Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data
Abstract
1. Introduction
1.1. Context and Importance
1.2. Review of the Farm Sustainability Assessment Based on FADN Data
1.3. Purpose, Justification, and Significance
2. Materials and Methods
2.1. Environmental Sustainability Evaluation: LCA Methodology
2.2. Societal Costs Estimation: Shadow Price Methodology
3. Results
3.1. Inputs Used and Outputs among Vineyards
3.2. Environmental Sustainability Impacts: LCA Results
3.3. External Costs Estimation: Shadow Price Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Istituto Nazionale di Statistica. Italian Population in 2021. Available online: https://dati.istat.it/ (accessed on 23 July 2023).
- Statista. Most Popular Wine Grape Varieties in Italy. 2022. Available online: https://www.statista.com/statistics/743083/production-volume-of-grapes-in-italy (accessed on 23 July 2023).
- Eurostat. Vineyards in the EU. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained (accessed on 23 July 2023).
- Chen, Y.H.; Wen, X.W.; Wang, B.; Nie, P.Y. Agricultural pollution and regulation: How to subsidize agriculture? J. Clean. Prod. 2017, 164, 258–264. [Google Scholar] [CrossRef]
- Nemecek, T.; Dubois, D.; Huguenin-Elie, O.; Gaillard, G. Life cycle assessment of Swiss farming systems: Integrated and organic farming. Agric. Syst. 2011, 104, 217–232. [Google Scholar] [CrossRef]
- Diazabakana, A.; Latruffe, L.; Bockstaller, C.C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. A review of farm level indicators of sustainability with a focus on CAP and FADN. Sci. Du Vivant 2014, 101, hal-01209046. [Google Scholar]
- Dolman, M.A.; Vrolijk, H.C.J.; de Boer, I.J.M. Exploring variation in economic, environmental and societal performance among Dutch fattening pig farms. Livest. Sci. 2012, 149, 143–154. [Google Scholar] [CrossRef]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing farm sustainability with the IDEA method—From the concept of agriculture sustainability to case studies on farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Dantsis, T.; Douma, C.; Giourga, G.; Loumou, A.; Polychronaki, E.A. A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol. Indic. 2010, 10, 256–263. [Google Scholar] [CrossRef]
- Marchand, F.; Debruyne, L.; Sad, L.; Gerrard, C.; Padel, S.; Lauwers, L. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 2014, 19, 46. [Google Scholar] [CrossRef]
- Dabkienė, V. The scope of farms sustainability tools based on FADN data. Sci. Pap. Ser.-Manag. Econ. Eng. Agric. Rural. Dev. 2016, 16, 121–128. [Google Scholar]
- Thomassen, M.A.; Dolman, M.A.; van Calker, K.J.; de Boer, I.J.M. Relating life cycle assessment indicators to gross value added for Dutch dairy farms. Ecol. Econ. 2009, 68, 2278–2284. [Google Scholar] [CrossRef]
- Jan, P.; Dux, D.; Lips, M.; Alig, M.; Dumonde, M. On the link between economic and environmental performance of Swiss dairy farms of the alpine area. Int. J. Life Cycle Assess. 2012, 17, 706–719. [Google Scholar] [CrossRef]
- Meulen, H.; Asseldonk, M.; Ge, L. The state of innovation in European agriculture: Innovators are few and far between. Agric. Econ. 2016, 118, 172–174. [Google Scholar] [CrossRef]
- Smedzik-Ambrozy, K. Impact of direct payments on sustainability of farms in Poland—Simulation based on the example of FADN farms from wielkopolska and slask region. In Proceedings of the International Scientific Conference: Economic Science for Rural Development, Jelgava, Latvia, 25–26 April 2013; pp. 81–86. [Google Scholar]
