Generating Novel Tomato Germplasm Using the Ancestral Wild Relative of Solanum pimpinellifolium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Creation of an Interspecific Cross Population
2.2. Growth Conditions and Identification of Hybridization Attributes
2.3. Phenotypes and Heritability
2.4. Quality Traits
2.5. Expression of Genes Involved in Carotenoid Synthesis
2.6. Response to Drought and Salt Stresses
3. Results
3.1. Identification of Hybridization between e9292 and LA1585
3.2. Genetic Analysis of Phenotypes
3.3. Tomato Quality Traits
3.4. Expression of Genes Associated with Carotenoid Synthesis
3.5. Response to Drought and Salt Stresses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, N.A.; Erdman, J.W. Are lycopene metabolites metabolically active? Acta Biochim. Pol. 2012, 59, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhu, G.T.; Zhang, J.H.; Xu, X.Y.; Yu, Q.H.; Zheng, Z.; Zhang, Z.H.; Lun, Y.Y.; Li, S.; Wang, X.X.; et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 2014, 46, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Tieman, D.; Zhu, G.T.; Resende, M.F.R., Jr.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.T.; Wang, S.C.; Huang, Z.J.; Zhang, S.B.; Liao, Q.G.; Zhang, C.Z.; Lin, T.; Qin, M.; Peng, M.; Yang, C.K.; et al. Rewiring of the fruit metabolome in tomato breeding. Cell 2018, 172, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.S.; Pratt, H.K. Ethylene and the respiration climacteric. Nature 1970, 226, 976–977. [Google Scholar] [CrossRef]
- Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Zhao, W.H.; Qu, H.O.; Wang, M.H.; Zhang, L.D.; Wang, Q.S.; Zhao, L.X. The yellow-fruited tomato 1 (yft1) mutant has altered fruit carotenoid accumulation and reduced ethylene production as a result of a genetic lesion in ETHYLENE INTENSITIVE2. Theor. Appl. Genet. 2016, 129, 717–728. [Google Scholar] [CrossRef]
- Cohen, L.A. A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Exp. Biol. Med. 2002, 227, 864–868. [Google Scholar] [CrossRef]
- Eckardt, N.A. Tangerine dreams: Cloning of carotenoid isomerase from Arabidopsis and tomato. Plant Cell 2002, 14, 289–292. [Google Scholar] [CrossRef]
- Sun, T.H.; Rao, S.; Zhou, X.S.; Li, L. Plant carotenoids: Recent advances and future perspectives. Mol. Hortic. 2022, 2, 1–21. [Google Scholar] [CrossRef]
- Tan, H.L.; Thomas-Ahner, J.M.; Moran, N.E.; Cooperstone, J.L.; Erdman, J.W.; Young, G.S.; Clinton, S.K. β-Carotene 9′,10′oxygenase modulates the anticancer activity of dietary tomato or lycopene on prostate carcinogenesis in the TRAMP model. Cancer Prev. Res. 2017, 10, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brisou, G.; Piquerez, S.J.M.; Minoia, S.; Marcel, F.; Cornille, A.; Carriero, F.; Boualem, A.; Bendahmane, A. Induced mutations in SlE8 and SlACO1 control tomato fruit maturation and shelf-life. J. Exp. Bot. 2021, 72, 6920–6932. [Google Scholar] [CrossRef] [PubMed]
- Conesa, M.À.; Fullana-Pericàs, M.; Granell, A.; Galmés, J. Mediterranean long shelf-life landraces: An untapped genetic resource for tomato improvement. Front. Plant. Sci. 2020, 10, 1651. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Olivieri, F.; Gerardi, C.; Liso, M.; Chiesa, M.; Chieppa, M.; Frusciante, L.; Barone, A.; Santino, A.; Rigano, M.M. Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. J. Sci. Food Agric. 2020, 100, 2791–2799. [Google Scholar] [CrossRef]
- Thirumalaikumar, V.P.; Devkar, V.; Mehterov, N.; Ali, S.; Ozgur, R.; Turkan, I.; Mueller-Roeber, B.; Balazadeh, S. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol. J. 2018, 16, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Thomazella, D.; Seong, K.; Mackelprang, R.; Dahlbeck, D.; Geng, Y.; Gill, U.S.; Qi, T.C.; Pham, J.; Giuseppe, P.; Lee, C.Y.; et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc. Natl. Acad. Sci. USA 2021, 118, e2026152118. [Google Scholar] [CrossRef]
