Influence of Cytokinins, Dark Incubation and Air-Lift Bioreactor Culture on Axillary Shoot Proliferation of Al-Taif Rose (Rosa damascena trigintipetala (Diek) R. Keller)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Surface Disinfection of Explants and Bud Sprouting of Al-Taif Rose
2.2. Effects of Type and Concentrations of Cytokinins on Axillary Shoot Proliferation of Al-Taif Rose
2.3. Effects of Dark Incubation on Axillary Shoot Proliferation of Al-Taif Rose
2.4. Effects of Gelled/Bioreactor Culture on Axillary Shoot Proliferation of Al-Taif Rose
2.5. Experimental Design and Data Analysis
3. Results and Discussion
3.1. Establishment of Al-Taif Rose Aseptic Culture
3.2. Axillary Shoot Proliferation of Al-Taif Rose in Response to Cytokinins
3.3. Axillary Shoot Proliferation of Al-Taif Rose in Response to Gelled/Liquid Bioreactor Cultures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozkan, G.; Sagdic, O.; Baydar, N.G.; Baydar, H. Antioxidant and antibacterial activities of Rosa damascena flower extracts. Food Sci. Technol. Int. 2004, 10, 277–281. [Google Scholar] [CrossRef]
- Achuthan, C.R.; Babu, B.H.; Padikkala, J. Antioxidant and hepatoprotective effects of Rosa damascena. Pharm. Biol. 2003, 41, 357–361. [Google Scholar] [CrossRef]
- Mahmood, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.; Hay, A. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascene. Biochem. Biophys. Res. Commun. 1996, 229, 73–79. [Google Scholar] [CrossRef]
- Ginova, A.; Tsvetkov, I.; Kondakova, V. Rosa damascena Mill.—An overview for evaluation of propagation methods. Bulg. J. Agric. Sci. 2012, 18, 545–556. [Google Scholar]
- Bahaffi, S.O. Volatile oil composition of Taif rose. J. Saudi Chem. Soc. 2005, 9, 401–406. [Google Scholar]
- Kürkçüoglu, M.; Abdel-Megeed, A.; Başer, K. The composition of Taif rose oil. J. Essent. Oil Res. 2013, 25, 364–367. [Google Scholar] [CrossRef]
- Bazaid, S.A. Protein and DNA fragments variation in relation to low temperature in four Rosa hybirida cultivars in Taif, Saudi Arabia. J. Egypt. Acad. Dev. 2004, 5, 77–90. [Google Scholar]
- Skirvin, R.M.; Chu, M.C.; Young, H.J. Rose. In Handbook of Plant Cell Culture; Ammirato, P.V., Sharp, W.R., Evans, D.A., Eds.; McGraw Hill Publishing Co.: New York, NY, USA, 1990; Volume 5, pp. 716–743. [Google Scholar]
- Zlatev, S.; Margina, A.; Tsvetkov, R. Breeding of Kazanlik Oil Rose; Helicon Press: Kazanlak, Bulgaria, 2001. [Google Scholar]
- Pati, P.K.; Rath, S.P.; Sharma, M.; Sood, A.; Ahuja, P.S. In vitro propagation of rose—A review. Biotechnol. Adv. 2006, 24, 94–114. [Google Scholar] [CrossRef]
- Paek, K.Y.; Hahn, E.J.; Son, S.H. Application of bioreactors of large scale micropropagation systems of plants. In Vitro Cell. Dev. Biol.-Plant 2001, 37, 149–157. [Google Scholar] [CrossRef]
- Bhattacharjee, S.K. The Complete Book of Roses; Raj: Jaipur, India, 2010; p. 531. [Google Scholar]
- Kornova, K.; Mihailova, J.; Stefanova, A. Propagation of Rosa Kazanlika Top. (Rosa damascene var. Trigintipetala) using the in vitro method. Sci. Work. 2001, 46, 61–66. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 1962, 15, 473–495. [Google Scholar] [CrossRef]