- Mastronardi, L.; Giaccio, V.; Giannelli, A.; Scardera, A. Is agritourism eco-friendly? A comparison between agritourisms and other farms in Italy using farm accountancy data network dataset. SpringerPlus 2015, 4, 590. [Google Scholar] [CrossRef] [PubMed]
- Kołoszko-Chomentowska, Z.; Józefa Wiater, J.; Żukovskis, J. Environmental sustainability of family-owned agricultural holdings in the podlaskie voivodeship. Ecol. Eng. 2015, 16, 111–116. [Google Scholar] [CrossRef]
- Vitunskiene, V.; Dabkiene, V. Framework for assessing the farm relative sustainability: A Lithuanian case study. Agricecon 2016, 62, 134–148. [Google Scholar] [CrossRef]
- O’Donoghue, C.; Devisme, S.; Ryan, M.; Conneely, R.; Gillespie, P.; Vrolijk, H. Farm economic sustainability in the European Union: A pilot study. Agric. Econ. 2016, 118, 163–171. [Google Scholar] [CrossRef]
- Vrolijk, H.; Krijn, P.; Szilard, K. Collecting sustainability data in different organisational settings of the European Farm Accountancy Data Network. Agric. Econ. 2016, 118, 138–144. [Google Scholar] [CrossRef]
- Martino, G.; Polinori, P.; Francesco Tei, F.; Benincasa, P.; Turchetti, L. An economic analysis of the efficiency and sustainability of fertilization programs at level of operational systems of soft wheat in Umbria. Agric. Agric. Sci. Procedia 2016, 8, 298–306. [Google Scholar] [CrossRef][Green Version]
- Brennan, N.; Ryan, M.; Hennessy, T.; Cullen, P.; Dillon, E. Going beyond FADN: The use of additional data to gain insights into extension service use across European Union Member States. Agric. Econ. 2016, 118, 145–153. [Google Scholar] [CrossRef]
- Koloszko-Chomentowska, Z.; Žukovskis, J. Organic farming as a part of the sustaianble development of agriculture. In Proceedings of the 8th International Scientific Conference Rural Development, Kaunas, Lithuania, 23–24 November 2017; pp. 1102–1107. [Google Scholar]
- Reidla, K.; Nurmet, M. Sustainablity performance indicators in dairy farms of Baltic States. In Proceedings of the International Scientific Conference Strategies for the Agri-Food Sector and Rural Areas–Dilemmas of Development, Stary, Poland, 19–21 June 2017; pp. 147–155. [Google Scholar]
- Martinho, V. Efficiency, total factor productivity and returns to scale in a sustainable perspective: An analysis in the European Union at farm and regional level. Land Use Policy 2017, 68, 232–245. [Google Scholar] [CrossRef]
- Annaert, B.; Goossens, Y.; Geeraerd, A.; Mathijs, E.; Vranken, L. Calculating environmental cost indicators of apple farm practices indicates large differences between growers. Int. J. Agric. Sustain. 2017, 15, 527–538. [Google Scholar] [CrossRef]
- Bazzani, G.M.; Vitali, G.; Cardillo, C.; Canavari, M. Using FADN data to estimate CO2 abatement costs from Italian arable crops. Sustainability 2021, 13, 5148. [Google Scholar] [CrossRef]
- Baležentis, T.; Galnaitytė, A.; Kriščiukaitienė, I.; Namiotko, V.; Novickytė, L.; Streimikiene, D.; Melnikiene, R. Decomposing dynamics in the farm profitability: An application of index decomposition analysis to Lithuanian FADN Sample. Sustainability 2019, 11, 2861. [Google Scholar] [CrossRef]
