Inter-Row Management and Clay Content Influence Acari and Collembola Abundances in Vineyards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Setup
2.3. Soil Analyses and Microbial Soil Respiration
2.4. Soil Mesofauna Sampling
2.5. Statistical Analyses
3. Results
3.1. Factors Influencing Acari Abundance
3.2. Factors Influencing Collembola Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Organisation Internationale de la Vigne et du Vin State of the World Vitivinicultural Sector in 2020. Available online: https://www.oiv.int/de/normen-und-technische-dokumente/statistischen-analysen/konjunkturanalyse (accessed on 24 August 2022).
- Beaumelle, L.; Auriol, A.; Grasset, M.; Pavy, A.; Thiéry, D.; Rusch, A. Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. Ecol. Solut. Evid. 2021, 2, e12086. [Google Scholar] [CrossRef]
- Etienne, L.; Franck, P.; Lavigne, C.; Papaïx, J.; Tolle, P.; Ostandie, N.; Rusch, A. Pesticide use in vineyards is affected by semi-natural habitats and organic farming share in the landscape. Agric. Ecosyst. Environ. 2022, 333, 107967. [Google Scholar] [CrossRef]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; D’Errico, G.; et al. Vineyard management and its impacts on soil biodiversity, functions, and ecosystem services. Front. Ecol. Evol. 2022, 10, 1–21. [Google Scholar] [CrossRef]
- Karimi, B.; Cahurel, J.Y.; Gontier, L.; Charlier, L.; Chovelon, M.; Mahé, H.; Ranjard, L. A Meta-analysis of the ecotoxicological impact of viticultural practices on soil biodiversity. Environ. Chem. Lett. 2020, 18, 1947–1966. [Google Scholar] [CrossRef]
- Ostandie, N.; Giffard, B.; Bonnard, O.; Joubard, B.; Richart-Cervera, S.; Thiéry, D.; Rusch, A. Multi-community effects of organic and conventional farming practices in vineyards. Sci. Rep. 2021, 11, 11979. [Google Scholar] [CrossRef]
- Paredes, D.; Rosenheim, J.A.; Chaplin-Kramer, R.; Winter, S.; Karp, D.S. Landscape simplification increases vineyard pest outbreaks and insecticide use. Ecol. Lett. 2021, 24, 73–83. [Google Scholar] [CrossRef]
- Sáenz-Romo, M.G.; Veas-Bernal, A.; Martínez-García, H.; Campos-Herrera, R.; Ibáñez-Pascual, S.; Martínez-Villar, E.; Pérez-Moreno, I.; Marco-Mancebón, V.S. Ground cover management in a mediterranean vineyard: Impact on insect abundance and diversity. Agric. Ecosyst. Environ. 2019, 283, 106571. [Google Scholar] [CrossRef]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guernion, M.; et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef]
- Paiola, A.; Assandri, G.; Brambilla, M.; Zottini, M.; Pedrini, P.; Nascimbene, J. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: A Global-Scale Systematic Review. Sci. Total Environ. 2020, 706, 135839. [Google Scholar] [CrossRef]
- Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M.R.; Corino, L.; Simoni, S. Case study of microarthropod communities to assess soil quality in different managed vineyards. Soil 2015, 1, 527–536. [Google Scholar] [CrossRef]
- Gonçalves, F.; Nunes, C.; Carlos, C.; López, Á.; Oliveira, I.; Crespí, A.; Teixeira, B.; Pinto, R.; Costa, C.A.; Torres, L. Do soil management practices affect the activity density, diversity, and stability of soil arthropods in vineyards? Agric. Ecosyst. Environ. 2020, 294, 106863. [Google Scholar] [CrossRef]
- Renaud, A.; Poinsot-Balaguer, N.; Cortet, J.; Le Petit, J. Influence of four soil maintenance practices on collembola communities in a mediterranean vineyard. Pedobiologia 2004, 48, 623–630. [Google Scholar] [CrossRef]