- Krishna, H.; Sairam, R.K.; Singh, S.K.; Patel, V.B.; Sharma, R.R.; Grover, M.; Nain, L.; Sachdev, A. Mango explant browning: Effect of ontogenic age, mycorrhization and pre-treatments. Sci. Hort. 2008, 118, 132–138. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Paliyath, G.; Brown, D.C.; Saxena, P.K. In vitro propagation of North American ginseng (Panax quinquefolius. p.L.). In Vitro Cell. Dev. Biol.-Plant 2011, 47, 710–718. [Google Scholar] [CrossRef]
- Panaia, M.; Senaratna, T.; Bunn, E.; Dixon, K.W.; Sivasithamparam, K. Micropropagation of the critically endangered Western Australian species, Symonanthus bancroftii (F Muell.) L. Haegi (Solanaceae). Plant Cell Tiss. Org. Cult. 2000, 63, 23–29. [Google Scholar] [CrossRef]
- Tao, F.-J.; Zhang, Z.-Y.; Zhou, J.; Yao, N.; Wang, D.-M. Contamination and browning in tissue culture of Platanus occidentalis L. For. Stud. China 2007, 9, 279–282. [Google Scholar] [CrossRef]
- El-Mahrouk, M.E.; Dewir, Y.H.; Omar, A.M.K. In vitro propagation of adult strawberry tree (Arbutus unedo L.) through adventitious shoots and somatic embryogenesis. Propag. Ornam. Plants 2010, 10, 93–98. [Google Scholar]
- Dewir, Y.H.; Aldubai, A.A.; El-Hendawy, S.; Alsadon, A.A.; Seliem, M.K.; Naidoo, Y. Micropropagation of buttonwood tree (Conocarpus erectus) through axillary shoot proliferation. HortScience 2018, 53, 687–691. [Google Scholar] [CrossRef]
- Toth, K.; Haapala, T.; Hohtola, A. Alleviation of browning in oak explants by chemical pretreatments. Biol. Plant. 1994, 36, 511–517. [Google Scholar] [CrossRef]
- Rout, G.R.; Samantaray, S.; Mottley, J.; Das, P. Biotechnology of the rose: A review of recent progress. Sci. Hortic. 1999, 81, 201–228. [Google Scholar] [CrossRef]
- Pittet, H.; Moncousin, C. Multiplication novelle du rosier. Rev. Hortic. Suisse 1981, 54, 169–173. [Google Scholar]
- Herman, D.E.; Hess, C.E. The effect of etiolation upon the rooting of cuttings. Proc. Int. Plant Prop. Soc. 1963, 13, 42–62. [Google Scholar]
- Ibrahim, R.; Debergh, P.C. Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Sci. Hortic. 2001, 88, 41–57. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, H.J.; Lee, C.H.; Bae, J.M.; Chung, Y.S.; Shin, J.S.; Hyung, N.I. Efficient and simple plant regeneration via organogenesis from leaf segment cultures of persimmon (Diospyros kaki Thunb.). In Vitro. Cell. Dev. Biol.-Plant 2001, 37, 274–279. [Google Scholar] [CrossRef]
- Kirdmanee, C.; Mosaleeyanon, K.; Tanticharoen, M. A Novel approach of bacteria-free rhizome production of ginger through biotechnology. Acta Hortic. 2004, 629, 457–462. [Google Scholar] [CrossRef]
- Rugini, E.; Orlando, R. High efficiency shoot regeneration from callus of strawberry (Fragaria × ananassa Duch.) stipules of in vitro cultures. J. Hortic. Sci. 1992, 67, 577–582. [Google Scholar] [CrossRef]
- Mitić, N.; Stanišić, M.; Milojević, J.; Tubić, L.; Ćosić, T.; Nikolić, R.; Ninković, S.; Miletić, R. Optimization of in vitro regeneration from leaf explants of apple cultivars Golden Delicious and Melrose. HortScience 2012, 47, 1117–1122. [Google Scholar] [CrossRef]
- Meng, R.; Chen, T.H.; Finn, C.E.; Li, Y. Improving in vitro plant regeneration from leaf and petiole explants of Marion’ blackberry. HortScience 2004, 39, 316–320. [Google Scholar] [CrossRef]
