Plant-Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungi May Improve Soil Fertility and the Growth, Nutrient Uptake, and Physiological Performance of Batavia Lettuce (Lactuca sativa L. var. longifolia) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Conditions of Experimental Greenhouse
2.2. Treatments and Methodology of PGPR and AMF Application
2.3. Soil Sampling, Manure Nutrient Composition, and Lab Analyses
2.4. Methodology of Soil Respiration Rate Measurement
2.5. Plant Growth Measurements
2.6. Nutrient Uptake and Tissue Nutrient Concentrations
2.7. Chlorophyll Fluorescence, Gas Exchange Measurements, and Intrinsic Water Use Efficiency (WUEi)
2.8. Statistical Analysis
3. Results
3.1. Initial and Final Soil Fertility
3.2. Soil Respiration Data
3.3. Plant Growth
3.4. Plant Tissue Nutrient Concentrations
3.5. Physiological Performance (SPAD, Performance Index-PI, Photosynthetic Rate, Intercellular CO2, and Water Use Efficiency—WUEi) of Lettuce Plants
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mou, B. Nutritional quality of lettuce. Curr. Nutr. Food Sci. 2012, 8, 177–187. [Google Scholar] [CrossRef]
- Ahmed, Z.F.; Alnuaimi, A.K.; Askri, A.; Tzortzakis, N. Evaluation of Lettuce (Lactuca sativa L.) production under hydroponic system: Nutrient solution derived from fish waste vs. inorganic nutrient solution. Horticulturae 2021, 7, 292. [Google Scholar] [CrossRef]
- Shatilov, M.V.; Razin, A.F.; Ivanova, M.I. Analysis of the world lettuce market. IOP Conf. Ser. Earth Environ. Sci. 2019, 395, 012053. [Google Scholar] [CrossRef]
- Ayuso-Calles, M.; Garcia-Estevez, I.; Jimenez-Gomez, A.; Flores-Felix, J.D.; Escribano-Bailón, M.T.; Rivas, R. Rhizobium laguerreae Improves Productivity and Phenolic Compound Content of Lettuce (Lactuca sativa L.) under Saline Stress Conditions. Foods 2020, 9, 1166. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Gupta, L.M.; Gupta, M. Effect of integrated nutrient management on growth and yield of Aloe barbadensis. Indian J. Agric. Sci. 2016, 86, 91–95. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Tzanakakis, V.; Giannakoula, A.; Psoma, P. Inorganic and organic amendments affect soil fertility, nutrition, photosystem II activity and fruit weight and may enhance the sustainability of Solanum lycopersicon L. (cv. ‘Mountain Fresh’) crop. Sustainability 2020, 12, 9028. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Tsaniklidis, G.; Papaioannou, A.; Giannakoula, A.; Koukounaras, A. Comparative approach on the effects of soil amendments and a Controlled release fertilizer application on the growth, nutrient uptake, physiological performance and fruit quality of pepper (Capsicum annuum L.) plants. Agronomy 2022, 12, 1935. [Google Scholar] [CrossRef]
- Flores-Felix, J.D.; Menendez, E.; Rivera, L.P.; Marcos-Garcia, M.; Martinez-Hidalgo, P.; Mateos, P.F.; Martinez-Molina, E.; De la Encarnacion Velazquez, M.; Garcia-Fraile, P.; Rivas, R. Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J. Plant Nutr. Soil Sci. 2013, 176, 876–882. [Google Scholar] [CrossRef]
- Stamford, N.P.; Felix, F.; Oliveira, W.; Silva, E.; Carolina, S.; Arnaud, T.; Dolores Freitas, A. Interactive effectiveness of microbial fertilizer enriched in N on lettuce growth and on characteristics of an Ultisol of the rainforest region. Sci. Hortic. 2019, 247, 242–246. [Google Scholar] [CrossRef]