- Chen, Y.; Herrera, R.A.; Benitez, E.; Hoffmann, C.; Möth, S.; Paredes, D.; Plaas, E.; Popescu, D.; Rascher, S.; Rusch, A.; et al. Winegrowers’ decision-making: A Pan-European perspective on pesticide use and inter-row management. J. Rural Stud. 2022, 94, 37–53. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Griesser, M.; Steiner, M.; Pingel, M.; Uzman, D.; Preda, C.; Giffard, B.; Tolle, P.; Memedemin, D.; Forneck, A.; Reineke, A.; et al. General trends of different inter-row vegetation management affecting vine vigor and grape quality across European vineyards. Agric. Ecosyst. Environ. 2022, 338, 108073. [Google Scholar] [CrossRef]
- Briones, M.J.I. Soil fauna and soil functions: A jigsaw puzzle. Front. Environ. Sci. 2014, 2, 1–22. [Google Scholar] [CrossRef]
- Lavelle, P.; Spain, A.V. Soil Ecology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; ISBN 978-0-7923-7123-6. [Google Scholar]
- Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 2007, 64, 269–285. [Google Scholar] [CrossRef]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Potapov, A.; Bellini, B.; Chown, S.; Deharveng, L.; Janssens, F.; Kováč, Ľ.; Kuznetsova, N.; Ponge, J.-F.; Potapov, M.; Querner, P.; et al. Towards a global synthesis of collembola knowledge: Challenges and potential solutions. Soil Org. 2020, 92, 161–188. [Google Scholar] [CrossRef]
- Potapov, A.M.; Guerra, C.A.; van den Hoogen, J.; Babenko, A.; Bellini, B.C.; Berg, M.P.; Chown, S.L.; Deharveng, L.; Kováč, Ľ.; Kuznetsova, N.A.; et al. Globally invariant metabolism but density-diversity mismatch in springtails. Nat. Commun. 2023, 14, 674. [Google Scholar] [CrossRef] [PubMed]
- Pulleman, M.; Creamer, R.; Hamer, U.; Helder, J.; Pelosi, C.; Pérès, G.; Rutgers, M. Soil Biodiversity, biological indicators and soil ecosystem services—An overview of European approaches. Curr. Opin. Environ. Sustain. 2012, 4, 529–538. [Google Scholar] [CrossRef]
- Brussaard, L.; de Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Coleman, D.C.; Crossley, D.A.; Hendrix, P.F. Fundamentals of Soil Ecology, 2nd ed.; Elsevier: London, UK, 2004; ISBN 0-12-179726-0. [Google Scholar]
- Kladivko, E.J. Tillage systems and soil ecology. Soil Tillage Res. 2001, 61, 61–76. [Google Scholar] [CrossRef]
- Cortet, J.; Ronce, D.; Poinsot-Balaguer, N.; Beaufreton, C.; Chabert, A.; Viaux, P.; Cancela De Fonseca, J.P. Impacts of different agricultural practices on the biodiversity of microarthropod communities in arable crop systems. Eur. J. Soil Biol. 2002, 38, 239–244. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Dobies, T.; Cesarz, S.; Hobbie, S.E.; Meyer, R.J.; Worm, K.; Reich, P.B. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl. Acad. Sci. USA 2013, 110, 6889–6894. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.A.; Koch, A.M.; Forsythe, J.; Johnson, N.C.; Tilman, D.; Klironomos, J. Resistance of soil biota and plant growth to disturbance increases with plant diversity. Ecol. Lett. 2020, 23, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, M.; Vercesi, A.; Maerker, M.; Ganimede, C.; Reguzzi, M.C.; Capelli, E.; Wei, X.; Mazzoni, E.; Simoni, S.; Gagnarli, E.; et al. Effects of vineyard soil management on the characteristics of soils and roots in the lower Oltrepò Apennines (Lombardy, Italy). Sci. Total Environ. 2019, 693, 133390. [Google Scholar] [CrossRef]