- Mendi, Y.Y.; Comlekcioglu, N.; Ipek, M.; Kocaman, E.; Izgu, T.; Tekdal, D.; Curuk, P. The effect of different hormone concentrations and dark pretreatment on adventitious shoot regeneration in snake melon (Cucumis melo var. flexousus). Rom. Biotechnol. Lett. 2010, 15, 5392–5393. [Google Scholar]
- Rout, G.R.; Debata, B.K.; Das, P. In vitro clonal multiplication of roses. Proc. Natl. Acad. Sci. India 1990, 60, 311–318. [Google Scholar]
- Hasegawa, P.M. Factors affecting shoot and root initiation from cultured rose shoot tips. J. Am. Soc. Hortic. Sci. 1980, 105, 216–220. [Google Scholar] [CrossRef]
- Wulster, G.; Sacalis, J. Effects of auxins and cytokinins on ethylene evolution and growth of rose callus tissue in sealed vessels. Hortic. Sci. 1980, 15, 736–737. [Google Scholar]
- Zhou, W.-L.; Tan, R.-F.; Xu, C.-J.; Lai, Y.-Y.; Chen, D.-Y.; Li, L. Gibberellic acid inhibits browning, enzyme activity and gene expression of phenylalanine ammonia-lyase in Phalaenopsis leaf explants. Genes Genomes Genom. 2009, 3, 68–71. [Google Scholar]
- Bressan, P.H.; Kim, Y.J.; Hyndman, S.E.; Hasegawa, P.M.; Bressan, R.A. Factors affecting in vitro propagation of rose. J. Am. Soc. Hortic. Sci. 1982, 107, 979–990. [Google Scholar] [CrossRef]
- Jabbarzadeh, Z.; Khosh-Khui, M. Factors affecting tissue culture of Damask rose (Rosa damascene Mill.). Sci. Hortic. 2005, 105, 475–482. [Google Scholar] [CrossRef]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Direct shoot regeneration from leaf explants of Rosa damascena Mill. In Vitro. Cell. Dev. Biol.-Plant 2004, 40, 192–195. [Google Scholar] [CrossRef]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Micropropagation of Rosa damascena and R. bourboniana in liquid cultures. In Liquid Systems for in vitro Mass Propagation of Plants; Hvoslef-Eide, A.K., Preil, W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; Volume III, pp. 373–385. [Google Scholar]
- Carelli, B.P.; Echeverrigary, S. An improved system for the in vitro propagation of rose cultivars. Sci. Hortic. 2002, 92, 64–74. [Google Scholar] [CrossRef]
- Mamaghani, B.A.; Ghorbanli, M.; Assareh, M.H.; Zare, A.G. In vitro propagation of three Damask Roses accessions. Iran. J. Plant Physiol. 2010, 1, 85–94. [Google Scholar]
- Deltalab, B.; Kaviani, B.; Kulus, D. In vitro propagation of oil-bearing Rosa damascena using phloroglucinol: A protocol for rapid and high-quality shoot multiplication and rooting. Ind. Crops Prod. 2023, 203, 117139. [Google Scholar] [CrossRef]
- Khajeh, H.; Fazeli, F.; Mazarie, A. Effects of culture medium and concentration of different growth regulators on organogenesis Damask rose (Rosa damascena Mill). J. Plant Bioinform. Biotech. 2021, 1, 14–27. [Google Scholar]
- Sedlak, J.; Paprstein, F. Micropropagation of Rosa pomifera. Acta Hortic. 2014, 1048, 215–220. [Google Scholar] [CrossRef]
- Wojtania, A.; Matysiak, B. In vitro propagation of Rosa ‘Konstancin’ (R. rugosa × R. beggeriana), a plant with high nutritional and pro-health value. Folia Hort. 2018, 30, 259–267. [Google Scholar] [CrossRef]
- Blakesley, D. Uptake and metabolism of 6-benzyladenine in shoot proliferation of Musa and Rhododendron. Plant Cell Tiss. Organ Cult. 1991, 25, 69–74. [Google Scholar] [CrossRef]
