Establishment of an Efficient In Vitro Propagation Protocol for Cannabis sativa L. subsp. ruderalis Janish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Explant Source of C. sativa L., subsp. ruderalis Janish., Cultivar ‘Finola’
2.1.1. In Vitro Germinated Seeds
- (a)
- Sodium hypochlorite (NaClO with 14% active chlorine) at 1.4% for 20 min;
- (b)
- Mercuric chloride (HgCl) at 0.1% for 15 min.
2.1.2. Mother Plant Production
2.2. In Vitro Multiplication
- -
- Benzylaminopurine (BAP) (0.05 mg L−1);
- -
- Metatopoline (MT) (0.5 mg L−1);
- -
- Thidiazuron (TDZ) (0.4 mg L−1) + 1 naphthalenacetic acid (NAA) (0.2 mg L−1);
- -
- Thidiazuron (TDZ) (0.4 mg L−1) + 2,3,5- Triiodobenzoic acid (TIBA 1 g L−1).
2.3. In Vitro Rooting
2.4. Ex Vitro Acclimatization
2.5. Statistical Analysis
3. Results
3.1. Germination of Seeds In Vitro
3.2. Mother Plant Production and Micropropagation by Axillary Buds
3.3. Results for In Vitro Rooting and Ex Vitro Acclimatization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salami, S.A.; Martinelli, F.; Giovino, A.; Bachari, A.; Arad, N.; Mantri, N. It is our turn to get cannabis high: Put cannabinoids in food and health baskets. Molecules 2020, 25, 4036. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Wang, D. High Ethanol Concentration (77 g/L) of Industrial Hemp Biomass Achieved Through Optimizing the Relationship between Ethanol Yield/Concentration and Solid Loading. ACS Omega 2020, 5, 21913–21921. [Google Scholar] [CrossRef]
- Shen, P.; Gao, Z.; Fang, B.; Rao, J.; Chen, B. Ferreting out the secrets of industrial hemp protein as emerging functional food ingredients. Trends Food Sci. Technol. 2021, 112, 1–15. [Google Scholar] [CrossRef]
- Amaducci, S.; Scordia, D.; Liu, F.H.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S.L. Key evaluation techniques for hemp in Europe and in China. Ind. Crops Prod. 2015, 69, 2–16. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Guo, H.; Trindade, L.M.; Salentijn, E.M.J.; Guo, R.; Guo, M.; Xu, Y.; Yang, M. Latitudinal Adaptation and Genetic Insights into the Origins of Cannabis sativa L. Front. Plant Sci. 2018, 9, 1876. [Google Scholar] [CrossRef]
- Gloss, D. An overview of products and bias in research. Neurotherapeutics 2015, 12, 731–734. [Google Scholar] [CrossRef]
- McPartland, J.M.; Clarke, R.C.; Watson, D.P. Hemp Diseases and Pests: Management and Biological Control: An Advanced Treatise; CABI: Wallingford, UK, 2000. [Google Scholar]
- Dowling, C.A.; Shi, J.; Toth, J.A.; Quade, M.A.; Smart, L.B.; McCabe, P.F.; Melzer, R.; Schilling, S. A FLOWERING LOCUS T ortholog is associated with photoperiod-insensitive flowering in hemp (Cannabis sativa L.). bioRxiv 2023. preprint. [Google Scholar]
- Hillig, K.W. Genetic evidence for speciation in Cannabis (Cannabaceae). Genet. Resour. Crop Evol. 2005, 52, 161–180. [Google Scholar] [CrossRef]
- Fadel, D.; Assaad, N.; Alghazal, G.; Hamouche, Z.; Lazari, D. “Finola” Cannabis Cultivation for Cannabinoids Production in Thessaloniki-Greece. J. Agric. Sci. 2020, 12, 172–181. [Google Scholar] [CrossRef]
- Pagnani, G.; Pellegrini, M.; Galieni, A.; D’Egidio, S.; Matteucci, F.; Ricci, A.; Stagnari, F.; Sergi, M.; Lo Sterzo, C.; Pisante, M.; et al. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind. Crops Prod. 2018, 123, 75–83. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. (Eds.) Plant Propagation by Tissue Culture: Volume 1. The Background; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Cardoso, J.C.; Lee Tseng Sheng, G.; Teixeira da Silva, J.A. Micropropagation in the twenty-first century. In Plant Cell Culture Protocols; Springer: Berlin/Heidelberg, Germany, 2018; pp. 17–46. [Google Scholar]
