Evaluation of Nitrogen and Water Management Strategies to Optimize Yield in Open Field Cucumber (Cucumis sativus L.) Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location
2.2. Soil Properties, Land Preparation, and Seeding Transplanting
2.3. Experimental Design
2.4. Growth, Fruit, and Yield Parameters
2.5. Statistical Analysis
3. Results
3.1. Soil of the Cultivated Plot and Irrigation Water
3.2. Effect of Irrigation and Nitrogen on Cucumber Growth Parameters and SPAD Index
3.3. Effect of Irrigation and Nitrogen on Fruit Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, E.; van Vliet, M.T. Drought impacts on river salinity in the southern US: Implications for water scarcity. Sci. Total Environ. 2018, 644, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Parkash, V.; Singh, S.; Deb, S.K.; Ritchie, G.L.; Wallace, R.W. Effect of deficit irrigation on physiology, plant growth, and fruit yield of cucumber cultivars. Plant Stress 2021, 1, 100004. [Google Scholar] [CrossRef]
- Ben Hassen, T.; El Bilali, H. Sustainable Agriculture and Food Security in Qatar: International Threats and Local Constraints. In Sustainable Agriculture and Food Security; Springer: Berlin/Heidelberg, Germany, 2022; pp. 425–442. [Google Scholar]
- Sauer, T.; Havlík, P.; Schneider, U.A.; Schmid, E.; Kindermann, G.; Obersteiner, M. Agriculture and resource availability in a changing world: The role of irrigation. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef]
- Amare, D. Review on Effect of Different Irrigation Method on Water Use Efficiency, Yield Productivity and Nitrogen Application. J. Biol. Agric. Health 2020, 10, 1–9. [Google Scholar]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality–A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Issaka, A.I.; Paek, J.; Abdella, K.; Pollanen, M.; Huda, A.; Kaitibie, S.; Goktepe, I.; Haq, M.; Moustafa, A.T. Analysis and calibration of empirical relationships for estimating evapotranspiration in Qatar: Case study. J. Irrig. Drain. Eng. 2017, 143, 05016013. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Bijl, D.L.; Bogaart, P.; Stehfest, E.; Biemans, H.; Dekker, S.C.; Doelman, J.C.; Gernaat, D.E.; Harmsen, M. Integrated scenarios to support analysis of the food–energy–water nexus. Nat. Sustain. 2019, 2, 1132–1141. [Google Scholar] [CrossRef]
- Bello, A.S.; Zouari, N.; Da’ana, D.A.; Hahladakis, J.N.; Al-Ghouti, M.A. An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies. J. Environ. Manag. 2021, 288, 112358. [Google Scholar] [CrossRef]
- Ahmad, A.Y.; Al-Ghouti, M.A. Approaches to achieve sustainable use and management of groundwater resources in Qatar: A review. Groundw. Sustain. Dev. 2020, 11, 100367. [Google Scholar] [CrossRef]
- Çolpan, E.; Zengin, M.; Özbahçe, A. The effects of potassium on the yield and fruit quality components of stick tomato. Hortic. Environ. Biotechnol. 2013, 54, 20–28. [Google Scholar] [CrossRef]
- Souri, M.K.; Yarahmadi, B. Effect of Amino Chelates Foliar Application on Growth and Development of Marigold (Calendula officinalis) plant. Iran. J. Plant Prod. Technol. 2015, 15, 109–119. [Google Scholar]
- Souri, M.k.; Sooraki, F.Y.; Moghadamyar, M. Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Hortic. Environ. Biotechnol. 2017, 58, 530–536. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Zhang, M.; Li, D.; Jiang, Y.; Yao, W.; Zhang, Z. Yield, Quality, and Water and Fertilizer Partial Productivity of Cucumber as Influenced by the Interaction of Water, Nitrogen, and Magnesium. Agronomy 2023, 13, 772. [Google Scholar] [CrossRef]
- Souri, M.K. Aminochelate fertilizers: The new approach to the old problem; a review. Open Agric. 2016, 1, 118–123. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; O’Reilly, K.A. Yield, nitrogen dynamics, and fertilizer use efficiency in machine-harvested cucumber. HortScience 2009, 44, 1712–1718. [Google Scholar] [CrossRef]
- Zhao, H.; Zhai, X.; Guo, L.; Yang, Y.; Li, J.; Ren, C.; Wang, K.; Liu, X.; Zhan, R.; Wang, K. Comparing protected cucumber and field cucumber production systems in China based on emergy analysis. J. Clean. Prod. 2019, 236, 117648. [Google Scholar] [CrossRef]
- PSA. Planning and Statistic Authority. PSA Statistical Subjects. 2021. Available online: https://www.psa.gov.qa/en/statistics1/StatisticsSite/Pages/default.aspx (accessed on 20 September 2023).