- Kaminek, M. Progress in cytokinin research. Tibtech 1992, 10, 159–162. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Nurmansyah; Naidoo, Y.; Teixeira da Silva, J.A. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018, 37, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Dhar, U.; Upreti, J.; Bhatt, I.D. Micropropagation of Pittosporum napaulensis (DC.) Rehder & Wilson—A rare, endemic Himalayan medicinal tree. Plant Cell Tiss. Org. Cult. 2000, 63, 231–235. [Google Scholar]
- Shaik, S.; Dewir, Y.H.; Singh, N.; Nicholas, A. Micropropagation and bioreactor studies of the medicinally important plant Lessertia (Sutherlandia) frutescens. S. Afr. J. Bot. 2010, 76, 180–186. [Google Scholar] [CrossRef]
- Akhtar, G.; Jaskani, M.J.; Sajjad, Y.; Akram, A.; Farouk, A.; Rasool, G. In vitro root and shoot formation of Rosa centifolia using plant growth regulators. Philipp. J. Crop Sci. 2018, 43, 63–70. [Google Scholar]
- Heutteman, C.A.; Preece, J.E. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org. Cult. 1993, 33, 105–119. [Google Scholar] [CrossRef]
- Murthy, B.N.S.; Murch, S.J.; Saxena, P.K. Thidiazuron: A potential regulator of in vitro plant morphogenesis. In Vitro Cell. Dev. Biol.-Plant 1998, 34, 267–275. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Chakrabarty, D.; Hahn, E.J.; Paek, K.Y. A simple method for mass propagation of Spathiphyllum cannifolium using an airlift bioreactor. In Vitro Cell. Dev. Biol- Plant 2006, 42, 291–297. [Google Scholar] [CrossRef]
- Mitras, D.; Kitin, P.; Iliev, I.; Dancheva, D.; Scaltsoyiannes, A.; Tsaktsira, M.; Nellas, C.; Rohr, R. In vitro propagation of Fraxinus excelsior L. by epycotyls. J. Biol. Res. 2009, 11, 37–48. [Google Scholar]
- Pandey, S.; Singh, M.; Jaiswal, U.; Jaiswal, V.S. Shoot initiation and multiplication from a mature tree of Terminalia arjuna roxb. In Vitro Cell. Dev. Biol. Plant 2006, 42, 389–393. [Google Scholar] [CrossRef]
- Khosh-Khui, M.; Sink, K.C. Micropropagation of new and old world Rosa species. Am. J. Hortic. Sci. 1982, 57, 315–319. [Google Scholar] [CrossRef]
- Horn, W.A.H.; Schlegel, G.; Lerstuhl, K.J. Micropropagation of roses (Rosa hybrida). Acta Hortic. 1988, 226, 623–627. [Google Scholar] [CrossRef]
- Short, K.C.; Roberts, A.V. Rosa spp. (roses): In vitro culture, micropropagation, and the production of secondary products. In Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin, Germany, 1991; Volume 15, pp. 376–397. [Google Scholar]
- Horn, W.A.H. Micropropagation of rose (Rosa L.). In Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin, Germany, 1992; Volume 20, pp. 320–342. [Google Scholar]
- Arnold, N.P.; Binns, M.R.; Cloutier, D.C.; Barthakur, N.N.; Pellerin, R. Auxins, salt concentrations, and their interactions during in vitro rooting of winter-hardy and hybrid tea roses. HortScience 1995, 30, 1436–1440. [Google Scholar] [CrossRef]
- Ziv, M.; Ariel, T. Bud proliferation and plant regeneration in liquid-cultured philodendron treated with ancymidol and paclobutrazol. J. Plant Growth Regul. 1991, 10, 53–57. [Google Scholar] [CrossRef]
- Bayanati, M.; Mortazavi, S.N. Mass propagation of Rosa hybrid cv. Black baccara by periodical bioreactor. Int. J. Agric. Res. Rev. 2013, 3, 241–245. [Google Scholar]
