Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data
Abstract
:1. Introduction
1.1. Context and Importance
1.2. Review of the Farm Sustainability Assessment Based on FADN Data
1.3. Purpose, Justification, and Significance
2. Materials and Methods
2.1. Environmental Sustainability Evaluation: LCA Methodology
2.2. Societal Costs Estimation: Shadow Price Methodology
3. Results
3.1. Inputs Used and Outputs among Vineyards
3.2. Environmental Sustainability Impacts: LCA Results
3.3. External Costs Estimation: Shadow Price Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Istituto Nazionale di Statistica. Italian Population in 2021. Available online: https://dati.istat.it/ (accessed on 23 July 2023).
- Statista. Most Popular Wine Grape Varieties in Italy. 2022. Available online: https://www.statista.com/statistics/743083/production-volume-of-grapes-in-italy (accessed on 23 July 2023).
- Eurostat. Vineyards in the EU. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained (accessed on 23 July 2023).
- Chen, Y.H.; Wen, X.W.; Wang, B.; Nie, P.Y. Agricultural pollution and regulation: How to subsidize agriculture? J. Clean. Prod. 2017, 164, 258–264. [Google Scholar] [CrossRef]
- Nemecek, T.; Dubois, D.; Huguenin-Elie, O.; Gaillard, G. Life cycle assessment of Swiss farming systems: Integrated and organic farming. Agric. Syst. 2011, 104, 217–232. [Google Scholar] [CrossRef]
- Diazabakana, A.; Latruffe, L.; Bockstaller, C.C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. A review of farm level indicators of sustainability with a focus on CAP and FADN. Sci. Du Vivant 2014, 101, hal-01209046. [Google Scholar]
- Dolman, M.A.; Vrolijk, H.C.J.; de Boer, I.J.M. Exploring variation in economic, environmental and societal performance among Dutch fattening pig farms. Livest. Sci. 2012, 149, 143–154. [Google Scholar] [CrossRef]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing farm sustainability with the IDEA method—From the concept of agriculture sustainability to case studies on farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Dantsis, T.; Douma, C.; Giourga, G.; Loumou, A.; Polychronaki, E.A. A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol. Indic. 2010, 10, 256–263. [Google Scholar] [CrossRef]
- Marchand, F.; Debruyne, L.; Sad, L.; Gerrard, C.; Padel, S.; Lauwers, L. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 2014, 19, 46. [Google Scholar] [CrossRef]
- Dabkienė, V. The scope of farms sustainability tools based on FADN data. Sci. Pap. Ser.-Manag. Econ. Eng. Agric. Rural. Dev. 2016, 16, 121–128. [Google Scholar]
- Thomassen, M.A.; Dolman, M.A.; van Calker, K.J.; de Boer, I.J.M. Relating life cycle assessment indicators to gross value added for Dutch dairy farms. Ecol. Econ. 2009, 68, 2278–2284. [Google Scholar] [CrossRef]
- Jan, P.; Dux, D.; Lips, M.; Alig, M.; Dumonde, M. On the link between economic and environmental performance of Swiss dairy farms of the alpine area. Int. J. Life Cycle Assess. 2012, 17, 706–719. [Google Scholar] [CrossRef]
- Meulen, H.; Asseldonk, M.; Ge, L. The state of innovation in European agriculture: Innovators are few and far between. Agric. Econ. 2016, 118, 172–174. [Google Scholar] [CrossRef]
- Smedzik-Ambrozy, K. Impact of direct payments on sustainability of farms in Poland—Simulation based on the example of FADN farms from wielkopolska and slask region. In Proceedings of the International Scientific Conference: Economic Science for Rural Development, Jelgava, Latvia, 25–26 April 2013; pp. 81–86. [Google Scholar]