- ISO 14044; International Standard Environmental Management—Life Cycle Assessment: Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Frem, M.; Fucilli, V.; Petrontino, A.; Acciani, C.; Bianchi, R.; Bozzo, F. Nursery plant production models under quarantine pests’ outbreak: Assessing the environmental implications and economic viability. Agronomy 2022, 12, 2964. [Google Scholar] [CrossRef]
- Nemecek, T.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems; Agroscope Reckenholz-Tänikon Research Station ART: Zürich, Switzerland, 2011; 34p. [Google Scholar]
- De Bruyn, S.M.; Korteland, M.H.; Markowska, A.Z.; Davidson, M.D.; De Jong, F.L.; Bles, M.; Sevenster, M.N. Shadow Prices Handbook; Valuation and Weighting of Emissions and Environmental Impacts, Technical Report; CE Delft: Delft, The Netherlands, 2010; 140p. [Google Scholar]
- Sahle, A.; Potting, J. Environmental life cycle assessment of Ethiopian rose cultivation. Sci. Total Environ. 2013, 443, 163–172. [Google Scholar] [CrossRef]
- Lazzerini, G.; Lucchetti, S.S.; Nicese, F.P. Analysis of greenhouse gas emissions from ornamental plant production: A nursery level approach. Urban For. Urban Green. 2014, 13, 517–525. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Pini, M.; Sassi, D.; Zerazion, E.; Neri, P. Effects of grape quality on the environmental profile of an Italian vineyard for Lambrusco red wine production. J. Clean Prod. 2018, 172, 3760–3769. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bruun, S.; Beccaro, G.L.; Bounous, G. A review of studies applying environmental impact assessment methods on fruit production systems. J. Environ. 2011, 92, 2277–2286. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Vannière, H.; Grasselly, D.; Heitz, H.; Braun, A.; Payen, S.; Biard, Y. Environmental impacts of imported and locally grown fruits for the French market: A cradle-to-farm-gate LCA study. Fruits 2016, 71, 93–104. [Google Scholar] [CrossRef]
- Bessou, C.; Basset-Mens, C.; Latunussa, C.; Vélu, A.; Heitz, H.; Vannière, H.; Caliman, J.P. Partial modelling of the perennial crop cycle misleads LCA results in two contrasted case studies. Int. J. Life Cycle Assess. 2016, 21, 297–310. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Foteinis, S.; Borthwick, A.G. Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation system. Int. J. Life Cycle Assess. 2017, 22, 896–908. [Google Scholar] [CrossRef]
- Wimmerova, L.; Keken, Z.; Solcova, O.; Bartos, L.; Spacilova, M. A comparative LCA of ceroponic, hydroponic, and soil cultivations of bioactive substance producing plants. Sustainability 2022, 14, 2421. [Google Scholar] [CrossRef]
- FADN-RICA Data. Farm Accountancy Data Network—Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria. Available online: https://www.crea.gov.it (accessed on 5 June 2023).
- Costantini, E.A.C.; Barbetti, R. Environmental and visual impact analysis of viticulture and olive tree cultivation in the province of Siena (Italy). Eur. J. Agron. 2008, 28, 412–426. [Google Scholar] [CrossRef]
- Smyth, S.; Russell, J. ‘From graft to bottle’—Analysis of energy use in viticulture and wine production and the potential for solar renewable technologies. Renew. Sustain. Energy Rev. 2009, 13, 1985–1993. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
- Fusi, A.; Guidetti, R.; Benedetto, G. Delving into the environmental aspect of a Sardinian white wine: From partial to total life cycle assessment. Sci. Total Environ. 2014, 472, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Lamastra, L.; Suciu, N.A.; Novelli, E.; Trevisan, M. A new approach to assessing the water footprint of wine: An Italian case study. Sci. Total Environ. 2014, 490, 748–756. [Google Scholar] [CrossRef]