- Boonsnongcheep, P.; Benyakan, P. Factors affecting micropropagation of Cannabis sativa L.: A review. Pharm. Sci. Asia 2020, 47, 21–29. [Google Scholar] [CrossRef]
- Adhikary, D.; Kulkarni, M.; El-Mezawy, A.; Mobini, S.; Elhiti, M.; Gjuric, R.; Ray, A.; Polowick, P.; Slaski, J.J.; Jones, M.; et al. Medical cannabis and industrial hemp tissue culture: Present status and future potential. Front. Plant Sci. 2021, 12, 627240. [Google Scholar] [CrossRef]
- Chadipiralla, K.; Gayathri, P.; Rajani, V.; Reddy, P.V.B. Plant Tissue Culture and Crop Improvement. In Sustainable Agriculture in the Era of Climate Change; Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 391–412. [Google Scholar]
- El-Sherif, N.A. Impact of plant tissue culture on agricultural sustainability. In Sustainability of Agricultural Environment in Egypt: Part II: Soil-Water-Plant Nexus; The Handbook of Environmental Chemistry Series; Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–107. [Google Scholar]
- Lata, H.; Chandra, S.; Khan, I.A.; ElSohly, M.A. Micropropagation of Cannabis sativa L.—An update. In Cannabis sativa L.—Botany and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 285–297. [Google Scholar]
- Monthony, A.S.; Bagheri, S.; Zheng, Y.; Jones, A.M.P. Flower power: Floral reversion as a viable alternative to nodal micropropagation in Cannabis sativa. In Vitr. Cell. Dev. Biol. Plant 2021, 57, 1018–1030. [Google Scholar] [CrossRef]
- Schilling, S.; Melzer, R.; Dowling, C.A.; Shi, J.; Muldoon, S.; McCabe, P.F. A protocol for rapid generation cycling (speed breeding) of hemp (Cannabis sativa) for research and agriculture. Plant J. 2023, 113, 437–445. [Google Scholar] [CrossRef]
- Monthony, A.S.; Page, S.R.; Hesami, M.; Jones, A.M.P. The Past, Present and Future of Cannabis sativa Tissue Culture. Plants 2021, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Dreger, M.; Szalata, M. The Effect of TIBA and NPA on Shoot Regeneration of Cannabis sativa L. Epicotyl Explants. Agronomy 2022, 12, 104. [Google Scholar] [CrossRef]
- Galán-Ávila, A.; García-Fortea, E.; Prohens, J.; Herraiz, F.J. Development of a Direct in vitro Plant Regeneration Protocol from Cannabis sativa L. Seedling Explants: Developmental Morphology of Shoot Regeneration and Ploidy Level of Regenerated Plants. Front. Plant Sci. 2020, 11, 645. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. In Phytocannabinoids. Progress in the Chemistry of Organic Natural Products; Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J., Eds.; Springer: Cham, Switzerland, 2017; Volume 103, pp. 1–36. [Google Scholar]
- Ancona, S.; De Mastro, G.; Jenderek, M.M.; Ruta, C. Micropropagation Supports Reintroduction of an Apulian Artichoke Landrace in Sustainable Cropping Systems. Agronomy 2021, 11, 1169. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Nitsch, J.P.; Nitsch, C. Haploid plants for pollen grains. Science 1969, 63, 85–87. [Google Scholar] [CrossRef]
- Page, S.R.G.; Monthony, A.S.; Jones, A.M.P. DKW basal salts improve micropropagation and callogenesis compared with MS basal salts in multiple commercial cultivars of Cannabis sativa. Botany 2021, 99, 269–279. [Google Scholar] [CrossRef]
- Lata, H.; Chandra, S.; Techen, N.; Khan, I.A.; ElSohly, M.A. In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 18–26. [Google Scholar] [CrossRef]
- Mehdi, M.; Vali-Ollah, G.-O.; Sepide, T. The effect of different concentrations of TDZ and BA on in vitro regeneration of Iranian cannabis (Cannabis sativa) using cotyledon and epicotyl explants. J. Plant Mol. Breed. 2015, 3, 20–27. [Google Scholar]
- Mestinšek Mubi, Š.; Svetik, S.; Flajšman, M.; Murovec, J. In Vitro tissue culture and genetic analysis of two high-CBD medical Cannabis (Cannabis sativa L.) breeding lines. Genetika 2020, 52, 925–941. [Google Scholar] [CrossRef]
