. Ecol. 2011, 37, 565–574. [Google Scholar] [CrossRef]
- Channarayappa, C.; Shivashankar, G.; Muniyappa, V.; Frist, R. Resistance of Lycopersicon species to Bemisia tabaci a tomato leaf curl virus vector. Can. J. Bot. 1992, 11, 2184–2192. [Google Scholar] [CrossRef]
Rating Scale | Characteristic Feature/Symptoms |
---|---|
0 | No leaf damage |
1 | 0.1% to 5% of total leaf area damage, small, non-coalescent lesions. |
2 | 5.1 to 20% of total leaf area damaged, small to medium-size, non-coalescent lesions |
3 | 20.1 to 50% of leaf area damaged, medium to large-size lesions |
4 | 50 to 80.1% of leaf area damaged, numerous, large, coalescent lesions |
5 | More than 80.1% of leaf area is damaged, completely deformed plants. |
Egg Load | Larvae Number | Foliage Damage | |||||||
---|---|---|---|---|---|---|---|---|---|
DF | F Value | Pr > F | DF | F Value | Pr > F | DF | F Value | Pr > F | |
Season | 5 | 31.73 | <0.0001 | 5 | 33.81 | <0.0001 | 5 | 39.56 | <0.0001 |
Variety | 4 | 189.19 | <0.0001 | 4 | 221.39 | <0.0001 | 4 | 165.06 | <0.0001 |
Season x variety | 20 | 2.19 | 0.0018 | 20 | 3.23 | <0.0001 | 20 | 4.87 | <0.0001 |
Environments | Tukey Test | ||||||||
Dry winter 2017 | BC | ||||||||
Dry winter 2018 | B | ||||||||
Summer 2018 | A | ||||||||
Summer 2019 | A | ||||||||
Wet season 2018 | CD | ||||||||
Wet season 2019 | D |
Genotypes | Larval Mortality (%) | % Survival of Larvae Till Pupation | Pupal Duration (in Days) | Pupal Weight (mg) | Adult Emergence (%) |
---|---|---|---|---|---|
S. galapagense, VI037241 | 82.60 (65.42) a | 18.40 (25.36) c | 11.80 ab | 2.08 e | 14.20 (22.11) c |
S. cheesmaniae, VI037240 | 83.60 (66.29) a | 15.60 (23.15) c | 12.40 bc | 2.44 d | 14.20(22.09) c |
S. habrochaites, LA1777 | 40.60(39.56) b | 52.40 (46.35) b | 12.00 bc | 3.50 b | 48.00 (43.82) b |
S. habrochaites var glabratum VI030462 | 46.00 (42.68) b | 51.60 (45.89) b | 12.00 c | 2.88 c | 44.60 (41.88) b |
S. lycopersicum, CL5915 | 15.00 (22.68) c | 83.60 (66.203) a | 11.00 a | 4.56 a | 76.00 (60.66) a |
F test | 405.71 ** | 217.31 ** | 120.70 ** | 167.83 ** | 0.208 ** |
df | 24 | 24 | 24 | 24 | 24 |
SE(m) | 1.05 | 0.878 | 0.1 | 0.208 | 0.716 |
SE(d) | 1.49 | 1.241 | 0.141 | 0.294 | 1.012 |
C.D. | 3.18 | 2.60 | 0.297 | 0.617 | 2.126 |
Morphological Parameters | Percent Foliage Damage in Field Conditions (r) | ||||
---|---|---|---|---|---|
Non-glandular trichome | 0.73 ns | ||||
Total glandular trichome | −0.92 * | ||||
Biochemical parameters | Percent foliage damage in field conditions (r) | No of leaf mines in field conditions (r) | Percent fruit damage in field conditions (r) | Egg load in field conditions (r) | Egg load in laboratory conditions (r) |
Acylsugar level | −0.89 * | −0.71 ** | −0.60 ** | −0.65 ** | −0.69 ** |
Larval Mortality | Regression Co-Efficient | Standard Error of the Reg. Coeff. | Test Statistic (t) | p > |t| | Confidence Interval | |
---|---|---|---|---|---|---|
Acylsugar | 1.60 * | 0.78 | 2.07 | 0.040 | 0.07 | 3.13 |
Glandular trichomes | 1.30 ** | 0.20 | 6.45 | 0.000 | 0.90 | 1.69 |
Sigma (estimated SE of the regression) | 11.57 | 0.74 | 10.11 | 13.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, P.; Jagadish, K.S.; Purushothama, M.G.; Hanson, P.; Rakha, M.; Sotelo-Cardona, P.; Vaddi, S.; Srinivasan, R. Performance of Wild Tomato Accessions and Elucidation of Resistance against Invasive Pest Phthorimaea absoluta Damage under Tropical Conditions. Horticulturae 2023, 9, 143. https://doi.org/10.3390/horticulturae9020143
Ghosh P, Jagadish KS, Purushothama MG, Hanson P, Rakha M, Sotelo-Cardona P, Vaddi S, Srinivasan R. Performance of Wild Tomato Accessions and Elucidation of Resistance against Invasive Pest Phthorimaea absoluta Damage under Tropical Conditions. Horticulturae. 2023; 9(2):143. https://doi.org/10.3390/horticulturae9020143
Chicago/Turabian StyleGhosh, Pritha, K. S. Jagadish, M. G. Purushothama, Peter Hanson, Mohamed Rakha, Paola Sotelo-Cardona, Sridhar Vaddi, and Ramasamy Srinivasan. 2023. "Performance of Wild Tomato Accessions and Elucidation of Resistance against Invasive Pest Phthorimaea absoluta Damage under Tropical Conditions" Horticulturae 9, no. 2: 143. https://doi.org/10.3390/horticulturae9020143
APA StyleGhosh, P., Jagadish, K. S., Purushothama, M. G., Hanson, P., Rakha, M., Sotelo-Cardona, P., Vaddi, S., & Srinivasan, R. (2023). Performance of Wild Tomato Accessions and Elucidation of Resistance against Invasive Pest Phthorimaea absoluta Damage under Tropical Conditions. Horticulturae, 9(2), 143. https://doi.org/10.3390/horticulturae9020143