- Morelli, R.; Roman, T.; Bertoldi, D.; Zanzotti, R. Can comparable vine and grape quality be achieved between organic and integrated management in a warm-temperate area? Agronomy 2022, 12, 1789. [Google Scholar] [CrossRef]
- Franco, S.; Rossi, E.S.; Martella, A.; Passeri, N. Is wine production environmentally sustainable? Yes, no, maybe, it depends…. In Green Metamorphoses: Agriculture, Food, Ecology; Torquati, B., Marchini, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2020; pp. 211–219. [Google Scholar]
- Cataldo, E.; Salvi, L.; Sbraci, S.; Storchi, P.; Mattii, G.B. Sustainable Viticulture: Effects of soil management in Vitis vinifera. Agronomy 2020, 10, 1949. [Google Scholar] [CrossRef]
- Perria, R.; Ciofini, A.; Petrucci, W.A.; D’Arcangelo, M.E.M.; Valentini, P.; Storchi, P.; Carella, G.; Pacetti, A.; Mugnai, L. A Study on the efficiency of sustainable wine grape vineyard management strategies. Agronomy 2022, 12, 392. [Google Scholar] [CrossRef]
Variable | Unit | Description | |
---|---|---|---|
Irrigation | m3/ha | Yearly average volume of water distributed | |
Fertilizers (Inorganic and Organic) | kg/ha | Yearly average quantity of fertilizers, applied as ì | |
Conventional: inorganic fertilizer as N, P2O5, K2O, manure, and compost. | Organic: organic, organo-mineral, manure, and compost | ||
Phytosanitary products * | kg/ha | Yearly average quantity of pesticides sprayed as Insecticides (as 100% emissions in the soil) Fungicides (as 100% emissions in the soil) Herbicides (as 100% emissions in the soil) Other pesticides (as 100% emissions in the soil) | |
Energy and fuel | kwh/ha | Yearly average volume of energy and fuel consumed (i.e., diesel and other fuels for tractors and other machinery) |
Midpoint Indicator | Unit | Endpoint Indicator |
---|---|---|
Agricultural land occupation—ALOP | m2 | Ecosystem quality |
Climate change—GWP100 | kg CO2-Eq | |
Freshwater ecotoxicity—FETPinf | kg 1,4-DCB-Eq | |
Freshwater eutrophication—FEP | kg P-Eq | |
Marine ecotoxicity—METPinf | kg 1,4-DCB-Eq | |
Natural land transformation—NLTP | m2 | |
Terrestrial acidification—TAP100 | kg SO2-Eq | |
Terrestrial ecotoxicity—TETPinf | kg 1,4-DCB-Eq | |
Urban land occupation—ULOP | m2 | |
Human toxicity—HTPinf | kg 1,4-DCB-Eq | |
Ionizing radiation—IRP_HE | kg U235-Eq | |
Ozone depletion—ODPinf | kg CFC-11-Eq | |
Particulate matter formation—PMFP | kg PM10-Eq | |
Photochemical oxidant formation—POFP | kg NMVOC | |
Fossil depletion—FDP | kg oil-Eq | Resources |
Metal depletion—MDP | kg Fe-Eq |
Impact Category | Shadow Price |
---|---|
Agricultural land occupation—ALOP | EUR 0.48 per m2 |
Climate change—GWP100 | EUR 0.402 per kg CO2-Eq |
Terrestrial acidification—TAP100 | EUR 0.237 per kg SO2-Eq |
Freshwater eutrophication—FEP | EUR 0.60 per kg oil-Eq |
Variable | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Irrigation | m3/ha | 1016 | 974 | 631 | 609 |
Fertilizers: | kg/ha | ||||
Inorganic as N, P2O5, K2O | 760 | - | 483 | - | |
Organic | - | 626 | - | 388 | |
Organo-mineral | - | 108 | - | 138 | |
Compost | 17 | 88 | 22 | 105 | |
Swine manure | 29 | 630 | 54 | 133 | |
Cattle manure | 72 | 413 | 544 | 711 | |
Poultry manure | 0.01 | 0.42 | 3 | 20 | |