- Mastronardi, L.; Giaccio, V.; Giannelli, A.; Scardera, A. Is agritourism eco-friendly? A comparison between agritourisms and other farms in Italy using farm accountancy data network dataset. SpringerPlus 2015, 4, 590. [Google Scholar] [CrossRef] [PubMed]
- Kołoszko-Chomentowska, Z.; Józefa Wiater, J.; Żukovskis, J. Environmental sustainability of family-owned agricultural holdings in the podlaskie voivodeship. Ecol. Eng. 2015, 16, 111–116. [Google Scholar] [CrossRef]
- Vitunskiene, V.; Dabkiene, V. Framework for assessing the farm relative sustainability: A Lithuanian case study. Agricecon 2016, 62, 134–148. [Google Scholar] [CrossRef]
- O’Donoghue, C.; Devisme, S.; Ryan, M.; Conneely, R.; Gillespie, P.; Vrolijk, H. Farm economic sustainability in the European Union: A pilot study. Agric. Econ. 2016, 118, 163–171. [Google Scholar] [CrossRef]
- Vrolijk, H.; Krijn, P.; Szilard, K. Collecting sustainability data in different organisational settings of the European Farm Accountancy Data Network. Agric. Econ. 2016, 118, 138–144. [Google Scholar] [CrossRef]
- Martino, G.; Polinori, P.; Francesco Tei, F.; Benincasa, P.; Turchetti, L. An economic analysis of the efficiency and sustainability of fertilization programs at level of operational systems of soft wheat in Umbria. Agric. Agric. Sci. Procedia 2016, 8, 298–306. [Google Scholar] [CrossRef]
- Brennan, N.; Ryan, M.; Hennessy, T.; Cullen, P.; Dillon, E. Going beyond FADN: The use of additional data to gain insights into extension service use across European Union Member States. Agric. Econ. 2016, 118, 145–153. [Google Scholar] [CrossRef]
- Koloszko-Chomentowska, Z.; Žukovskis, J. Organic farming as a part of the sustaianble development of agriculture. In Proceedings of the 8th International Scientific Conference Rural Development, Kaunas, Lithuania, 23–24 November 2017; pp. 1102–1107. [Google Scholar]
- Reidla, K.; Nurmet, M. Sustainablity performance indicators in dairy farms of Baltic States. In Proceedings of the International Scientific Conference Strategies for the Agri-Food Sector and Rural Areas–Dilemmas of Development, Stary, Poland, 19–21 June 2017; pp. 147–155. [Google Scholar]
- Martinho, V. Efficiency, total factor productivity and returns to scale in a sustainable perspective: An analysis in the European Union at farm and regional level. Land Use Policy 2017, 68, 232–245. [Google Scholar] [CrossRef]
- Annaert, B.; Goossens, Y.; Geeraerd, A.; Mathijs, E.; Vranken, L. Calculating environmental cost indicators of apple farm practices indicates large differences between growers. Int. J. Agric. Sustain. 2017, 15, 527–538. [Google Scholar] [CrossRef]
- Bazzani, G.M.; Vitali, G.; Cardillo, C.; Canavari, M. Using FADN data to estimate CO2 abatement costs from Italian arable crops. Sustainability 2021, 13, 5148. [Google Scholar] [CrossRef]
- Baležentis, T.; Galnaitytė, A.; Kriščiukaitienė, I.; Namiotko, V.; Novickytė, L.; Streimikiene, D.; Melnikiene, R. Decomposing dynamics in the farm profitability: An application of index decomposition analysis to Lithuanian FADN Sample. Sustainability 2019, 11, 2861. [Google Scholar] [CrossRef]