- Seniczak, A.; Seniczak, S.; García-Parra, I.; Ferragut, F.; Xamaní, P.; Graczyk, R.; Messeguer, E.; Laborda, R.; Rodrigo, E. Oribatid mites of conventional and organic vineyards in the valencian community, Spain. Acarologia 2018, 58, 119–133. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Castaldini, M.; Diago, M.P.; Giffard, B.; Lagomarsino, A.; Schroers, H.J.; Priori, S.; Valboa, G.; Agnelli, A.E.; Akça, E.; et al. Effects of soil erosion on agro-ecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards. J. Environ. Manag. 2018, 223, 614–624. [Google Scholar] [CrossRef]
- Buchholz, J.; Querner, P.; Paredes, D.; Bauer, T.; Strauss, P.; Guernion, M.; Scimia, J.; Cluzeau, D.; Burel, F.; Kratschmer, S.; et al. Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape. Sci. Rep. 2017, 7, 17445. [Google Scholar] [CrossRef] [PubMed]
- Fiera, C.; Ulrich, W.; Popescu, D.; Bunea, C.I.; Manu, M.; Nae, I.; Stan, M.; Markó, B.; Urák, I.; Giurginca, A.; et al. Effects of vineyard inter-row management on the diversity and abundance of plants and surface-dwelling invertebrates in central Romania. J. Insect Conserv. 2020, 24, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Linder, C.; Juvara-Bals, I. Soil litter-inhabiting Gamasina species (Acari, Mesostigmata) from a vineyard in western Switzerland. Acarologia 2006, 46, 143–156. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Schaller, K. Praktikum zur Bodenkunde und Pflanzenernährung, 8th ed.; Gesellschaft zur Förderung der Forschungsanstalt: Geisenheim, Germany, 2000; ISBN 978-3-934742-01-7. [Google Scholar]
- Porter, L.; Kahlil, S.; Forneck, A.; Winter, S.; Griesser, M. Effects of ground cover management, landscape elements and local conditions on carabid (Coleoptera: Carabidae) diversity and vine vitality in temperate vineyards. Agronomy 2022, 12, 1328. [Google Scholar] [CrossRef]
- Scheu, S. Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biol. Biochem. 1992, 24, 1113–1118. [Google Scholar] [CrossRef]
- Steiner, M.; Pingel, M.; Falquet, L.; Giffard, B.; Griesser, M.; Leyer, I.; Preda, C.; Uzman, D.; Bacher, S.; Reineke, A. Local conditions matter: Minimal and variable effects of soil disturbance on microbial communities and functions in European vineyards. PLoS ONE 2023, 18, e0280516. [Google Scholar] [CrossRef]
- Eisenbeis, G.; Wichard, W. Atlas Zur Biologie Der Bodenarthropoden; Springer: Berlin/Heidelberg, Germany, 1985; ISBN 978-3-642-39391-4. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 4 December 2021).
- RStudio Team. RStudio: Integrated Development Environment for R. RStudio; PBC: Boston, MA, USA, 2021; Available online: http://www.rstudio.com/ (accessed on 4 December 2021).
- Wickham, H. Tidyr: Tidy Messy Data. R Package Version 1.1.4. Available online: https://cran.r-project.org/package=tidyr (accessed on 7 December 2021).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.4.5. Available online: https://cran.r-project.org/package=DHARMa (accessed on 4 April 2022).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 20 April 2020).
- Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 2003, 8, 1–27. [Google Scholar] [CrossRef]
- Sarkar, D. Lattice: Multivariate Data Visualization with R; Springer: New York, NY, USA, 2008; ISBN 978-0-387-75968-5. [Google Scholar]
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. Available online: https://cran.r-project.org/package=MuMIn (accessed on 20 April 2020).
