European Grapevine Cultivars and Rootstocks Show Differential Resistance to Xylella fastidiosa Subsp. fastidiosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terminology and General Overview of the Trials
2.2. Plant Material and Facilities
2.3. In Planta Evaluation of PD Susceptibility
2.4. Detection of Xf
2.5. Water Potential (Ψ) Assessment
2.6. Statistical Analysis
3. Results
3.1. Pierce’s Disease Susceptibility in Vitis Vinifera Cultivars and Rootstocks
3.2. Disease Severity and Disease Progression (rAUDPC) under Open Field and Controlled Greenhouse Conditions
3.3. Water Potential Progression during Xff Infection and Disease Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wells, J.M.; Raju, B.C.; Hung, H.-Y.; Weisburg, W.G.; Mandelco-Paul, L.; Brenner, D.J. Xylella fastidiosa gen. nov., sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bacteriol. 1987, 37, 136–143. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Gibin, D.; Pasinato, L.; Delbianco, A. Update of the Xylella Spp. Host Plant Database—Systematic Literature Search up to 31 December 2022. EFSA J. 2023, 21, 8061. [Google Scholar] [CrossRef]
- Sicard, A.; Zeilinger, A.R.; Vanhove, M.; Schartel, T.E.; Beal, D.J.; Daugherty, M.P.; Almeida, R.P.P. Xylella fastidiosa: Insights into an emerging plant pathogen. Annu. Rev. Phytopathol. 2018, 56, 181–202. [Google Scholar] [CrossRef]
- Trkulja, V.; Tomić, A.; Iličić, R.; Nožinić, M.; Milovanović, T.P. Xylella fastidiosa in Europe: From the introduction to the current status. Plant Pathol. J. 2022, 38, 551–571. [Google Scholar] [CrossRef]
- Frem, M.; Fucilli, V.; Nigro, F.; El Moujabber, M.; Abou Kubaa, R.; La Notte, P.; Bozzo, F.; Choueiri, E. The potential direct economic impact and private management costs of an invasive alien species: Xylella fastidiosa on Lebanese wine grapes. NeoBiota 2021, 70, 43–67. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Purcell, A.H. Xylella fastidiosa: Cause of Pierce’s Disease of grapevine and other emergent Diseases. Plant Dis. 2002, 86, 1056–1066. [Google Scholar] [CrossRef]
- Velasco-Amo, M.P.; Arias-Giraldo, L.F.; Olivares-García, C.; Denancé, N.; Jacques, M.-A.; Landa, B.B. Use of traC Gene to Type the Incidence and Distribution of pXFAS_Plasmid-Bearing Strains of Xylella fastidiosa subsp. fastidiosa ST1 in Spain. Plants 2022, 11, 1562. [Google Scholar] [CrossRef] [PubMed]
- Alston, J.M.; Fuller, K.; Kaplan, J.D.; Tumber, K. The Costs and Benefits of Pierce’s Disease Research in the California Winegrape Industry. In Proceedings of the Agricultural and Applied Economics Association (AAEA) Conferences, 2013, Annual Meeting, Washington, DC, USA, 4–6 August 2013; p. 37. [CrossRef]
- Kyrkou, I.; Pusa, T.; Ellegaard-Jensen, L.; Sagot, M.-F.; Hansen, L.H. Pierce’s Disease of grapevines: A review of control strategies and an outline of an epidemiological model. Front. Microbiol. 2018, 9, 2141. [Google Scholar] [CrossRef]
- Chatelet, D.S.; Wistrom, C.M.; Purcell, A.H.; Rost, T.L.; Matthews, M.A. Xylem structure of four grape varieties and alternative hosts to the xylem-limited bacterium Xylella fastidious. Ann. Bot. 2011, 108, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Donoso, A.G.; Lenhof, J.J.; Pinney, K.; Labavitch, J.M. Vessel Embolism and tyloses in early stages of Pierce’s Disease: Embolism and tyloses in Pierce’s Disease. Aust. J. Grape Wine Res. 2016, 22, 81–86. [Google Scholar] [CrossRef]