- Kareem, Z.J.; Su, L.; Rathgeb, A.; Sirrenberg, A.; Hadacek, F.; Rashid, A.H.A.H.; Karlovsky, P. Small-scale bioreactor for sterile hydroponics and hairy roots: Metabolic diversity and salicylic acid exudation by hairy roots of Hyoscyamus niger. Appl. Sci. 2019, 9, 3044. [Google Scholar] [CrossRef]
- Nasri, A.; Baklouti, E.; Romdhane, A.B.; Maalej, M.; Schumacher, H.M.; Drira, N.; Fki, L. Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci. Hortic. 2019, 245, 144–153. [Google Scholar] [CrossRef]
- Debnath, S.C. Developing a scale-up system for the in vitro multiplication of thidiazuron-induced strawberry shoots using a bioreactor. Can. J. Plant Sci. 2008, 88, 737–746. [Google Scholar] [CrossRef]
- Alawaadh, A.A.; Dewir, Y.H.; Alwihibi, M.S.; Aldubai, A.A.; El-Hendawy, S.; Naidoo, Y. Micropropagation of lacy tree philodendron (Philodendron bipinnatifidum Schott ex Endl.). HortScience 2020, 55, 294–299. [Google Scholar] [CrossRef]
Treatments | Bud Break (%) | Number of Days for Bud Break | Shoot Length (cm) | Fresh Weight (mg) |
---|---|---|---|---|
Control | 60 b | 7.2 a | 3.9 b | 54 b |
3 mg·L−1 BAP | 100 a | 5.4 b | 4.8 ab | 107 a |
3 mg·L−1 GA3 | 100 a | 5.3 b | 5.8 a | 72 b |
Cytokinin (mg·L−1) | No. Shoots per Explant | Shoot Length (cm) | Fresh Weight per Explant (mg) |
---|---|---|---|
MS without PGRs | 1.4 c | 4.0 a | 81 d |
BAP 0.5 | 1.9 a | 3.2 bc | 239 a |
1.0 | 1.9 a | 2.8 cd | 188 ab |
2.0 | 1.8 a | 3.0 cd | 169 abc |
2ip 1.0 | 1.2 c | 3.9 a | 81 d |
3.0 | 1.5 bc | 4.2 a | 130 bcd |
5.0 | 1.0 c | 4.0 a | 94 cd |
Kin 1.0 | 1.0 c | 2.8 cd | 57 d |
3.0 | 1.3 c | 2.8 cd | 69 d |
5.0 | 1.4 c | 2.9 cd | 57 d |
TDZ 0.01 | 1.0 c | 3.7 ab | 90 cd |
0.1 | 1.2 c | 3.6 ab | 97 cd |
0.5 | 1.3 c | 2.6 d | 79 d |
p values | |||
Cytokinin type (A) | 0.0001 * | 0.0001 * | 0.0001 * |
Cytokinin Concentrations (B) | 0.0925 NS | 0.0860 NS | 0.5170 NS |
A × B | 0.5510 NS | 0.0111 * | 0.6790 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Influence of Cytokinins, Dark Incubation and Air-Lift Bioreactor Culture on Axillary Shoot Proliferation of Al-Taif Rose (Rosa damascena trigintipetala (Diek) R. Keller). Horticulturae 2023, 9, 1109. https://doi.org/10.3390/horticulturae9101109
Al-Ali AM, Dewir YH, Al-Obeed RS. Influence of Cytokinins, Dark Incubation and Air-Lift Bioreactor Culture on Axillary Shoot Proliferation of Al-Taif Rose (Rosa damascena trigintipetala (Diek) R. Keller). Horticulturae. 2023; 9(10):1109. https://doi.org/10.3390/horticulturae9101109
Chicago/Turabian StyleAl-Ali, Ali Mohsen, Yaser Hassan Dewir, and Rashid Sultan Al-Obeed. 2023. "Influence of Cytokinins, Dark Incubation and Air-Lift Bioreactor Culture on Axillary Shoot Proliferation of Al-Taif Rose (Rosa damascena trigintipetala (Diek) R. Keller)" Horticulturae 9, no. 10: 1109. https://doi.org/10.3390/horticulturae9101109
APA StyleAl-Ali, A. M., Dewir, Y. H., & Al-Obeed, R. S. (2023). Influence of Cytokinins, Dark Incubation and Air-Lift Bioreactor Culture on Axillary Shoot Proliferation of Al-Taif Rose (Rosa damascena trigintipetala (Diek) R. Keller). Horticulturae, 9(10), 1109. https://doi.org/10.3390/horticulturae9101109