- Mukherjee, P.K.; Nema, N.K.; Maity, N.; Sarkar, B.K. Phytochemical and therapeutic potential of cucumber. Fitoterapia 2013, 84, 227–236. [Google Scholar] [CrossRef]
- Rahil, M.; Qanadillo, A. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agric. Water Manag. 2015, 148, 10–15. [Google Scholar] [CrossRef]
- Nakano, Y.; Noda, S.; Miyake, Y.; Kogoshi, M.; Sato, F.; Iijima, W. Applicability of Variable-Rate Nitrogen Top Dressing Based on Measurement of the Within-Field Variability of Soil Nutrients for Cabbage Production. Horticulturae 2023, 9, 506. [Google Scholar] [CrossRef]
- Jamil Mohammad, M. Squash yield, nutrient content and soil fertility parameters in response to methods of fertilizer application and rates of nitrogen fertigation. Nutr. Cycl. Agroecosystems 2004, 68, 99–108. [Google Scholar] [CrossRef]
- Esmel, C.E.; Santos, B.M.; Gilreath, J.P. Effects of nitrogen rates on summer squash growth and yield. HortScience 2006, 41, 506C-506. [Google Scholar] [CrossRef]
- Ferrante, A.; Spinardi, A.; Maggiore, T.; Testoni, A.; Gallina, P.M. Effect of nitrogen fertilisation levels on melon fruit quality at the harvest time and during storage. J. Sci. Food Agric. 2008, 88, 707–713. [Google Scholar] [CrossRef]
- Hamzei, J.; Soltani, J. Deficit irrigation of rapeseed for water-saving: Effects on biomass accumulation, light interception and radiation use efficiency under different N rates. Agric. Ecosyst. Environ. 2012, 155, 153–160. [Google Scholar] [CrossRef]
- Yang, G.; Tang, H.; Tong, J.; Nie, Y.; Zhang, X. Effect of fertilization frequency on cotton yield and biomass accumulation. Field Crops Res. 2012, 125, 161–166. [Google Scholar] [CrossRef]
- Fondio, L.; N’Gbesso, M.; Coulibaly, N.D. Effect of mineral fertilization on African eggplant (Solanum spp.) Productivity in Côte d’Ivoire. J. Agric. Sci. Technol. 2016, 6, 188–195. [Google Scholar] [CrossRef]
- Du, Y.-D.; Cao, H.-X.; Liu, S.-Q.; Gu, X.-B.; Cao, Y.-X. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef]
- Mwinuka, P.R.; Mbilinyi, B.P.; Mbungu, W.B.; Mourice, S.K.; Mahoo, H.F.; Schmitter, P. Optimizing water and nitrogen application for neglected horticultural species in tropical sub-humid climate areas: A case of African eggplant (Solanum aethiopicum L.). Sci. Hortic. 2021, 276, 109756. [Google Scholar] [CrossRef]
- Shomar, B.; Darwish, M.; Rowell, C. What does integrated water resources management from local to global perspective mean? Qatar as a case study, the very rich country with no water. Water Resour. Manag. 2014, 28, 2781–2791. [Google Scholar] [CrossRef]
- Wilson, M.B.; Zhang, C.; Gandhi, J. Analysis of inorganic nitrogen and related anions in high salinity water using ion chromatography with tandem UV and conductivity detectors. J. Chromatogr. Sci. 2011, 49, 596–602. [Google Scholar] [CrossRef]
- Bello, A.S.; Saadaoui, I.; Ahmed, T.; Hamdi, H.; Cherif, M.; Dalgamouni, T.; Al Ghazal, G.; Ben-Hamadou, R. Enhancement in Bell Pepper (Capsicum annuum L.) Plants with Application of Roholtiella sp. (Nostocales) under Soilless Cultivation. Agronomy 2021, 11, 1624. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Response of grapevine cv.‘Tempranillo’to timing and amount of irrigation: Water relations, vine growth, yield and berry and wine composition. Irrig. Sci. 2010, 28, 113–125. [Google Scholar] [CrossRef]