- Kaymak, H.C.; Aksoy, A.; Kotan, R. Inoculation with N2 fixing plant growth promoting rhizobacteria to reduce nitrogen fertilizer requirement of lettuce. Acta Sci. Pol. Hortorum Cultus 2020, 19, 23–35. [Google Scholar] [CrossRef]
- Maldonado, S.; Rodriguez, A.; Avila, B.; Morales, P.; Gonzalez, M.P.; Araya Angel, J.P.A.; Olalde, V.; Bravo, J.; Jana, C.; Sierra, C.; et al. Enhanced crop productivity and sustainability by using native phosphate solubilizing rhizobacteria in the agriculture of arid zones. Front. Sustain. Food Syst. 2020, 4, 607355. [Google Scholar] [CrossRef]
- Baslam, M.; Garmendia, I.; Goicoechea, N. The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci. Hortic. 2013, 164, 145–154. [Google Scholar] [CrossRef]
- Baslam, M.; Garmendia, I.; Goicoechea, N. Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi (AMF): A question of interest for both vegetables and humans. Agriculture 2013, 3, 188–209. [Google Scholar] [CrossRef]
- Cela, F.; Avio, L.; Giordani, T.; Vangelisti, A.; Cavallini, A.; Turrini, A.; Sbrana, C.; Pardossi, A.; Incrocci, L. Arbuscular mycorrhizal fungi increase nutritional quality of soilless grown lettuce, while overcoming low phosphorus supply. Foods 2022, 11, 3612. [Google Scholar] [CrossRef]
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Glola, L.; Romano, I.; Lombardi, N.; Napolitano, M.; Colla, G.; et al. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 2018, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Azcon, R.; Gomez, M.; Tobar, R. Physiological and nutritional responses by Lactuca sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Biol. Fertil. Soils 1996, 22, 156–161. [Google Scholar] [CrossRef]
- Kohler, J.; Hernandez, J.A.; Caravaca, F.; Roldan, A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 2009, 65, 245–252. [Google Scholar] [CrossRef]
- Kohler, J.; Caravaca, F.; Roldan, A. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem. 2010, 42, 429–434. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Vetrano, F. Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants. Agronomy 2021, 11, 1143. [Google Scholar] [CrossRef]
- Moncada, A.; Vetrano, F.; Miceli, A. Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce. Agronomy 2020, 10, 1523. [Google Scholar] [CrossRef]
- Epelde, L.; Urra, J.; Anza, M.; Gamboa, J.; Garbisu, C. Inoculation of arbuscular mycorrhizal fungi increases lettuce yield without altering natural soil communities. Arch. Agron. Soil Sci. 2022, 68, 413–430. [Google Scholar] [CrossRef]
- Brito, L.M.; Pinto, R.; Mourao, I.; Coutinho, J. Organic lettuce, rye/vetch, and Swiss chard growth and nutrient uptake response to lime and horse manure compost. Org. Agric. 2012, 2, 163–171. [Google Scholar] [CrossRef]
- Rasouli, F.; Amini, T.; Asadi, M.; Hassanpouraghdam, M.B.; Aazami, M.A.; Ercisli, S.; Skrovankova, S.; Mlcek, J. Growth and antioxidant responses of lettuce (Lactuca sativa L.) to arbuscular mycorrhiza inoculation and seaweed extract foliar application. Agronomy 2022, 12, 401. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Yang, H.; Archdeacon, D.; Tippett, O.; Tibi, M.; Whiteley, A.S. Humus-rich compost increases lettuce growth, nutrient uptake, mycorrhizal colonization and soil fertility. Pedosphere 2019, 29, 170–179. [Google Scholar] [CrossRef]