- Raicavoli, J.; Ingel, B.; Blanco-Ulate, B.; Cantu, D.; Roper, C. Xylella fastidiosa: An examination of a re-emerging plant pathogen: Xylella fastidiosa. Mol. Plant Pathol. 2018, 19, 786–800. [Google Scholar] [CrossRef]
- Carluccio, G.; Greco, D.; Sabella, E.; Vergine, M.; De Bellis, L.; Luvisi, A. Xylem embolism and pathogens: Can the vessel anatomy of woody plants contribute to X. fastidiosa resistance? Pathogens 2023, 12, 825. [Google Scholar] [CrossRef]
- Lopes, S.A.; Teixeira, D.C.; Fernandes, N.G.; Ayres, A.J.; Torres, S.C.Z.; Barbosa, J.C.; Li, W.B. An experimental inoculation system to study citrus- Xylella fastidiosa interactions. Plant Dis. 2005, 89, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.P.P.; Nunney, L. How Do plant diseases caused by Xylella fastidiosa emerge? Plant Dis. 2015, 99, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, P.H.; DeVay, J.E.; Meredith, C.P. Physiological responses of Vitis vinifera Cv. “Chardonnay” to infection by the Pierce’s Disease bacterium. Physiol. Mol. Plant Pathol. 1988, 32, 17–32. [Google Scholar] [CrossRef]
- Fernández, J. Plant-Based methods for irrigation scheduling of woody crops. Horticulturae 2017, 3, 35. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Recent Advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, C.M.; Forner, A.; Martorell, S.; Choat, B.; Lopez, R.; Peters, J.M.R.; Pfautsch, S.; Mayr, S.; Carins-Murphy, M.R.; McAdam, S.A.M.; et al. Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant Cell Environ. 2022, 45, 2037–2061. [Google Scholar] [CrossRef]
- Gálvez Pavez, R.; Callejas Rodríguez, R.; Reginato Meza, G. Comparación de la cámara de presión tipo scholander modelo pump-up respecto a la cámara de presión tradicional en vides de mesa. Idesia 2011, 29, 175–179. [Google Scholar] [CrossRef]
- Choné, X. Stem water potential is a sensitive indicator of grapevine water status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef]
- Williams, L.E.; Araujo, F.J. Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. J. Am. Soc. Hortic. Sci. 2002, 127, 448–454. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Marín, D.; Sesma, B.; Intrigliolo, D.S.; Mirás-Avalos, J.M.; Escalona, J.M.; Montoro, A.; De Herralde, F.; Baeza, P.; et al. Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.). Agric. Water Manag. 2019, 221, 202–210. [Google Scholar] [CrossRef]
- Suter, B.; Triolo, R.; Pernet, D.; Dai, Z.; Van Leeuwen, C. Modeling stem water potential by separating the effects of soil water availability and climatic conditions on water status in grapevine (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 1485. [Google Scholar] [CrossRef]
- Tyree, M.T.; Zimmermann, M.H. Hydraulic architecture of whole plants and plant performance. In Xylem Structure and the Ascent of Sap; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 2022; pp. 175–214. [Google Scholar] [CrossRef]
- Diago, M.P.; Fernández-Novales, J.; Gutiérrez, S.; Marañón, M.; Tardaguila, J. Development and validation of a new methodology to assess the vineyard water status by on-the-go near infrared spectroscopy. Front. Plant Sci. 2018, 9, 59. [Google Scholar] [CrossRef]