- Fernández, V.; Brown, P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013, 4, 289. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhao, Z.; Zhang, X.; Liu, X.; Li, Q. Improvement of alternate partial root-zone drip irrigation on photosynthesis and water use efficiency of cucumbers. J. Plant Nutr. Fertil. 2016, 22, 269–276. [Google Scholar]
- Huang, P.F.; Yin, G.H.; Gu, J.; Liu, Z.X.; Guo, J.L. Effects of alternate subsurface drip irrigation on yield and water use efficiency of spring maize. Ying Yong Sheng Tai Xue Bao= J. Appl. Ecol. 2016, 27, 2507–2512. [Google Scholar]
- Liu, X.; Liu, B.; Cui, Q.; Zhang, W.; Li, M.; Ai, X.; Bi, H.; Li, Q. Effects of alternative drip irrigation and nitrogen fertilization on growth, photosynthesis, yield, and water-nitrogen use efficiency of cucumbers in solar greenhouse. Plant Physiol. J. 2016, 52, 905–916. [Google Scholar]
- Luo, H.; Li, F. Tomato yield, quality and water use efficiency under different drip fertigation strategies. Sci. Hortic. 2018, 235, 181–188. [Google Scholar] [CrossRef]
- Salokhe, V.; Babel, M.; Tantau, H. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water Manag. 2005, 71, 225–242. [Google Scholar]
- Abdalhi, M.A.; Cheng, J.; Feng, S.; Yi, G. Performance of drip irrigation and nitrogen fertilizer in irrigation water saving and nitrogen use efficiency for waxy maize (Zea mays L.) and cucumber (Cucumis sativus L.) under solar greenhouse. Grassl. Sci. 2016, 62, 174–187. [Google Scholar] [CrossRef]
- Hashem, F.; Medany, M.; El-Moniem, E.M.A.; Abdallah, M.M.F. Influence of green-house cover on potential evapotranspiration and cucumber water requirements. Arab Univ. J. Agric. Sci. 2011, 19, 205–215. [Google Scholar]
- Ngouajio, M.; Wang, G.; Goldy, R. Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch. Agric. Water Manag. 2007, 87, 285–291. [Google Scholar] [CrossRef]
- Amer, K.H.; Midan, S.A.; Hatfield, J.L. Effect of deficit irrigation and fertilization on cucumber. Agron. J. 2009, 101, 1556–1564. [Google Scholar] [CrossRef]
- Dogan, E.; Kirnak, H.; Berekatoglu, K.; Bilgel, L.; Surucu, A. Water stress imposed on muskmelon (Cucumis melo L.) with subsurface and surface drip irrigation systems under semi-arid climatic conditions. Irrig. Sci. 2008, 26, 131–138. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Li, F.; Hu, X. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric. Water Manag. 2006, 84, 41–52. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Li, F. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China. Irrig. Sci. 2008, 26, 147–159. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Turner, N.C.; Zhang, R.-Z.; Yang, C.; Niu, Y.; Siddique, K.H. Water-saving innovations in Chinese agriculture. Adv. Agron. 2014, 126, 149–201. [Google Scholar]
- Zhang, H.-X.; Chi, D.-C.; Qun, W.; Jun, F.; Fang, X.-Y. Yield and quality response of cucumber to irrigation and nitrogen fertilization under subsurface drip irrigation in solar greenhouse. Agric. Sci. China 2011, 10, 921–930. [Google Scholar] [CrossRef]
- Sahin, U.; Kuslu, Y.; Kiziloglu, F. Response of cucumbers to different irrigation regimes applied through drip-irrigation system. JAPS J. Anim. Plant Sci. 2015, 25, 198–205. [Google Scholar]