- ISO 14044; International Standard Environmental Management—Life Cycle Assessment: Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Frem, M.; Fucilli, V.; Petrontino, A.; Acciani, C.; Bianchi, R.; Bozzo, F. Nursery plant production models under quarantine pests’ outbreak: Assessing the environmental implications and economic viability. Agronomy 2022, 12, 2964. [Google Scholar] [CrossRef]
- Nemecek, T.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems; Agroscope Reckenholz-Tänikon Research Station ART: Zürich, Switzerland, 2011; 34p. [Google Scholar]
- De Bruyn, S.M.; Korteland, M.H.; Markowska, A.Z.; Davidson, M.D.; De Jong, F.L.; Bles, M.; Sevenster, M.N. Shadow Prices Handbook; Valuation and Weighting of Emissions and Environmental Impacts, Technical Report; CE Delft: Delft, The Netherlands, 2010; 140p. [Google Scholar]
- Sahle, A.; Potting, J. Environmental life cycle assessment of Ethiopian rose cultivation. Sci. Total Environ. 2013, 443, 163–172. [Google Scholar] [CrossRef]
- Lazzerini, G.; Lucchetti, S.S.; Nicese, F.P. Analysis of greenhouse gas emissions from ornamental plant production: A nursery level approach. Urban For. Urban Green. 2014, 13, 517–525. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Pini, M.; Sassi, D.; Zerazion, E.; Neri, P. Effects of grape quality on the environmental profile of an Italian vineyard for Lambrusco red wine production. J. Clean Prod. 2018, 172, 3760–3769. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bruun, S.; Beccaro, G.L.; Bounous, G. A review of studies applying environmental impact assessment methods on fruit production systems. J. Environ. 2011, 92, 2277–2286. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Vannière, H.; Grasselly, D.; Heitz, H.; Braun, A.; Payen, S.; Biard, Y. Environmental impacts of imported and locally grown fruits for the French market: A cradle-to-farm-gate LCA study. Fruits 2016, 71, 93–104. [Google Scholar] [CrossRef]
- Bessou, C.; Basset-Mens, C.; Latunussa, C.; Vélu, A.; Heitz, H.; Vannière, H.; Caliman, J.P. Partial modelling of the perennial crop cycle misleads LCA results in two contrasted case studies. Int. J. Life Cycle Assess. 2016, 21, 297–310. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Foteinis, S.; Borthwick, A.G. Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation system. Int. J. Life Cycle Assess. 2017, 22, 896–908. [Google Scholar] [CrossRef]
- Wimmerova, L.; Keken, Z.; Solcova, O.; Bartos, L.; Spacilova, M. A comparative LCA of ceroponic, hydroponic, and soil cultivations of bioactive substance producing plants. Sustainability 2022, 14, 2421. [Google Scholar] [CrossRef]
- FADN-RICA Data. Farm Accountancy Data Network—Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Available online: https://www.crea.gov.it (accessed on 5 June 2023).
- Costantini, E.A.C.; Barbetti, R. Environmental and visual impact analysis of viticulture and olive tree cultivation in the province of Siena (Italy). Eur. J. Agron. 2008, 28, 412–426. [Google Scholar] [CrossRef]
- Smyth, S.; Russell, J. ‘From graft to bottle’—Analysis of energy use in viticulture and wine production and the potential for solar renewable technologies. Renew. Sustain. Energy Rev. 2009, 13, 1985–1993. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