- Mazerolle, M.J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R P Package Version 2.3-0. Available online: https://cran.r-project.org/web/packages/AICcmodavg/index.html (accessed on 20 April 2020).
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84). Available online: https://github.com/taiyun/corrplot (accessed on 20 April 2020).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Bolker, B.M.; Gardner, B.; Maunder, M.; Berg, C.W.; Brooks, M.; Comita, L.; Crone, E.; Cubaynes, S.; Davies, T.; de Valpine, P.; et al. Strategies for fitting nonlinear ecological models in R, AD model builder, and bugs. Methods Ecol. Evol. 2013, 4, 501–512. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R, 1st ed.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-87457-9. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002; ISBN 0-384-95364-7. [Google Scholar]
- Grueber, C.E.; Nakagawa, S.; Laws, R.J.; Jamieson, I.G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 2011, 24, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Freckleton, R.P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 2011, 65, 103–116. [Google Scholar] [CrossRef]
- Culliney, T.W. Role of arthropods in maintaining soil fertility. Agriculture 2013, 3, 629–659. [Google Scholar] [CrossRef]
- Joimel, S.; Schwartz, C.; Hedde, M.; Kiyota, S.; Krogh, P.H.; Nahmani, J.; Pérès, G.; Vergnes, A.; Cortet, J. Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Sci. Total Environ. 2017, 584–585, 614–621. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Agnelli, A.E.; Fabiani, A.; Gagnarli, E.; Mocali, S.; Priori, S.; Simoni, S.; Valboa, G. Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming. Soil 2015, 1, 443–457. [Google Scholar] [CrossRef]
- Bedano, J.C.; Domínguez, A.; Arolfo, R.; Wall, L.G. Effect of good agricultural practices under no-till on litter and soil invertebrates in areas with different soil types. Soil Tillage Res. 2016, 158, 100–109. [Google Scholar] [CrossRef]
- Betancur-Corredor, B.; Lang, B.; Russell, D.J. Reducing tillage intensity benefits the soil micro- and mesofauna in a global meta-analysis. Eur. J. Soil Sci. 2022, 73, e13321. [Google Scholar] [CrossRef]
- Behan-Pelletier, V.M. Oribatid mite biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 411–423. [Google Scholar] [CrossRef]
- Geldenhuys, M.; Gaigher, R.; Pryke, J.S.; Samways, M.J. Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agric. Ecosyst. Environ. 2021, 307, 107222. [Google Scholar] [CrossRef]
- Bengtsson, G.; Rundgren, S. Respiration and growth of a fungus, Mortierella Isabellina, in response to grazing by Onychiurus Armatus (Collembola). Soil Biol. Biochem. 1983, 15, 469–473. [Google Scholar] [CrossRef]
- Kaneko, N.; McLean, M.A.; Parkinson, D. Do mites and collembola affect pine litter fungal biomass and microbial respiration? Appl. Soil Ecol. 1998, 9, 209–213. [Google Scholar] [CrossRef]
- Setälä, H.; Haimi, J.; Huhta, V. A Microcosm study on the respiration and weight loss in birch litter and raw humus as influenced by soil fauna. Biol. Fertil. Soils 1988, 5, 282–287. [Google Scholar] [CrossRef]
- Hopkin, S.P. Biology of the Springtails Insecta: Collembola; Oxford University Press: Oxford, UK, 1997; ISBN 0-19-854084-1. [Google Scholar]