- De Nobile, F.B.; Calero Hurtado, A.; De Melo Prado, R.; De Souza, H.A.; Anunciacao, M.G.; Palaretti, L.F.; Sizuki Nociti Dezem, L.A. A novel technology for processing urban waste compost as a fast-releasing nitrogen source to improve soil properties and broccoli and lettuce production. Waste Biomass Valorization 2021, 12, 6191–6203. [Google Scholar] [CrossRef]
- Hammermeister, A.M.; Astatkie, T.; Jeliazkova, E.A.; Warman, P.R.; Martin, R.C. Nutrient supply from organic amendments applied to unvegetated soil, lettuce and orchardgrass. Can. J. Soil Sci. 2006, 86, 21–33. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality and mineral nutrition in lettuce grown in a recirculating nutrient solution. Sci. Hortic. 2019, 252, 379–387. [Google Scholar] [CrossRef]
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Gee, G.; Bauder, J. Particle-size analysis. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; ASA; SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 539–547. [Google Scholar]
- Hood-Nowotny, R.; Umana, N.H.-N.; Inselbacher, E.; Oswald-Lachouani, P.; Wanek, W. Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen. Soil Sci. Soc. Am. J. 2010, 74, 1018–1027. [Google Scholar] [CrossRef]
- Olsen, S.; Sommers, L. Phosphorus. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Thomas, G.W. Exchangeable cations methods of soil analysis. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 159–166. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Wolf, B. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Com. Soil Sci. Plant Anal. 1971, 2, 363–374. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002. [Google Scholar]
- Hansen, T.H.; De Bang, T.C.; Laursen, K.H.; Pedas, P.; Husted, S.; Schjoerring, J.K. Multielement plant tissue analysis using ICP spectrometry. In Plant Mineral Nutrients. Methods in Molecular Biology (Methods and Protocols); Maathuis, F., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 953. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; Division of Agricultural Sciences, University of California: Riverside, CA, USA, 1961; p. 309. [Google Scholar]
- Gaines, T.P.; Mitchell, G.A. Boron determination in plant tissue by the azomethine-H method. Commun. Soil Sci. Plant Anal. 1979, 10, 1099–1108. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G., Govindjee, G., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Chatzistathis, T.; Papadakis, I.E.; Papaioannou, A.; Chatzissavvidis, C.; Giannakoula, A. Comparative study effects between manure application and a Controlled-release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. ‘Koroneiki’). Sci. Hortic. 2020, 264, 109176. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Monokrousos, N.; Psoma, P.; Tziachris, P.; Metaxa, I.; Strikos, G.; Papadopoulos, F.H.; Papadopoulos, F.H. How fully productive olive trees (Olea europaea L., cv. ‘Chondrolia Chalkidikis’) manage to over-satisfy their P nutritional needs under low Olsen P availability in soils? Sci. Hortic. 2020, 265, 109251. [Google Scholar] [CrossRef]