Phytosanitary products: | kg/ha | ||||
Pesticides | 14.48 | 17.02 | 27.23 | 33.69 | |
Insecticides (50% emissions in the soil) | 0.60 | 1.07 | 5.10 | 5.40 | |
Fungicides (50% emissions in the soil) | 5.75 | 6.94 | 7.59 | 10.92 | |
Herbicides (50% emissions in the soil) | 0.49 | 0.17 | 0.50 | 0.20 | |
Other pesticides (50% emissions in the soil) | 0.39 | 0.32 | 0.43 | 0.33 | |
Energy and fuel | Kwh/ha | 858 | 873 | 742 | 1019 |
Yield | Tons/ha | 12.47 | 10.20 | 10.64 | 9.27 |
Farmers | Number | 6024 | 1373 | 7259 | 1696 |
% | 40.63 | 9.26 | 48.96 | 1.13 |
Receipe Midpoint Indicator | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Agricultural land occupation—ALOP | m2 per year | 10,198.40 | 10,117.30 | 10,157.50 | 10,144.30 |
Climate change—GWP100 | kg CO2-Eq | 3383.41 | 1282.81 | 2464.45 | 1630.70 |
Fossil depletion—FDP | kg oil-Eq | 1342.10 | 422.11 | 963.86 | 540.42 |
Freshwater ecotoxicity—FETPinf | kg 1,4-DCB-Eq | 151.45 | 52.64 | 107.53 | 62.48 |
Freshwater eutrophication—FEP | kg P-Eq | 0.92 | 0.34 | 0.71 | 0.47 |
Human toxicity—HTPinf | kg 1,4-DCB-Eq | 926.12 | 382.37 | 715.88 | 516.21 |
Ionising radiation—IRP_HE | kg U235-Eq | 306.88 | 92.93 | 230.11 | 122.01 |
Marine ecotoxicity—METPinf | kg 1,4-DCB-Eq | 124.09 | 45.27 | 88.02 | 53.07 |
Marine eutrophication—MEP | kg N-Eq | 5.46 | 2.85 | 4.33 | 3.54 |
Metal depletion—MDP | kg Fe-Eq | 335.69 | 123.75 | 248.86 | 158.89 |
Natural land transformation—NLTP | m2 | 0.95 | 0.30 | 0.67 | 0.36 |
Ozone depletion—ODPinf | kg CFC-11-Eq | 0.00 | 0.00 | 0.00 | 0.00 |
Particulate matter formation—PMFP | kg PM10-Eq | 7.57 | 3.48 | 5.80 | 4.32 |
Photochemical oxidant formation—POFP | kg NMVOC | 12.88 | 7.85 | 10.36 | 9.39 |
Terrestrial acidification—TAP100 | kg SO2-Eq | 20.27 | 7.37 | 15.29 | 9.73 |
Terrestrial ecotoxicity—TETPinf | kg 1,4-DCB-Eq | 0.83 | 0.22 | 0.61 | 0.31 |
Urban land occupation—ULOP | m2 per year | 138.97 | 33.68 | 95.74 | 40.86 |
Water depletion—WDP | m3 | 1030.18 | 978.54 | 640.54 | 613.55 |
Receipe Midpoint Indicator | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Agricultural land occupation—ALOP | m2 per year | 81,795 | 99,200 | 95,423 | 109,480 |
Climate change—GWP100 | kg CO2-Eq | 27,136 | 12,578 | 23,152 | 17,599 |
Fossil depletion—FDP | kg oil-Eq | 10,764 | 4139 | 9055 | 5832 |
Freshwater ecotoxicity—FETPinf | kg 1,4-DCB-Eq | 1215 | 0.516 | 1010 | 0.674 |
Freshwater eutrophication—FEP | kg P-Eq | 0.007 | 0.003 | 0.007 | 0.005 |
Human toxicity—HTPinf | kg 1,4-DCB-Eq | 7428 | 3749 | 6725 | 5571 |
Ionising radiation—IRP_HE | kg U235-Eq | 2461 | 0.911 | 2162 | 1317 |
Marine ecotoxicity—METPinf | kg 1,4-DCB-Eq | 0.995 | 0.444 | 0.827 | 0.573 |
Marine eutrophication—MEP | kg N-Eq | 0.044 | 0.028 | 0.041 | 0,038 |
Metal depletion—MDP | kg Fe-Eq | 2692 | 1213 | 2338 | 1715 |
Natural land transformation—NLTP | m2 | 0.008 | 0.003 | 0.006 | 0.004 |
Ozone depletion—ODPinf | kg CFC-11-Eq | 0.000005 | 0.000004 | 0.000007 | 0.000008 |
Particulate matter formation—PMFP | kg PM10-Eq | 0.061 | 0.034 | 0.055 | 0.047 |
Photochemical oxidant formation—POFP | kg NMVOC | 0.103 | 0.077 | 0.097 | 0.101 |
Terrestrial acidification—TAP100 | kg SO2-Eq | 0.163 | 0.072 | 0.144 | 0.105 |
Terrestrial ecotoxicity—TETPinf | kg 1,4-DCB-Eq | 0.007 | 0.002 | 0.006 | 0.003 |
Urban land occupation—ULOP | m2 per year | 1115 | 0.330 | 0.899 | 0.441 |
Water depletion—WDP | m3 | 8262 | 9595 | 6017 | 6622 |