- Akrami, M.A.; Ardestani, M.M.; Verweij, R.A.; van Gestel, C.A.M. Toxicity and bioaccumulation of copper in the oribatid mite Oppia Nitens (Acari: Oribatida). Appl. Soil Ecol. 2022, 179, 104601. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, W.F.; Wong, F.P. Grapevine fungicides. In Compendium of Grape Diseases, Disorders, and Pests; Wilcox, W.F., Gubler, W.D., Uyemoto, J.K., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 177–184. ISBN 978-0-89054-479-2. [Google Scholar]
- Skubała, P.; Zaleski, T. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida). Gradient study in meadow ecosystems. Sci. Total Environ. 2012, 414, 364–372. [Google Scholar] [CrossRef]
- Seniczak, S.; Dabrowski, J.; Dlugosz, J. Effect of copper smelting air pollution on the mites (Acari) associated with young scots pine forests polluted by a copper smelting works at Giogow, Poland. I. Arboreal mites. Water Air Soil Pollut. 1997, 97, 287–302. [Google Scholar] [CrossRef]
Response Variable | Fixed Factors of the Most Parsimonious Models | AICc | ∆i | R2 m | R2 c |
---|---|---|---|---|---|
Acari abundance | Null model | 1109.67 | 5.54 | 0.0 | 0.30 |
Clay content + inter-row treatment + bioavailable copper content | 1104.13 | 0.0 | 0.14 | 0.36 | |
Clay content + bioavailable copper content + microbial soil respiration | 1104.69 | 0.56 | 0.12 | 0.32 | |
Clay content + microbial soil respiration | 1104.74 | 0.61 | 0.10 | 0.33 | |
Clay content + inter-row treatment + bioavailable copper content + microbial soil respiration | 1105.84 | 1.71 | 0.14 | 0.35 | |
Clay content + inter-row treatment + bioavailable copper content + plant species richness | 1106.05 | 1.92 | 0.14 | 0.37 | |
Inter-row treatment + bioavailable copper content | 1106.15 | 2.03 | 0.09 | 0.36 | |
Collembola abundance | Null model | 842.85 | 43.75 | 0.0 | 0.42 |
Clay content + inter-row treatment | 799.10 | 0.0 | 0.23 | 0.64 | |
Clay content + inter-row treatment + microbial soil respiration | 799.96 | 0.86 | 0.23 | 0.65 | |
Clay content + microbial soil respiration+ plant species richness | 800.38 | 1.28 | 0.21 | 0.62 | |
Clay content + microbial soil respiration | 800.39 | 1.29 | 0.22 | 0.63 | |
Clay content + inter-row treatment + plant species richness | 801.01 | 1.91 | 0.23 | 0.64 | |
Clay content + plant species richness | 801.10 | 2.00 | 0.22 | 0.61 | |
Clay content + inter-row treatment + microbial soil respiration + plant species richness | 802.19 | 3.09 | 0.23 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Möth, S.; Khalil, S.; Rizzoli, R.; Steiner, M.; Forneck, A.; Bacher, S.; Griesser, M.; Querner, P.; Winter, S. Inter-Row Management and Clay Content Influence Acari and Collembola Abundances in Vineyards. Horticulturae 2023, 9, 1249. https://doi.org/10.3390/horticulturae9121249
Möth S, Khalil S, Rizzoli R, Steiner M, Forneck A, Bacher S, Griesser M, Querner P, Winter S. Inter-Row Management and Clay Content Influence Acari and Collembola Abundances in Vineyards. Horticulturae. 2023; 9(12):1249. https://doi.org/10.3390/horticulturae9121249
Chicago/Turabian StyleMöth, Stefan, Sarhan Khalil, Rudi Rizzoli, Magdalena Steiner, Astrid Forneck, Sven Bacher, Michaela Griesser, Pascal Querner, and Silvia Winter. 2023. "Inter-Row Management and Clay Content Influence Acari and Collembola Abundances in Vineyards" Horticulturae 9, no. 12: 1249. https://doi.org/10.3390/horticulturae9121249
APA StyleMöth, S., Khalil, S., Rizzoli, R., Steiner, M., Forneck, A., Bacher, S., Griesser, M., Querner, P., & Winter, S. (2023). Inter-Row Management and Clay Content Influence Acari and Collembola Abundances in Vineyards. Horticulturae, 9(12), 1249. https://doi.org/10.3390/horticulturae9121249