- Rekasi, Μ.; Szili-Kovacs, T.; Takacs, T.; Bernhadrt, B.; Puspan, I.; Kovacs, R.; Kutasi, J.; Draskovits, E.; Molnar, S.; Molnar, M.; et al. Improving the fertility of sandy soils in the temperate region by combined biochar and microbial inoculants treatments. Arch. Agron. Soil Sci. 2019, 65, 44–57. [Google Scholar] [CrossRef]
- Sadegh-Kasmaei, L.; Yasrebi, J.; Zarei, M.; Ronaghi, A.; Ghasemi, R.; Saharkhiz, M.J.; Ahmadabadi, Z.; Schnug, E. Influence of plant growth promoting rhizobacteria, compost and biochar of Azolla on Rosemary (Rosmarinus officinalis L.) growth and some soil quality indicators in a calcareous soil. Commun. Soil Sci. Plant Anal. 2019, 50, 119–131. [Google Scholar] [CrossRef]
- Dinesh, R.; Anandaraj, M.; Kumar, A.; Srinivasan, V.; Bini, Y.K.; Subila, K.P.; Aravind, R.; Hamza, S. Effects of plant growth-promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale) cultivation. Agric. Res. 2013, 2, 346–353. [Google Scholar] [CrossRef]
- Arquero, O.; Barranco, D.; Benlloch, M. Potassium starvation increases stomatal conductance in olive trees. HortScience 2006, 41, 433–436. [Google Scholar] [CrossRef]
- Therios, I. Olives. In Crop Production Science in Horticulture; CAB: International, UK, 2009; pp. 156–163. [Google Scholar]
- Chatzistathis, T.; Papadakis, I.E.; Papaioannou, A.; Dichala, O.; Giannakoula, A.; Kostas, S.; Tziachris, P. Genotypic tolerance of two Punica granatum L. cultivars (Wonderful and Acco) to serpentine stress. Sci. Hortic. 2019, 247, 344–355. [Google Scholar] [CrossRef]
- Mutumba, F.A.; Zagal, E.; Gerding, M.; Castillo-Rosales, D.; Paulino, L.; Schoebitz, M. Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes. J. Soil Sci. Plant Nutr. 2018, 18, 1080–1096. [Google Scholar] [CrossRef]
- Zhang, B.B.; Zhang, H.; Jing, Q.; Wu, Y.X.; Xiao, S.Z.; Wang, M.M. Effect of mycorrhiza fungi inoculation and N fertilization on physiological characteristics, growth and nitrogen and phosphorus uptake of wheat under two distinct water regimes. Agric. Res. Arid Areas 2019, 37, 214–220. [Google Scholar]
- Zhu, L.D.; Shao, X.H.; Zhang, Y.C.; Zhang, H.; Hou, M.M. Effects of K fertilizer application on photosynthesis and seedling growth of sweet potato under drought stress. J. Food Agric. Environ. 2012, 10, 487–491. [Google Scholar]
pH | Organic Matter | CaCO3 | NO3-N | P | K | Ca | Mg | Fe | Mn | Zn | Cu | B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | ||||||||||||
Manure (MAN) | 7.01 | 50.06 | 8.49 | 126.81 | 323 | 10,234 | 2907 | 2808 | 51.27 | 56.06 | 93.05 | 11.65 | 28.80 |
Greenhouse soil (GS)—initial fertility | 7.26 | 2.25 | 11.80 | 76.09 | 79 | 408 | 2468 | 662 | 7.39 | 7.15 | 8.23 | 5.88 | 0.92 |
Final soil fertility | |||||||||||||
Inorganic fertilization (IF) | (7.52 ± 0.62) a | (1.86 ± 0.36) a | (10.80 ± 1.99) a | (50.00 ± 8.96) a | (79 ± 13.45) a | (298 ± 43.27) a | (2111 ± 212.26) a | (397 ± 44.04) b | (1.04 ± 0.18) b | (2.97 ± 0.55) b | (1.58 ± 0.26) ab | (1.74 ± 0.29) a | (0.70 ± 0.08) bc |
IF + PGPR | (7.63 ± 1.01) a | (1.60 ± 0.44) a | (11.80 ± 2.06) a | (49.00 ± 8.12) a | (70 ± 12.27) ab | (180 ± 32.22) b | (2205 ± 192.20) a | (422 a ± 50.56) ab | (0.78 ± 0.16) bc | (2.64 ± 0.48) bc | (1.96 ± 0.35) ab | (0.75 ± 0.12) b | (0.62 ± 0.10) c |