- OIV–International Organization of Vine and Wine. Distribution of the world’s grapevine varieties. In Focus OIV 2017; OIV–International Organization of Vine and Wine: Dijon, France, 2017; p. 53. ISBN 979-10-91799-89-8. [Google Scholar]
- Giménez-Romero, A.; Galván, J.; Montesinos, M.; Bauzà, J.; Godefroid, M.; Fereres, A.; Ramasco, J.J.; Matías, M.A.; Moralejo, E. Global predictions for the risk of establishment of Pierce’s Disease of grapevines. Commun. Biol. 2022, 5, 1389. [Google Scholar] [CrossRef]
- Fritschi, F.B.; Lin, H.; Walker, M.A. Xylella fastidiosa population dynamics in grapevine genotypes differing in susceptibility to Pierce’s Disease. Ann. J. Enol. Vitic. 2007, 58, 326–332. [Google Scholar] [CrossRef]
- Riaz, S.; Huerta-Acosta, K.; Tenscher, A.C.; Walker, M.A. Genetic characterization of Vitis germplasm collected from the southwestern us and Mexico to expedite Pierce’s Disease-resistance breeding. Theor. Appl. Genet. 2018, 131, 1589–1602. [Google Scholar] [CrossRef]
- Morales-Cruz, A.; Aguirre-Liguori, J.; Massonnet, M.; Minio, A.; Zaccheo, M.; Cochetel, N.; Walker, A.; Riaz, S.; Zhou, Y.; Cantu, D.; et al. Multigenic resistance to Xylella fastidiosa in wild grapes (Vitis spp.) and its implications within a changing climate. Commun. Biol. 2023, 6, 580. [Google Scholar] [CrossRef]
- Deyett, E.; Pouzoulet, J.; Yang, J.-I.; Ashworth, V.E.; Castro, C.; Roper, M.C.; Rolshausen, P.E. Assessment of Pierce’s Disease susceptibility in Vitis vinifera cultivars with different pedigrees. Plant Pathol. 2019, 68, 1079–1087. [Google Scholar] [CrossRef]
- Schneider, K.; Van Der Werf, W.; Cendoya, M.; Mourits, M.; Navas-Cortés, J.A.; Vicent, A.; Oude Lansink, A. Impact of Xylella fastidiosa subspecies pauca in European olives. Proc. Natl. Acad. Sci. USA 2020, 117, 9250–9259. [Google Scholar] [CrossRef] [PubMed]
- Latest Developments of Xylella Fastidiosa in the EU Territory. Available online: https://ec.europa.eu/food/plants/plant-healthand-biosecurity/legislation/control-measures/xylella-fastidiosa/latest-developments-xylella-fastidiosa-eu-territory_en (accessed on 6 October 2023).
- Castro, C.; Massonnet, M.; Her, N.; DiSalvo, B.; Jablonska, B.; Jeske, D.R.; Cantu, D.; Roper, M.C. Priming grapevine with lipopolysaccharide confers systemic resistance to Pierce’s Disease and identifies a peroxidase linked to defense priming. New Phytol. 2023, 239, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Badosa, E.; Planas, M.; Feliu, L.; Montesinos, L.; Bonaterra, A.; Montesinos, E. Synthetic peptides against plant pathogenic bacteria. Microorganisms 2022, 10, 1784. [Google Scholar] [CrossRef]
- Avosani, S.; Nieri, R.; Mazzoni, V.; Anfora, G.; Hamouche, Z.; Zippari, C.; Vitale, M.L.; Verrastro, V.; Tarasco, E.; D’Isita, I.; et al. Intruding into a conversation: How behavioral manipulation could support management of Xylella fastidiosa and its insect vectors. J. Pest Sci. 2023, 1, 1–17. [Google Scholar] [CrossRef]
- Moralejo, E.; Borràs, D.; Gomila, M.; Montesinos, M.; Adrover, F.; Juan, A.; Nieto, A.; Olmo, D.; Seguí, G.; Landa, B.B. Insights into the epidemiology of Pierce’s Disease in vineyards of Mallorca, Spain. Plant Pathol. 2019, 68, 1458–1471. [Google Scholar] [CrossRef]
- Maul Team. Vitis International Variety Catalogue. 2023. Available online: www.vivc.de (accessed on 6 October 2023).