- Chaohua, C.; Gonggu, Z.; Lining, Z.; Chunsheng, G.; Qing, T.; Jianhua, C.; Xinbo, G.; Dingxiang, P.; Jianguang, S. A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind. Crops Prod. 2016, 83, 61–65. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morpho-genesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Budiarto, K. Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Agrivita 2010, 32, 234–240. [Google Scholar]
- Page, S.R.G.; Monthony, A.S.; Jones, A.M.P. Basal media optimiza-tion for the micropropagation and callogenesis of Cannabis sativa L. bioRxiv 2020. preprint. [Google Scholar]
- Campbell, L.G.; Naraine, S.G.U.; Dusfresne, J. Phenotypic plasticity influences the success of clonal propagation in industrial pharmaceutical Cannabis sativa. PLoS ONE 2019, 14, e0213434. [Google Scholar] [CrossRef]
- Codesido, V.; Meyer, S.; Casano, S. Influence of media composition and gen-otype for successful Cannabis sativa L. In Vitro introduction. Acta Hortic. 2020, 1285, 75–80. [Google Scholar] [CrossRef]
- Dodds, J.H.; Roberts, L.W. Experiments in Plant Tissue Culture, 2nd ed.; Cambridge University Press: Cambridge, UK, 1985; pp. 21–35. [Google Scholar]
- Barampuram, S.; Allen, G.; Krasnyanski, S. Effect of Various Sterilization Procedures on the in Vitro Germination of Cotton Seeds. Plant Cell Tissue Organ Cult. 2014, 118, 179–185. [Google Scholar] [CrossRef]
- Lu, L.M.; An, Y. Effects of Different Disinfectant on Sterilization Effect and Germination of Tobacco Seeds. Seed 2012, 31, 93–95. [Google Scholar]
- Yuan, Y. Selection and Disinfection of Tissue Culture Explants of Toona sinensis Roem. Anhui Agric. 2020, 26, 19–20. [Google Scholar]
- Camara, M.; Vandenberghe, L.; Rodríguez, C.; Oliveira, J.; Faulds, C.; Bertrand, E.; Soccol, C. Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta 2018, 248, 1049–1062. [Google Scholar] [CrossRef]
- Ayano, M.; Kani, T.; Kojima, M.; Sakakibara, H.; Kitaoka, T.; Kuroha, T.; Angeles-Shim, R.; Kitano, H.; Nagai, K.; Ashikari, M. Gibberellin biosynthesis and signal transduction is essential for internode elongation Subburaman in deepwater rice. Plant Cell Environ. 2014, 37, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Geng, F.; Moran, R.; Day, M.; Halteman, W.; Zhang, D. Increasing In Vitro Shoot Elongation and Proliferation of ‘G.30’ and ‘G.41’ Apple by Chilling Explants and Plant Growth Regulators. HortScience 2016, 51, 899–904. [Google Scholar] [CrossRef]
- Sing, S.K.; Syamal, M.M. Anti-auxin enhance Rosa hybrida L. micropropagation. Biol. Plant. 2000, 43, 279–281. [Google Scholar] [CrossRef]
- Shukla, P.S.; Das, A.K.; Jha, B.; Agarwal, P.K. High-frequency in vitro shoot regeneration in Cucumis sativus by inhibition of endogenous auxin. In Vitr. Cell. Dev. Biol. Plant 2014, 50, 729–737. [Google Scholar] [CrossRef]
- Donna, I.L.; John, E.P. Thidiazuron stimulates adventitious shoot production from Hydrangea quercifolia Bartr., leaf explants. Sci. Hortic. 2004, 101, 121–126. [Google Scholar]
- Murthy, B.N.S.; Murch, S.J.; Saxena, P.K. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitr. Cell. Dev. Biol. Plant 1998, 34, 267–275. [Google Scholar] [CrossRef]
- Lata, H.S.; Chandra, I.K.; ElSohly, M.A. Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitr. Cell. Dev. Biol. Plant 2009, 45, 12–19. [Google Scholar] [CrossRef]
- Stephin, S.; Gangaprasad, A.; Mathew, S.P.; Muthukrishnan, S. Enhanced In Vitro Shoot Multiplication of Piper sarmentosum by Suppression of Apical Dominance. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 87–94. [Google Scholar] [CrossRef]