IF + PGPR + AMF | (7.54 ± 0.88) a | (1.73 ± 0.28) a | (11.30 ± 2.20) a | (55.00 ± 12.03) a | (84 ± 10.91) a | (188 ± 44.05) b | (2196 ± 122.28) a | (423 ± 28.12) ab | (0.54 ± 0.12) c | (1.99 ± 0.31) c | (1.49 ± 0.30) b | (0.73 ± 0.09) b | (0.85 ± 0.11) bc |
Manure (MAN) | (7.66 ± 0.90) a | (2.04 ± 0.46) a | (9.80 ± 1.97) a | (12.00 ± 2.70) c | (53 ± 8.86) b | (197 ± 40.12) b | (2159 ± 301.17) a | (427 ± 46.06) ab | (0.31 ± 0.07)d | (2.33 ± 0.63) bc | (1.90 ± 0.32) ab | (0.76 ± 0.17) b | (0.99 ± 0.21) ab |
MAN + PGPR | (7.76 ± 1.10) a | (2.00 ± 0.38) a | (9.30 ± 1.68) a | (21.00 ± 2.97) b | (52 ± 10.05) b | (207 ± 47.25) ab | (2104 ± 290.15) a | (485 ± 30.25) a | (0.21 ± 0.05)d | (0.68 ± 0.11)d | (0.20 ± 0.03) c | (0.25 ± 0.05) c | (1.17 ± 0.23) a |
MAN + PGPR + AMF | (7.60 ± 0.96) a | (1.91 ± 0.40) a | (12.00 ± 2.34) a | (16.00 ± 3.27) bc | (66 ± 11.35) ab | (174 ± 39.11) b | (2117 ± 167.13) a | (416 ± 37.11) ab | (1.74 ± 0.34) a | (4.39 ± 0.77) a | (2.20 ± 0.28) a | (1.45 ± 0.39) a | (0.98 ± 0.20) ab |
Root | Leaves | Leaf/Root | Total Biomass | |||||
---|---|---|---|---|---|---|---|---|
F.W. | D.W. | F.W. | D.W. | F.W. | D.W. | F.W. | D.W. | |
Treatment | g. | g. | ||||||
Inorganic fertilization (IF) | (11.14 ± 2.36) ab | (0.71 ± 0.06) b | (248.20 ± 13.80) b | (9.49 ± 1.39) b | (22.61 ± 3.89) a | (13.41 ± 2.23) ab | (259.30 ± 30.34) b | (10.20 ± 1.40) b |
IF + PGPR | (11.95 ± 2.53) a | (0.88 ± 0.10) a | (275.00 ± 42.30) ab | (11.75 ± 1.33) ab | (22.47 ± 2.12) a | (12.52 ± 1.81) b | (276.10 ± 45.91) ab | (12.67 ± 1.51) ab |
IF + PGPR + AMF | (12.76 ± 2.07) a | (0.99 ± 0.14) a | (325.10 ± 35.47) a | (13.97 ± 1.40) a | (25.89 ± 3.94) a | (14.39 ± 2.06) a | (337.83 ± 34.35) a | (14.96 ± 1.43) a |
Manure (MAN) | (9.01 ± 1.03) b | (0.84 a ± 0.05) b | (271.00 ± 36.78) ab | (12.13 ± 1.37) ab | (28.05 ± 3.69) a | (13.34 ± 1.18) ab | (281.09 ± 36.70) ab | (13.06 ± 1.46) ab |
MAN + PGPR | (11.17 ± 1.59) ab | (0.96 ± 0.21) a | (323.50 ± 45.14) a | (12.66 ± 1.32) a | (28.03 ± 2.98) a | (13.52 ± 2.21) ab | (335.10 ± 38.64) a | (13.62 ± 1.45) a |
MAN + PGPR + AMF | (10.01 ± 1.18) ab | (0.68 ± 0.09) b | (253.30 ± 28.85) b | (9.81 ± 1.23) b | (25.66 ± 3.31) a | (15.95 ± 2.65) a | (263.34 ± 28.47) b | (10.44 ± 1.24) b |
N | P | K | Ca | Mg | Fe | Mn | Zn | Cu | B | |
---|---|---|---|---|---|---|---|---|---|---|
Treatment | % D.W. | mg kg−1 | ||||||||
Inorganic fertilization (IF) | (3.91 ± 0.11) a | (0.47 ± 0.03) a | (8.11 ± 0.20) ab | (1.20 ± 0.10) a | (0.51 ± 0.06) ab | (85 ± 0.72) b | (93 ± 7.35) a | (49 ± 12.76) a | (11 ± 1.20) ab | (32 ± 3.06) a |
IF + PGPR | (4.05 ± 0.16) a | (0.51 ± 0.03) a | (7.50 ± 0.75) ab | (0.96 ± 0.05) ab | (0.52 ± 0.06) ab | (146 ± 22.66) a | (56 ± 5.53) bc | (36 ± 2.79) b | (10 ± 2.19) b | (20 ± 1.13) b |
IF + PGPR + AMF | (4.08 ± 0.06) a | (0.48 ± 0.03) a | (8.52 ± 1.12) a | (1.04 ± 0.10) ab | (0.51 ± 0.02) ab | (141 ± 26.48) a | (44 ± 2.28) c | (41 ± 5.54) ab | (7 ± 1.59) c | (28 ± 6.25) ab |
Manure (MAN) | (3.82 ± 0.12) a | (0.41 ± 0.09) a | (6.38 ± 1.32) b | (0.79 ± 0.17) b | (0.39 ± 0.08) b | (73 ± 11.06) b | (61 ± 2.40) b | (46 ± 6.83) a | (13 ± 2.17) a | (26 ± 8.53) ab |
MAN + PGPR | (3.85 ± 0.07) a | (0.51 ± 0.02) a | (7.52 ± 0.67) ab | (1.13 ± 0.14) ab | (0.57 ± 0.06) a | (152 ± 44.24) a | (67 ± 3.37) b | (47 ± 9.06) a | (12 ± 2.65) ab | (26 ± 0.37) ab |