- Ollat, N.; Bordenave, L.; Tandonnet, J.P.; Boursiquot, J.M.; Marguerit, E. Grapevine rootstocks: Origins and perspectives. In Proceedings of the I International Symposium on Grapevine Roots, Rauscedo, Italy, 16–17 October 2014; pp. 11–22. [Google Scholar] [CrossRef]
- Moll, L.; Badosa, E.; Planas, M.; Feliu, L.; Montesinos, E.; Bonaterra, A. Antimicrobial peptides with antibiofilm activity against Xylella fastidiosa. Front. Microbiol. 2021, 12, 753874. [Google Scholar] [CrossRef]
- Baró, A.; Montesinos, L.; Badosa, E.; Montesinos, E. Aggressiveness of Spanish Isolates of Xylella fastidiosa to almond plants of different cultivars under greenhouse conditions. Phytopathology 2021, 111, 1994–2001. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.L.; Purcell, A.H. Multiplication and Movement of Xylella fastidiosa within Grapevine and Four Other Plants. Phytopathology 1995, 85, 1368–1372. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Pereira, E.F.; Purcell, A.H.; Lopes, J.R.S. Multiplication and movement of a citrus strain of Xylella fastidiosa within sweet orange. Plant Dis. 2001, 85, 382–386. [Google Scholar] [CrossRef]
- Su, C.; Chang, C.J.; Chang, C.-M.; Shih, H.-T.; Tzeng, K.-C.; Jan, F.-J.; Kao, C.-W.; Deng, W.-L. Pierce’s Disease of grapevines in Taiwan: Isolation, cultivation and pathogenicity of Xylella fastidiosa. J. Phytopathol. 2013, 161, 389–396. [Google Scholar] [CrossRef]
- Simko, I.; Piepho, H.-P. The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology 2012, 102, 381–389. [Google Scholar] [CrossRef] [PubMed]
- OEPP/EPPO. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 2019, 49, 175–227. [Google Scholar] [CrossRef]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and Real-Time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Knipfer, T.; Bambach, N.; Hernandez, M.I.; Bartlett, M.K.; Sinclair, G.; Duong, F.; Kluepfel, D.A.; McElrone, A.J. Predicting stomatal closure and turgor loss in woody plants using predawn and midday water potential. Plant Physiol. 2020, 184, 881–894. [Google Scholar] [CrossRef]
- Castander-Olarieta, A.; Moncaleán, P.; Pereira, C.; Pěnčík, A.; Petřík, I.; Pavlović, I.; Novák, O.; Strnad, M.; Goicoa, T.; Ugarte, M.D.; et al. Cytokinins are involved in drought tolerance of Pinus radiata plants originating from embryonal masses induced at high temperatures. Tree Physiol. 2021, 41, 912–926. [Google Scholar] [CrossRef]
- Dandekar, A.M.; Gouran, H.; Ibáñez, A.M.; Uratsu, S.L.; Agüero, C.B.; McFarland, S.; Borhani, Y.; Feldstein, P.A.; Bruening, G.; Nascimento, R.; et al. An engineered innate immune defense protects grapevines from Pierce′s Disease. Proc. Natl. Acad. Sci. USA 2012, 109, 3721–3725. [Google Scholar] [CrossRef]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.B.; Miller, A.J. Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef]
- Singh, J.; Fabrizio, J.; Desnoues, E.; Pereira Silva, J.; Busch, W.; Khan, A. Root system traits impact early fire blight susceptibility in apple (Malus × domestica). BMC Plant Biol. 2019, 19, 579–593. [Google Scholar] [CrossRef]