- Vallarino, J.G.; Kubiszewski-Jakubiak, S.; Ruf, S.; Rößner, M.; Timm, S.; Bauwe, H.; Carrari, F.; Rentsch, D.; Bock, R.; Sweetlove, L.J.; et al. Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef]
- Zhang, L.C.; Zhu, M.K.; Ren, L.J.; Li, A.Z.; Chen, G.P.; Hu, Z.L. The SlFSR gene controls fruit shelf-life in tomato. J. Exp. Bot. 2018, 69, 2897–2909. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.A. The origin of the cultivated tomato. Econ. Bot. 1948, 2, 379–392. [Google Scholar] [CrossRef]
- Peralta, I.E.; Spooner, D.M.; Knapp, S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst. Bot. Monogr. 2008, 84, 1–186. [Google Scholar]
- Spooner, D.M.; Peralta, I.E.; Knapp, S. Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 2005, 54, 43–61. [Google Scholar] [CrossRef]
- Tanksley, S.D.; McCoch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foolad, M.R. Unilateral incompatibility as a major cause of skewed segregation in the cross between Lycopersicon esculentum and L. pennellii. Plant Cell Rep. 1996, 15, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Tanksley, S.D.; Loaiza-Figueroa, F. Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Proc. Natl. Acad. Sci. USA 1985, 82, 5093–5096. [Google Scholar] [CrossRef] [Green Version]
- Gramazio, P.; Pereira-Dias, L.; Vilanova, S.; Prohens, J.; Soler, S.; Esteras, J.; Garmendia, A.; José Díez, M. Morphoagronomic characterization and whole genome resequencing of eight highly diverse wild and weedy S. pimpinellifolium and S. lycopersicum var. cerasiforme accessions used for the first interspecific tomato MAGIC population. Horticulture Res. 2020, 7, 174. [Google Scholar] [CrossRef]
- Martin, G.B.; Brommonschenkel, S.H.; Chunwongse, J.; Frary, A.; Ganal, M.W.; Spivey, R.; Wu, T.; Earle, E.D.; Tanksley, S.D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993, 262, 1432–1436. [Google Scholar] [CrossRef]
- Jia, Y.; Loh, Y.T.; Zhou, J.; Martin, G.B. Alleles of Pto and Fen occur in bacterial speck-susceptible and fenthion-insensitive tomato cultivars and encode active protein kinases. Plant Cell 1997, 9, 61–73. [Google Scholar] [CrossRef]
- Kourelis, J.; Van der Hoorn, R.A.L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 2018, 30, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.Z.; Liu, L.; Wang, X.X.; Vossen, J.; Li, G.C.; Li, T.; Zheng, Z.; Gao, J.C.; Guo, Y.M.; Visser, R.G.F.; et al. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora Infestans. Theor. Appl. Genet. 2014, 127, 1353–1364. [Google Scholar] [CrossRef] [Green Version]
- Mata-Nicolás, E.; Montero-Pau, J.; Gimeno-Paez, E.; Garcia-Carpintero, V.; Ziarsolo, P.; Menda, N.; Mueller, L.A.; Blanca, J.; Cañizares, J.; van der Knaap, E.; et al. Exploiting the diversity of tomato: The development of a phenotypically and genetically detailed germplasm collection. Hortic Res. 2020, 7, 66. [Google Scholar] [CrossRef]
- Rambla, J.L.; Medina, A.; Fernández-del-Carmen, A.; Barrantes, W.; Grandillo, S.; Cammareri, M.; López-Casado, G.; Rodrigo, G.; Alonso, A.; García-Martínez, S.; et al. Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. J. Exp. Bot. 2017, 68, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Razali, R.; Bougouffa, S.; Morton, M.J.L.; Lightfoot, D.J.; Alam, I.; Essack, M.; Arold, S.T.; Kamau, A.A.; Schmöckel, S.M.; Pailles, Y.; et al. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front. Plant Sci. 2018, 9, 1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Gao, L.; Jiao, C.; Stravoravdis, S.; Hosmani, P.S.; Saha, S.; Zhang, J.; Mainiero, S.; Strickler, S.R.; Catala, C.; et al. Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nat. Commun. 2020, 11, 5817. [Google Scholar] [CrossRef] [PubMed]
- Capel, C.; Fernández del Carmen, A.; Alba, J.M.; Lima-Silva, V.; Hernández-Gras, F.; Salinas, M.; Boronat, A.; Angosto, T.; Botella, M.A.; Fernandez-Munoz, R.; et al. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor. Appl. Genet. 2015, 128, 2019–2035. [Google Scholar] [CrossRef] [PubMed]