- Fusi, A.; Guidetti, R.; Benedetto, G. Delving into the environmental aspect of a Sardinian white wine: From partial to total life cycle assessment. Sci. Total Environ. 2014, 472, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Lamastra, L.; Suciu, N.A.; Novelli, E.; Trevisan, M. A new approach to assessing the water footprint of wine: An Italian case study. Sci. Total Environ. 2014, 490, 748–756. [Google Scholar] [CrossRef]
- Morelli, R.; Roman, T.; Bertoldi, D.; Zanzotti, R. Can comparable vine and grape quality be achieved between organic and integrated management in a warm-temperate area? Agronomy 2022, 12, 1789. [Google Scholar] [CrossRef]
- Franco, S.; Rossi, E.S.; Martella, A.; Passeri, N. Is wine production environmentally sustainable? Yes, no, maybe, it depends…. In Green Metamorphoses: Agriculture, Food, Ecology; Torquati, B., Marchini, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2020; pp. 211–219. [Google Scholar]
- Cataldo, E.; Salvi, L.; Sbraci, S.; Storchi, P.; Mattii, G.B. Sustainable Viticulture: Effects of soil management in Vitis vinifera. Agronomy 2020, 10, 1949. [Google Scholar] [CrossRef]
- Perria, R.; Ciofini, A.; Petrucci, W.A.; D’Arcangelo, M.E.M.; Valentini, P.; Storchi, P.; Carella, G.; Pacetti, A.; Mugnai, L. A Study on the efficiency of sustainable wine grape vineyard management strategies. Agronomy 2022, 12, 392. [Google Scholar] [CrossRef]
Variable | Unit | Description | |
---|---|---|---|
Irrigation | m3/ha | Yearly average volume of water distributed | |
Fertilizers (Inorganic and Organic) | kg/ha | Yearly average quantity of fertilizers, applied as ì | |
Conventional: inorganic fertilizer as N, P2O5, K2O, manure, and compost. | Organic: organic, organo-mineral, manure, and compost | ||
Phytosanitary products * | kg/ha | Yearly average quantity of pesticides sprayed as Insecticides (as 100% emissions in the soil) Fungicides (as 100% emissions in the soil) Herbicides (as 100% emissions in the soil) Other pesticides (as 100% emissions in the soil) | |
Energy and fuel | kwh/ha | Yearly average volume of energy and fuel consumed (i.e., diesel and other fuels for tractors and other machinery) |
Midpoint Indicator | Unit | Endpoint Indicator |
---|---|---|
Agricultural land occupation—ALOP | m2 | Ecosystem quality |
Climate change—GWP100 | kg CO2-Eq | |
Freshwater ecotoxicity—FETPinf | kg 1,4-DCB-Eq | |
Freshwater eutrophication—FEP | kg P-Eq | |
Marine ecotoxicity—METPinf | kg 1,4-DCB-Eq | |
Natural land transformation—NLTP | m2 | |
Terrestrial acidification—TAP100 | kg SO2-Eq | |
Terrestrial ecotoxicity—TETPinf | kg 1,4-DCB-Eq | |
Urban land occupation—ULOP | m2 | |
Human toxicity—HTPinf | kg 1,4-DCB-Eq | |
Ionizing radiation—IRP_HE | kg U235-Eq | |
Ozone depletion—ODPinf | kg CFC-11-Eq | |
Particulate matter formation—PMFP | kg PM10-Eq | |
Photochemical oxidant formation—POFP | kg NMVOC | |
Fossil depletion—FDP | kg oil-Eq | Resources |
Metal depletion—MDP | kg Fe-Eq |
Impact Category | Shadow Price |
---|---|
Agricultural land occupation—ALOP | EUR 0.48 per m2 |
Climate change—GWP100 | EUR 0.402 per kg CO2-Eq |
Terrestrial acidification—TAP100 | EUR 0.237 per kg SO2-Eq |
Freshwater eutrophication—FEP | EUR 0.60 per kg oil-Eq |
Variable | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Irrigation | m3/ha | 1016 | 974 | 631 | 609 |
Fertilizers: | kg/ha | ||||
Inorganic as N, P2O5, K2O | 760 | - | 483 | - | |
Organic | - | 626 | - | 388 | |
Organo-mineral | - | 108 | - | 138 | |
Compost | 17 | 88 | 22 | 105 | |
Swine manure | 29 | 630 | 54 | 133 | |