- Souri, M.K.; Hatamian, M. Aminochelates in plant nutrition: A review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Fugice, J.; Singh, U.; Lewis, T.D. Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives. Sci. Total Environ. 2020, 731, 139113. [Google Scholar] [CrossRef]
- Padilla, F.M.; Farneselli, M.; Gianquinto, G.; Tei, F.; Thompson, R.B. Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agric. Water Manag. 2020, 241, 106356. [Google Scholar] [CrossRef]
- Cabello, M.J.; Castellanos, M.; Romojaro, F.; Martinez-Madrid, C.; Ribas, F. Yield and quality of melon grown under different irrigation and nitrogen rates. Agric. Water Manag. 2009, 96, 866–874. [Google Scholar] [CrossRef]
- Cui, B.-J.; Niu, W.-Q.; Du, Y.-D.; Zhang, Q. Response of yield and nitrogen use efficiency to aerated irrigation and N application rate in greenhouse cucumber. Sci. Hortic. 2020, 265, 109220. [Google Scholar] [CrossRef]
Treatment | Treatment Designation |
---|---|
Irrigation method (independent) | |
Deficit irrigation–50% | W1 |
Full irrigation–100% | W2 |
50 kg N ha−1 (50% of recommended N1) | N1 |
70 kg N ha−1 (70% of recommended N2) | N2 |
100 kg N ha−1 (100% of recommended N3) | N3 |
Interaction | |
Full irrigation, 100% nitrogen (W2N3) | T1 |
Full irrigation, 70% nitrogen (W2N2) | T2 |
Full irrigation, 50% nitrogen (W2N1) | T3 |
Deficit irrigation, 100% nitrogen (W1N3) | T4 |
Deficit irrigation, 70% nitrogen (W1N2) | T5 |
Deficit irrigation, 50% nitrogen (W1N1) | T6 |
N Fertilizer Application | Seedling | Flowering | Fruit Enlarging | Fruit Maturity |
---|---|---|---|---|
N1 50 kg N ha−1 (50%) | 5 | 15 | 15 | 15 |
N2 70 kg N ha−1 (70%) | 7 | 21 | 21 | 21 |
N3 100 kg N ha−1 (100%) | 10 | 30 | 30 | 30 |
Treatments | Shoot Height (cm) | SPAD Index | Stem Width (mm) | Root Length (cm) | Fruit Length (mm) | Fruit Width (mm) | Number of Fruit/Unit | Fruit Weight (g) | Yield (ton/ha) |
---|---|---|---|---|---|---|---|---|---|
Drip irrigation levels | |||||||||
W50 | 18.58 ± 0.15 a | 37.42 ± 0.92 a | 7.78 ± 0.13 a | 20.2 ± 0.29 a | 150.98 ± 3.91 a | 39.09 ± 0.56 a | 48 ± 0.84 a | 196.01 ± 2.68 a | 29.58 ± 1.41 a |
W100 | 18.23 ± 0.12 b | 34.07 ± 0.39 b | 7.25 ± 0.05 b | 18.5 ± 0.52 b | 143.77 ± 3.16 b | 36.86 ± 0.33 b | 43 ± 0.58 b | 178.36 ± 1.23 b | 24.58 ± 1.13 b |
Nitrogen treatments | |||||||||
N50 | 18.67 ± 0.07 a | 35.60 ± 1.20 b | 7.63 ± 0.17 a | 19.32 ± 0.60 b | 149.87 ± 2.84 a | 37.58 ± 0.22 b | 45 ± 0.26 a | 192.46 ± 5.79 a | 27.47 ± 0.78 a |
N70 | 18.54 ± 0.20 a | 37.02 ± 1.35 a | 7.61 ± 0.20 a | 20.63 ± 0.24 a | 156.56 ± 2.77 a | 38.70 ± 0.93 a | 53 ± 0.76 b | 185.91 ± 2.26 b | 31.05 ± 1.68 b |
N100 | 18 ± 0.11 b | 34.61 ± 0.44 c | 7.31 ± 0.07 b | 18.10 ± 0.46 c | 135.7 ± 2.7 b | 37.64 ± 0.83 b | 39 ± 0.37 c | 183.18 ± 4.45 b | 22.73 ± 1.08 c |
Interaction | |||||||||
T1 | 17.99 ± 0.24 c | 35.28 ± 0.63 c | 7.29 ± 0.04 b | 17.1 ± 0.17 c | 131.45 ± 0.36 c | 35.84 ± 0.19 d | 37 ± 0.33 d | 173.60 ± 0.75 a | 20.39 ± 0.55 d |
T2 | 18.10 ± 0.05 bc | 34.00 ± 0.11 cd | 7.16 ± 0.02 b | 20.4 ± 0.47 a | 150.85 ± 0.83 ab | 36.73 ± 0.22 cd | 48 ± 0.58 b | 180.89 ± 0.27 c | 27.56 ± 0.96 bc |
T3 | 18.58 ± 0.04 ab | 32.93 ± 0.12 d | 7.29 ± 0.15 b | 18 ± 0.27 bc | 149.00 ± 2.13 ab | 38.00 ± 0.13 bc | 45 ± 0.00 bc | 180.59 ± 0.63 cd | 25.80 ± 0.09 c |