- Wróbel, T.; Dreger, M.; Wielgus, K.; Słomski, R. Modified nodal cuttings and shoot tips protocol for rapid regeneration of Cannabis sativa L. J. Nat. Fibers 2022, 19, 536–545. [Google Scholar] [CrossRef]
- Batista, D.S.; Felipe, S.H.S.; Silva, T.D.; Motta de Castro, K.; Mamedes-Rodrigues, T.C.; Miranda, N.A.; Ríos-Ríos, A.-M.; Vidal Faria, D.; Fortini, E.A.; Chagas, K.; et al. Light quality in plant tissue culture: Does it matter? In Vitr. Cell. Dev. Biol. Plant 2018, 54, 195–215. [Google Scholar] [CrossRef]
- Lata, H.; Chandra, S.; Khan, I.; ElSohly, M.A. High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding Cannabis sativa L. Planta Med. 2010, 76, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Stephen, C.; Zayas, V.A.; Galic, A.; Bridgen, M.P. Micropropagation of hemp (Cannabis sativa L.). HortScience 2023, 58, 307–316. [Google Scholar] [CrossRef]
- Wang, R.; He, L.S.; Xia, B.; Tong, J.F.; Li, N.; Peng, F. A micropropagation system for cloning of hemp (Cannabis sativa L.) by shoot tip culture. Pak. J. Bot. 2009, 41, 603–608. [Google Scholar]
Phytoregulator | Concentration (mg L−1) | Length (cm) | Nodes (n) | M.M.I. * (n) |
---|---|---|---|---|
BAP | 0.05 | 2.8 a | 4.0 a | 3.0 a |
MT | 0.5 | 5.8 a | 5.0 a | 5.0 a |
Stem | Flower | |||||
---|---|---|---|---|---|---|
Growing Conditions | Length (cm) | Nodes (n) | Diameter (mm) | Female Plants (%) | Female Flower Appearance (dd *) | Male Flower Appearance (dd *) |
Controlled greenhouse | 15.6 b | 3.2 b | 2.4 b | 57.0 a | 32.2 a | 25.7 b |
Growth cabinet | 47.1 a | 4.8 a | 4.5 a | 66.7 a | 35.6 a | 32.6 a |
Nutrient Medium (NM) | Phytoregulator * (P) | Length (cm) | Nodes (n) | M.M.I. ** (n) | Hyperhydricity (%) |
---|---|---|---|---|---|
Interaction NM × P | |||||
MB | TDZ + NAA | 3.4 a | 3.1 a | 3.0 a | 0.0 c |
TDZ + GA3 + TIBA | 2.8 b | 2.5 b | 1.8 b | 30.0 b | |
BAP + GA3 | 1.9 c | 2.0 c | 1.5 b | 100.0 a | |
MT + GA3 | 2.3 c | 1.5 c | 1.3 b | 100.0 a | |
DKW | TDZ + NAA | 2.9 a | 2.7 b | 2.0 a | 80.0 a |
TDZ + GA3 + TIBA | 2.6 a | 2.0 a | 1.7 a | 70.0 b | |
BAP + GA3 | 1.5 b | 1.0 b | 1.0 b | 100.0 a | |
MT + GA3 | 1.9 b | 1.0 b | 1.0 b | 100.0 a | |
Main effect NM | |||||
MB | 2.6 a | 2.3 a | 1.5 a | 57.5 b | |
DKW | 2.2 a | 1.7 a | 1.4 a | 90.0 a | |
Main effect P | |||||
TDZ + NAA | 3.2 a | 2.5 a | 2.5 a | 40.0 b | |
TDZ + GA3 + TIBA | 2.7 b | 2.2 ab | 1.8 b | 50.0 b | |
BAP + GA3 | 1.7 c | 1.5 b | 1.3 bc | 100.0 a | |
MT + GA3 | 2.1 c | 1.2 b | 1.2 bc | 100.0 a |
Lights | IBA (mg L−1) | Rooting (%) | Length (cm) | Roots (n.) |
---|---|---|---|---|
White/Pink | 0.1 | 0.0 | - | - |
0.5 | 0.0 | - | - | |
Red/Blue | 0.1 | 60.0 a | 3.5 a | 2.5 a |
0.5 | 45.0 b | 2.3 a | 1.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basile, G.N.; Tedone, L.; Pulvento, C.; De Mastro, G.; Ruta, C. Establishment of an Efficient In Vitro Propagation Protocol for Cannabis sativa L. subsp. ruderalis Janish. Horticulturae 2023, 9, 1241. https://doi.org/10.3390/horticulturae9111241
Basile GN, Tedone L, Pulvento C, De Mastro G, Ruta C. Establishment of an Efficient In Vitro Propagation Protocol for Cannabis sativa L. subsp. ruderalis Janish. Horticulturae. 2023; 9(11):1241. https://doi.org/10.3390/horticulturae9111241
Chicago/Turabian StyleBasile, Giuseppe N., Luigi Tedone, Cataldo Pulvento, Giuseppe De Mastro, and Claudia Ruta. 2023. "Establishment of an Efficient In Vitro Propagation Protocol for Cannabis sativa L. subsp. ruderalis Janish" Horticulturae 9, no. 11: 1241. https://doi.org/10.3390/horticulturae9111241
APA StyleBasile, G. N., Tedone, L., Pulvento, C., De Mastro, G., & Ruta, C. (2023). Establishment of an Efficient In Vitro Propagation Protocol for Cannabis sativa L. subsp. ruderalis Janish. Horticulturae, 9(11), 1241. https://doi.org/10.3390/horticulturae9111241