- Heaton, J.B.; Dullahide, S.R.; Tancred, S.J.; Zeppa, A.G.; McWaters, A.D. Comparison of orchard and glasshouse tests in screening of apple breeding progeny for resistance to Venturia inaequalis in Queensland from 1985 to 1994. Australas. Plant Pathol. 1995, 24, 243–248. [Google Scholar] [CrossRef]
- Martinez-Bilbao, A.; Ortiz-Barredo, A.; Montesinos, E.; Murillo, J. Venturia inaequalis resistance in local Spanish cider apple germplasm under controlled and field conditions. Euphytica 2012, 188, 273–283. [Google Scholar] [CrossRef]
- MacHardy, W.E. Apple Scab: Biology, Epidemiology and Management; APS Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Martínez-Bilbao, A.; Ortiz-Barredo, A.; Montesinos, E.; Murillo, J. Evaluation of a cider apple germplasm collection of local cultivars from Spain for resistance to fire blight (Erwinia amylovora) using a combination of inoculation assays on leaves and shoots. HortScience 2009, 44, 1223–1227. [Google Scholar] [CrossRef]
- Fred, A.K.; Kiswara, G.; Yi, G.; Kim, K.-M. Screening Rice Cultivars for Resistance to Bacterial Leaf Blight. J. Microbiol. Biotechnol. 2016, 26, 938–945. [Google Scholar] [CrossRef]
- Oliver, J.E.; Cobine, P.A.; De La Fuente, L. Xylella fastidiosa isolates from both subsp. multiplex and fastidiosa cause disease on southern highbush blueberry (Vaccinium sp.) under greenhouse conditions. Phytopathology 2015, 105, 855–862. [Google Scholar] [CrossRef]
- Das, M.; Bhowmick, T.S.; Ahern, S.J.; Young, R.; Gonzalez, C.F. Control of Pierce’s Disease by phage. PLoS ONE 2015, 10, e0128902. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.; Kwan, J.; Baraff, B.; Ling, D.; Daugherty, M.P.; Killiny, N.; Almeida, R.P.P. Relative susceptibility of Vitis vinifera cultivars to vector-borne Xylella fastidiosa through time. PLoS ONE 2013, 8, e55326. [Google Scholar] [CrossRef]
- Irani, H.; ValizadehKaji, B.; Naeini, M.R. Biostimulant-induced drought tolerance in grapevine is associated with physiological and biochemical changes. Chem. Biol. Technol. Agric. 2021, 8, 5. [Google Scholar] [CrossRef]
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The role of biostimulants as alleviators of biotic and abiotic stresses in grapevine: A review. Plants 2022, 11, 396. [Google Scholar] [CrossRef]
- Sarcina, L.; Macchia, E.; Loconsole, G.; D’Attoma, G.; Bollella, P.; Catacchio, M.; Leonetti, F.; Di Franco, C.; Elicio, V.; Scamarcio, G.; et al. Fast and reliable electronic assay of a Xylella fastidiosa single bacterium in infected plants sap. Adv. Sci. 2022, 9, 2203900. [Google Scholar] [CrossRef]
- León, L.; De La Rosa, R.; Arriaza, M. Prioritization of olive breeding objectives in Spain: Analysis of a producers and researchers survey. Span. J. Agric. Res. 2021, 19, e0701. [Google Scholar] [CrossRef]
- Surano, A.; Abou Kubaa, R.; Nigro, F.; Altamura, G.; Losciale, P.; Saponari, M.; Saldarelli, P. Susceptible and resistant olive cultivars show differential physiological response to Xylella fastidiosa infections. Front. Plant. Sci. 2022, 13, 968934. [Google Scholar] [CrossRef] [PubMed]