T4 | 18.00 ± 0.02 c | 33.94 ± 0.35 cd | 7.32 ± 0.16 b | 19.1 ± 0.17 bc | 139.95 ± 4.28 cb | 39.44 ± 0.39 ab | 41 ± 0.33 cd | 192.76 ± 2.60 b | 25.07 ± 0.28 c |
T5 | 18.99 ± 0.09 a | 40.04 ± 0.11 a | 8.05 ± 0.05 a | 20.87 ± 0.15 a | 162.27 ± 2.27 a | 40.67 ± 0.65 a | 57 ± 0.58 a | 190.92 ± 0.62 bc | 34.54 ± 0.97 a |
T6 | 18.75 ± 0.12 a | 38.27 ± 0.26 b | 7.97 ± 0.07 a | 20.63 ± 0.15 a | 150.73 ± 5.93 ab | 37.16 ± 0.23 cd | 45 ± 0.58 bc | 204.34 ± 5.12 a | 29.14 ± 0.45 b |
Source of Variation | Adjusted Mean Square | ||||||||
---|---|---|---|---|---|---|---|---|---|
Shoot Height (cm) | SPAD Index | Stem Width (mm) | Root Length (cm) | Fruit Length (mm) | Fruit Width (mm) | Number of Fruit/Plant | Fruit Weight (g) | Yield (ton/ha) | |
N treatment | 0.76 * | 8.83 * | 0.20 * | 9.64 * | 680.36 * | 2.36 * | 30.50 * | 136.54 * | 104.50 * |
Drip irrigation levels | 0.56 * | 50.41 * | 1.28 * | 13.01 * | 234.43 * | 22.49 * | 9.39 * | 1400.79 * | 112.51 * |
N × W levels | 0.33 * | 24.90 * | 0.29 * | 1.87 * | 37.07 ns | 10.68 * | 3.39 * | 73.21 * | 5.09 * |
SE | 0.04 | 0.31 | 0.03 | 0.2 | 31.97 | 0.37 | 0.61 | 17.17 | 1.24 |
SD | 0.17 | 1.33 | 0.12 | 0.84 | 135.55 | 1.55 | 2.59 | 72.8 | 5.25 |
Chemical Constituents | Analytical Method | Soil Sample (depth 0–30 cm)(mg kg−1 DW) | Water Sample (mg L−1) |
---|---|---|---|
Sodium (Na) | Ion chromatography (IC)andInductively coupled plasma–optical Emission spectrometry (ICP–OES) | 10,294 ± 97.4 | 274.5 ± 8.7 |
Magnesium (Mg) | 32,031 ± 134.7 | 98.5 ± 2.2 | |
Potassium (K) | 13,445 ± 40.5 | 24.5 ± 1.7 | |
Calcium (Ca) | 62,330 ± 126.6 | 297.7 ± 4.7 | |
Boron (B) | 3849 ± 31.7 | nd | |
Copper (Cu) | 30 ± 0.1 | nd | |
Iron (Fe) | 26,378 ± 129.4 | nd | |
Manganese (Mn) | 585 ± 2.8 | nd | |
Zinc (Zn) | 76 ± 0.5 | nd | |
Phosphorus (P) | 1223 ± 11.4 | nd | |
Chlorine (Cl) | nd | 433.5 ± 10.6 | |
Sulfate (SO4) | nd | 422.5 ± 11.8 | |
EC (mS/cm) | YSI Meter | 2.25 ± 1.4 | 3.01 ± 0.5 |
pH | 7.82 ± 0.2 | 7.07 ± 0.4 | |
TOM (%) | MOOPAM | 0.5 ± 0.2 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello, A.S.; Huda, S.; Chen, Z.-H.; Khalid, M.F.; Alsafran, M.; Ahmed, T. Evaluation of Nitrogen and Water Management Strategies to Optimize Yield in Open Field Cucumber (Cucumis sativus L.) Production. Horticulturae 2023, 9, 1336. https://doi.org/10.3390/horticulturae9121336
Bello AS, Huda S, Chen Z-H, Khalid MF, Alsafran M, Ahmed T. Evaluation of Nitrogen and Water Management Strategies to Optimize Yield in Open Field Cucumber (Cucumis sativus L.) Production. Horticulturae. 2023; 9(12):1336. https://doi.org/10.3390/horticulturae9121336
Chicago/Turabian StyleBello, Adewale Suraj, Samsul Huda, Zhong-Hua Chen, Muhammad Fasih Khalid, Mohammed Alsafran, and Talaat Ahmed. 2023. "Evaluation of Nitrogen and Water Management Strategies to Optimize Yield in Open Field Cucumber (Cucumis sativus L.) Production" Horticulturae 9, no. 12: 1336. https://doi.org/10.3390/horticulturae9121336
APA StyleBello, A. S., Huda, S., Chen, Z. -H., Khalid, M. F., Alsafran, M., & Ahmed, T. (2023). Evaluation of Nitrogen and Water Management Strategies to Optimize Yield in Open Field Cucumber (Cucumis sativus L.) Production. Horticulturae, 9(12), 1336. https://doi.org/10.3390/horticulturae9121336