Cattle manure | 72 | 413 | 544 | 711 | |
Poultry manure | 0.01 | 0.42 | 3 | 20 | |
Phytosanitary products: | kg/ha | ||||
Pesticides | 14.48 | 17.02 | 27.23 | 33.69 | |
Insecticides (50% emissions in the soil) | 0.60 | 1.07 | 5.10 | 5.40 | |
Fungicides (50% emissions in the soil) | 5.75 | 6.94 | 7.59 | 10.92 | |
Herbicides (50% emissions in the soil) | 0.49 | 0.17 | 0.50 | 0.20 | |
Other pesticides (50% emissions in the soil) | 0.39 | 0.32 | 0.43 | 0.33 | |
Energy and fuel | Kwh/ha | 858 | 873 | 742 | 1019 |
Yield | Tons/ha | 12.47 | 10.20 | 10.64 | 9.27 |
Farmers | Number | 6024 | 1373 | 7259 | 1696 |
% | 40.63 | 9.26 | 48.96 | 1.13 |
Receipe Midpoint Indicator | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Agricultural land occupation—ALOP | m2 per year | 10,198.40 | 10,117.30 | 10,157.50 | 10,144.30 |
Climate change—GWP100 | kg CO2-Eq | 3383.41 | 1282.81 | 2464.45 | 1630.70 |
Fossil depletion—FDP | kg oil-Eq | 1342.10 | 422.11 | 963.86 | 540.42 |
Freshwater ecotoxicity—FETPinf | kg 1,4-DCB-Eq | 151.45 | 52.64 | 107.53 | 62.48 |
Freshwater eutrophication—FEP | kg P-Eq | 0.92 | 0.34 | 0.71 | 0.47 |
Human toxicity—HTPinf | kg 1,4-DCB-Eq | 926.12 | 382.37 | 715.88 | 516.21 |
Ionising radiation—IRP_HE | kg U235-Eq | 306.88 | 92.93 | 230.11 | 122.01 |
Marine ecotoxicity—METPinf | kg 1,4-DCB-Eq | 124.09 | 45.27 | 88.02 | 53.07 |
Marine eutrophication—MEP | kg N-Eq | 5.46 | 2.85 | 4.33 | 3.54 |
Metal depletion—MDP | kg Fe-Eq | 335.69 | 123.75 | 248.86 | 158.89 |
Natural land transformation—NLTP | m2 | 0.95 | 0.30 | 0.67 | 0.36 |
Ozone depletion—ODPinf | kg CFC-11-Eq | 0.00 | 0.00 | 0.00 | 0.00 |
Particulate matter formation—PMFP | kg PM10-Eq | 7.57 | 3.48 | 5.80 | 4.32 |
Photochemical oxidant formation—POFP | kg NMVOC | 12.88 | 7.85 | 10.36 | 9.39 |
Terrestrial acidification—TAP100 | kg SO2-Eq | 20.27 | 7.37 | 15.29 | 9.73 |
Terrestrial ecotoxicity—TETPinf | kg 1,4-DCB-Eq | 0.83 | 0.22 | 0.61 | 0.31 |
Urban land occupation—ULOP | m2 per year | 138.97 | 33.68 | 95.74 | 40.86 |
Water depletion—WDP | m3 | 1030.18 | 978.54 | 640.54 | 613.55 |
Receipe Midpoint Indicator | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Agricultural land occupation—ALOP | m2 per year | 81,795 | 99,200 | 95,423 | 109,480 |
Climate change—GWP100 | kg CO2-Eq | 27,136 | 12,578 | 23,152 | 17,599 |
Fossil depletion—FDP | kg oil-Eq | 10,764 | 4139 | 9055 | 5832 |
Freshwater ecotoxicity—FETPinf | kg 1,4-DCB-Eq | 1215 | 0.516 | 1010 | 0.674 |
Freshwater eutrophication—FEP | kg P-Eq | 0.007 | 0.003 | 0.007 | 0.005 |
Human toxicity—HTPinf | kg 1,4-DCB-Eq | 7428 | 3749 | 6725 | 5571 |
Ionising radiation—IRP_HE | kg U235-Eq | 2461 | 0.911 | 2162 | 1317 |
Marine ecotoxicity—METPinf | kg 1,4-DCB-Eq | 0.995 | 0.444 | 0.827 | 0.573 |
Marine eutrophication—MEP | kg N-Eq | 0.044 | 0.028 | 0.041 | 0,038 |
Metal depletion—MDP | kg Fe-Eq | 2692 | 1213 | 2338 | 1715 |
Natural land transformation—NLTP | m2 | 0.008 | 0.003 | 0.006 | 0.004 |
Ozone depletion—ODPinf | kg CFC-11-Eq | 0.000005 | 0.000004 | 0.000007 | 0.000008 |
Particulate matter formation—PMFP | kg PM10-Eq | 0.061 | 0.034 | 0.055 | 0.047 |
Photochemical oxidant formation—POFP | kg NMVOC | 0.103 | 0.077 | 0.097 | 0.101 |
Terrestrial acidification—TAP100 | kg SO2-Eq | 0.163 | 0.072 | 0.144 | 0.105 |
Terrestrial ecotoxicity—TETPinf | kg 1,4-DCB-Eq | 0.007 | 0.002 | 0.006 | 0.003 |