Receipe Midpoint Indicator | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Ecosystem quality—agricultural land occupation | points | 366.66 | 363.96 | 365.26 | 364.93 |
Ecosystem quality—climate change | points | 59.27 | 22.48 | 43.18 | 28.57 |
Ecosystem quality—freshwater ecotoxicity | points | 0.07 | 0.02 | 0.05 | 0.03 |
Ecosystem quality—freshwater eutrophication | points | 0.09 | 0.03 | 0.07 | 0.05 |
Ecosystem quality—marine ecotoxicity | points | 0.01 | 0.00 | 0.01 | 0.01 |
Ecosystem quality—natural land transformation | points | 3.03 | 1.13 | 2.15 | 1.36 |
Ecosystem quality—terrestrial acidification | points | 0.26 | 0.09 | 0.20 | 0.12 |
Ecosystem quality—terrestrial ecotoxicity | points | 0.27 | 0.07 | 0.20 | 0.10 |
Ecosystem quality—urban land occupation | points | 6.36 | 1.54 | 4.38 | 1.87 |
Human health—climate chnage, human health | points | 93.78 | 35.56 | 68.31 | 45.21 |
Human health—human toxicity | 12.67 | 5.23 | 9.80 | 7.07 | |
Human health—ionising radiation | points | 0.10 | 0.03 | 0.07 | 0.04 |
Human health—ozone depletion | points | 0.04 | 0.03 | 0.05 | 0.05 |
Human health—particulate matter formation—PMFP | points | 39.80 | 18.31 | 30.64 | 22.89 |
Human health—photochemical oxidant formation | points | 1.91 | 0.87 | 1.80 | 1.47 |
Resources—fossil depletion | points | 160.94 | 50.62 | 115.58 | 64.80 |
Resources—metal depletion | points | 36.55 | 18.06 | 27.91 | 21.65 |
Receipe Midpoint Indicator | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Agricultural land occupation—ALOP | EUR per m2 | 4895.23 | 4856.30 | 4875.60 | 4869.26 |
Climate change—GWP100 | EUR per kg CO2-Eq | 1360.13 | 515.69 | 990.71 | 655.54 |
Terrestrial acidification—TAP100 | EUR per kg SO2-Eq | 4.80 | 1.75 | 3.62 | 2.31 |
Freshwater eutrophication—FEP | EUR per kg P-Eq | 0.55 | 0.20 | 0.43 | 0.28 |
Total | Per 1 ha | 6260.72 | 5373.94 | 5870.36 | 5527.39 |
Parameter | Unit | Vineyard Cultivation System | |||
---|---|---|---|---|---|
VCWNO | VCWO | VQWNO | VQWO | ||
Yield | Tons/ha | 12.47 | 10.20 | 10.64 | 9.27 |
Total gross production | EUR/ha | 5389 | 4846 | 8432 | 7055 |
Variable costs | EUR/ha | 1286 | 1106 | 1606 | 1615 |
Labor costs | EUR/ha | 3142 | 3074 | 3591 | 3350 |
Machine labor costs | EUR/ha | 2320 | 2462 | 2426 | 2261 |
Operative margin | EUR/ha | −1359 | −1797 | 6827 | 5440 |
Gross margin | EUR/ha | 4104 | 3704 | 809 | −172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frem, M.; Petrontino, A.; Fucilli, V.; Sansiviero, C.; Bozzo, F. Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data. Horticulturae 2023, 9, 1239. https://doi.org/10.3390/horticulturae9111239
Frem M, Petrontino A, Fucilli V, Sansiviero C, Bozzo F. Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data. Horticulturae. 2023; 9(11):1239. https://doi.org/10.3390/horticulturae9111239
Chicago/Turabian StyleFrem, Michel, Alessandro Petrontino, Vincenzo Fucilli, Carlo Sansiviero, and Francesco Bozzo. 2023. "Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data" Horticulturae 9, no. 11: 1239. https://doi.org/10.3390/horticulturae9111239
APA StyleFrem, M., Petrontino, A., Fucilli, V., Sansiviero, C., & Bozzo, F. (2023). Sustainable Viticulture of Italian Grapevines: Environmental Evaluation and Societal Cost Estimation Using EU Farm Accountancy Data Network Data. Horticulturae, 9(11), 1239. https://doi.org/10.3390/horticulturae9111239