- Alves, K.S.; Guimarães, M.; Ascari, J.P.; Queiroz, M.F.; Alfenas, R.F.; Mizubuti, E.S.G.; Del Ponte, E.M. RGB-Based Phenotyping of foliar disease severity under controlled conditions. Trop. Plant Pathol. 2022, 47, 105–117. [Google Scholar] [CrossRef]
Max SI 8/Max SI 16 | Rootstock | 2019 | 2020 | 2021 | ||
---|---|---|---|---|---|---|
Field | Greenhouse | |||||
XYL 2177/18 | XYL 2055/17 | XYL 2055/17 | IVIA 5770 | IVIA 5770 | ||
Airen | R110 | 3/5 | 4/5 | 2/5 | - | - |
Albarino | R110 | 2/5 | 5/5 | 1/3 | - | - |
Bobal | R110 | 4/5 | 3/5 | - | - | - |
Cabernet Sauvignon | R110 | 1/5 | 2/5 | 1/5 | - | - |
Chardonnay | R110 | 5/5 | 5/5 | 1/5 | 1/5 | 0/1 |
Garnacha | R110 | 4/5 | 5/5 | 3/5 | 1/5 | 0/2 |
Garnacha Tintorera | R110 | 5/5 | 5/5 | 3/5 | - | - |
Garnacha Tintorera | P1103 | 5/5 | 5/5 | 3/5 | - | - |
Graciano | R110 | 2/5 | 4/5 | 1/5 | - | - |
Hondarrabi Zuri | SO4 | 3/5 | 3/5 | 1/2 | 1/5 | 0/2 |
Hondarribi Beltza | 196-17 Cl | 2/5 | 3/5 | 0/3 | - | - |
Macabeo | R110 | 3/5 | 3/5 | - | - | - |
Malvasia | R110 | 3/5 | 4/5 | - | - | - |
Mencia | R110 | 4/5 | 4/5 | - | - | - |
Monastrell | R110 | 2/5 | 3/5 | - | - | - |
Pedro Ximenez | R110 | 2/5 | 3/5 | 2/5 | - | - |
Pinot Noir | R110 | 1/5 | 3/5 | 1/5 | 3/5 | 0/3 |
Tempranillo | R110 | 4/5 | 4/5 | 1/5 | 3/5 | 0/4 |
Tempranillo | SO4 | 4/5 | 5/5 | 3/5 | - | - |
Tempranillo | 41B-MGt | 4/5 | 5/5 | 1/5 | - | - |
Tempranillo Blanco | R110 | 5/5 | 5/5 | 3/5 | - | - |
Tempranillo RJ43 | R110 | 3/5 | 5/5 | 4/5 | - | - |
Tempranillo RJ78 | R110 | 3/5 | 5/5 | 3/5 | - | - |
Verdejo | R110 | 3/5 | 2/5 | - | - | - |
Rootstock 196-17Cl | 3/5 | 3/5 | 1/5 | - | - | |
Rootstock 41B-MGt | 2/3 | 2/4 | 1/4 | - | - | |
Rootstock P1103 | 1/5 | 1/5 | 1/3 | - | - | |
Rootstock R110 | 1/2 | 1/2 | 2/2 | 0/1 | 0/1 | |
Rootstock Ru140 | 1/5 | 1/5 | 1/3 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, S.; Lacuesta, M.; Relloso, J.B.; Aragonés, A.; Herrán, A.; Ortiz-Barredo, A. European Grapevine Cultivars and Rootstocks Show Differential Resistance to Xylella fastidiosa Subsp. fastidiosa. Horticulturae 2023, 9, 1224. https://doi.org/10.3390/horticulturae9111224
Martínez S, Lacuesta M, Relloso JB, Aragonés A, Herrán A, Ortiz-Barredo A. European Grapevine Cultivars and Rootstocks Show Differential Resistance to Xylella fastidiosa Subsp. fastidiosa. Horticulturae. 2023; 9(11):1224. https://doi.org/10.3390/horticulturae9111224
Chicago/Turabian StyleMartínez, Sara, Maite Lacuesta, Juan Bautista Relloso, Ana Aragonés, Ana Herrán, and Amaya Ortiz-Barredo. 2023. "European Grapevine Cultivars and Rootstocks Show Differential Resistance to Xylella fastidiosa Subsp. fastidiosa" Horticulturae 9, no. 11: 1224. https://doi.org/10.3390/horticulturae9111224
APA StyleMartínez, S., Lacuesta, M., Relloso, J. B., Aragonés, A., Herrán, A., & Ortiz-Barredo, A. (2023). European Grapevine Cultivars and Rootstocks Show Differential Resistance to Xylella fastidiosa Subsp. fastidiosa. Horticulturae, 9(11), 1224. https://doi.org/10.3390/horticulturae9111224