Urban land occupation—ULOP | m2 per year | 1115 | 0.330 | 0.899 | 0.441 |
Water depletion—WDP | m3 | 8262 | 9595 | 6017 | 6622 |
Receipe Midpoint Indicator | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Ecosystem quality—agricultural land occupation | points | 366.66 | 363.96 | 365.26 | 364.93 |
Ecosystem quality—climate change | points | 59.27 | 22.48 | 43.18 | 28.57 |
Ecosystem quality—freshwater ecotoxicity | points | 0.07 | 0.02 | 0.05 | 0.03 |
Ecosystem quality—freshwater eutrophication | points | 0.09 | 0.03 | 0.07 | 0.05 |
Ecosystem quality—marine ecotoxicity | points | 0.01 | 0.00 | 0.01 | 0.01 |
Ecosystem quality—natural land transformation | points | 3.03 | 1.13 | 2.15 | 1.36 |
Ecosystem quality—terrestrial acidification | points | 0.26 | 0.09 | 0.20 | 0.12 |
Ecosystem quality—terrestrial ecotoxicity | points | 0.27 | 0.07 | 0.20 | 0.10 |
Ecosystem quality—urban land occupation | points | 6.36 | 1.54 | 4.38 | 1.87 |
Human health—climate chnage, human health | points | 93.78 | 35.56 | 68.31 | 45.21 |
Human health—human toxicity | 12.67 | 5.23 | 9.80 | 7.07 | |
Human health—ionising radiation | points | 0.10 | 0.03 | 0.07 | 0.04 |
Human health—ozone depletion | points | 0.04 | 0.03 | 0.05 | 0.05 |
Human health—particulate matter formation—PMFP | points | 39.80 | 18.31 | 30.64 | 22.89 |
Human health—photochemical oxidant formation | points | 1.91 | 0.87 | 1.80 | 1.47 |
Resources—fossil depletion | points | 160.94 | 50.62 | 115.58 | 64.80 |
Resources—metal depletion | points | 36.55 | 18.06 | 27.91 | 21.65 |
Receipe Midpoint Indicator | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Agricultural land occupation—ALOP | EUR per m2 | 4895.23 | 4856.30 | 4875.60 | 4869.26 |
Climate change—GWP100 | EUR per kg CO2-Eq | 1360.13 | 515.69 | 990.71 | 655.54 |
Terrestrial acidification—TAP100 | EUR per kg SO2-Eq | 4.80 | 1.75 | 3.62 | 2.31 |
Freshwater eutrophication—FEP | EUR per kg P-Eq | 0.55 | 0.20 | 0.43 | 0.28 |
Total | Per 1 ha | 6260.72 | 5373.94 | 5870.36 | 5527.39 |
Parameter | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Yield | Tons/ha | 12.47 | 10.20 | 10.64 | 9.27 |
Total gross production | EUR/ha | 5389 | 4846 | 8432 | 7055 |
Variable costs | EUR/ha | 1286 | 1106 | 1606 | 1615 |
Labor costs | EUR/ha | 3142 | 3074 | 3591 | 3350 |
Machine labor costs | EUR/ha | 2320 | 2462 | 2426 | 2261 |
Operative margin | EUR/ha | −1359 | −1797 | 6827 | 5440 |
Gross margin | EUR/ha | 4104 | 3704 | 809 | −172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frem, M.; Petrontino, A.; Fucilli, V.; Sansiviero, C.; Bozzo, F. Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data. Horticulturae 2023, 9, 1239. https://doi.org/10.3390/horticulturae9111239
Frem M, Petrontino A, Fucilli V, Sansiviero C, Bozzo F. Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data. Horticulturae. 2023; 9(11):1239. https://doi.org/10.3390/horticulturae9111239
Chicago/Turabian StyleFrem, Michel, Alessandro Petrontino, Vincenzo Fucilli, Carlo Sansiviero, and Francesco Bozzo. 2023. "Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data" Horticulturae 9, no. 11: 1239. https://doi.org/10.3390/horticulturae9111239
APA StyleFrem, M., Petrontino, A., Fucilli, V., Sansiviero, C., & Bozzo, F. (2023). Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data. Horticulturae, 9(11), 1239. https://doi.org/10.3390/horticulturae9111239