MAN + PGPR + AMF | (4.25 ± 0.21) a | (0.50 ± 0.05) a | (8.23 ± 0.90) a | (1.11 ± 0.09) ab | (0.55 ± 0.03) a | (186 ± 47.44) a | (63 ± 7.09) b | (40 ± 3.00) ab | (13 ± 2.86) a | (26 ± 4.57) ab |
N | P | K | Ca | Mg | Fe | Mn | Zn | Cu | B | |
---|---|---|---|---|---|---|---|---|---|---|
Treatment | % D.W. | mg kg−1 | ||||||||
Inorganic fertilization (IF) | (1.98 ± 0.15) a | (0.45 ± 0.11) a | (6.38 ± 1.65) a | (0.89 ± 0.09) a | (0.42 ± 0.08) a | (835 ± 211) b | (66 a ± 12.02) b | (46 ± 1.94) ab | (21 ± 4.56) b | (29 ± 3.43) ab |
IF + PGPR | (2.02 ± 0.27) a | (0.34 ± 0.04) a | (4.57 ± 0.27) b | (0.75 ± 0.07) a | (0.40 ± 0.02) a | (561 ± 162) c | (54 ± 7.87) bc | (36 ± 3.65) b | (19 ± 2.74) b | (19 ± 2.30) c |
IF + PGPR + AMF | (2.18 ± 0.20) a | (0.37 ± 0.05) a | (4.79 ± 0.58) ab | (0.96 ± 0.19) a | (0.46 ± 0.10) a | (944 ± 247) ab | (75 ± 18.57) a | (45 ± 6.94) ab | (15 ± 3.29) b | (30 ± 6.96) ab |
Manure (MAN) | (1.92 ± 0.05) a | (0.30 ± 0.04) a | (4.00 ± 0.56) b | (0.82 ± 0.13) a | (0.36 ± 0.05) a | (479 ± 163.96) c | (47 ± 6.52) c | (45 ± 10.34) ab | (34 ± 5.09) a | (24 ± 3.72) bc |
MAN + PGPR | (1.99 ± 0.11) a | (0.36 ± 0.06) a | (4.13 ± 0.60) b | (0.89 ± 0.07) a | (0.38 ± 0.01) a | (886 ± 261) b | (71 ± 6.96) a | (41 ± 7.23) ab | (19 ± 3.66) b | (26 ± 7.47) b |
MAN + PGPR + AMF | (1.91 ± 0.12) a | (0.37 ± 0.10) a | (4.92 ± 0.88) ab | (1.08 ± 0.24) a | (0.46 ± 0.07) a | (1232 ± 322.18) a | (80 ± 15.57) a | (52 ± 10.42) a | (18 ± 2.12) b | (35 ± 9.54) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzistathis, T.; Zoukidis, K.; Vasilikiotis, C.; Apostolidis, A.; Giannakoula, A.E.; Bountla, A.; Chatziathanasiadis, A. Plant-Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungi May Improve Soil Fertility and the Growth, Nutrient Uptake, and Physiological Performance of Batavia Lettuce (Lactuca sativa L. var. longifolia) Plants. Horticulturae 2024, 10, 449. https://doi.org/10.3390/horticulturae10050449
Chatzistathis T, Zoukidis K, Vasilikiotis C, Apostolidis A, Giannakoula AE, Bountla A, Chatziathanasiadis A. Plant-Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungi May Improve Soil Fertility and the Growth, Nutrient Uptake, and Physiological Performance of Batavia Lettuce (Lactuca sativa L. var. longifolia) Plants. Horticulturae. 2024; 10(5):449. https://doi.org/10.3390/horticulturae10050449
Chicago/Turabian StyleChatzistathis, Theocharis, Konstantinos Zoukidis, Christos Vasilikiotis, Antonios Apostolidis, Anastasia E. Giannakoula, Areti Bountla, and Apostolos Chatziathanasiadis. 2024. "Plant-Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungi May Improve Soil Fertility and the Growth, Nutrient Uptake, and Physiological Performance of Batavia Lettuce (Lactuca sativa L. var. longifolia) Plants" Horticulturae 10, no. 5: 449. https://doi.org/10.3390/horticulturae10050449
APA StyleChatzistathis, T., Zoukidis, K., Vasilikiotis, C., Apostolidis, A., Giannakoula, A. E., Bountla, A., & Chatziathanasiadis, A. (2024). Plant-Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungi May Improve Soil Fertility and the Growth, Nutrient Uptake, and Physiological Performance of Batavia Lettuce (Lactuca sativa L. var. longifolia) Plants. Horticulturae, 10(5), 449. https://doi.org/10.3390/horticulturae10050449