- Çolak, N.G.; Tek Eken, N.; Ülger, M.; Frary, A.; Doğnlar, S. Exploring wild alleles from Solanum pimpinellifolium with the potential to improve tomato flavor compounds. Plant Sci. 2020, 298, 110567. [Google Scholar] [CrossRef] [PubMed]
- Mahuad, S.L.; Pratta, G.R.; Rodriguez, G.R.; Zorzoli, R.; Picardi, L.A. Preservation of Solanum pimpinellifolium genomic fragments in recombinant genotypes improved the fruit quality of tomato. J. Genet. 2013, 92, 195–203. [Google Scholar] [CrossRef]
- Sun, Y.D.; Liang, Y.; Wu, J.M.; Li, Y.Z.; Cui, X.; Qin, L. Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum × S. pimpinellifolium cross. Genet. Mol. Res. 2012, 11, 3696–3710. [Google Scholar] [CrossRef]
- Menda, N.; Semel, Y.; Peled, D.; Eshed, Y.; Zamir, D. In silico screening of a saturated mutation library of tomato. Plant J. 2004, 38, 861–872. [Google Scholar] [CrossRef]
- Fulton, T.M.; Chunzoongse, J.; Tanksley, S.D. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 1995, 13, 207–209. [Google Scholar] [CrossRef]
- Anonymous. Descriptors for tomato (Lycopersicon spp.); International Plant Genetic Resources Institute (IPGRI): Rome, Italy, 1996; pp. 1–46. [Google Scholar]
- Hughes, D.E. Titrimetric determination of ascorbic acid with 2,6-dichlorophenol indophenol in commercial liquid diets. J. Pharm. Sci. 1983, 72, 126–129. [Google Scholar] [CrossRef]
- Zhao, W.H.; Gao, L.; Li, Y.H.; Wang, M.H.; Zhang, L.D.; Zhao, L.X. Yellow-fruited phenotype is caused by 573 bp insertion at 5’UTR of YFT1 allele in yft1 mutant tomato. Plant Sci. 2020, 300, 110637. [Google Scholar] [CrossRef] [PubMed]
- Osorio, S.; Do, P.T.; Fernie, A.R. Profiling primary metabolites of tomato fruit with gas chromatography/mass spectrometry. In Plant Metabolomics: Methods in Molecular Biology (Methods and Protocols); Hardy, N.W., Hall, R.D., Eds.; Springer Science+Business Media: Berlin, Germany, 2011; Volume 860, pp. 101–109. [Google Scholar] [CrossRef]
- Ganjewala, D.; Kumar, S.; Luthra, R. An account of cloned genes of methyl-erythritol-4-phosphate pathway of isoprenoid biosynthesis in plants. Curr. Issues Mol. Biol. 2009, 11 (Suppl. 1), i35–i45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.T.; Li, W.Z.; Lu, C.; Fan, S.Z.; Fu, C.B.; Chen, M.S.; Zhao, L.X. Evaluation of cultivated tomato germplasm resources. Pak. J. Bot. 2017, 49, 1857–1865. [Google Scholar]
- Razifard, H.; Ramos, A.; Della Valle, A.L.; Bodary, C.; Goetz, E.; Manser, E.J.; Li, X.; Zhang, L.; Visa, S.; Tieman, D.; et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol. Biol. Evol. 2020, 37, 1118–1132. [Google Scholar] [CrossRef] [PubMed]
- Tanksley, S.D.; Ganal, M.W.; Prince, J.P.; Vicente, M.C.D.; Bonierbale, M.W.; Broun, P.; Fulton, T.M.; Giovannoni, J.J.; Grandillo, S.; Martin, G.B.; et al. High density molecular linkage maps of the tomato and potato genomes. Genetics 1993, 132, 1141–1160. [Google Scholar] [CrossRef]
- Chen, L.L.; Li, W.Z.; Li, Y.P.; Feng, X.C.; Du, K.Y.; Wang, G.; Zhao, L.X. Identified trans-splicing of YELLOW-FRUITED TOMATO 2 encoding the PHYTOENE SYNTHASE 1 protein alters fruit color by map-based cloning, functional complementation and RACE. Plant Mol. Biol. 2019, 100, 647–658. [Google Scholar] [CrossRef]
- Banerjee, M.K.; Kalloo, M.K. Sources and inheritance of resistance to leaf curl virus in Lycopersicon. Theor. Appl. Genet. 1987, 73, 707–710. [Google Scholar] [CrossRef]
- Mu, Q.; Huang, Z.J.; Chakrabarti, M.; Illa-Berenguer, E.; Liu, X.X.; Wang, Y.P.; Ramos, A.; van der Knaap, E. Fruit weight is controlled by cell size regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet. 2017, 13, e1006930. [Google Scholar] [CrossRef] [Green Version]
- Yuste-Lisbona, F.J.; Fernández-Lozanoa, A.; Pinedac, B.; Bretonesa, S.; Ortíz-Atienzaa, A.; García-Sogoc, B.; Müller, N.A.; Angostoa, T.; Capela, J.; Morenoc, V.; et al. ENO regulates tomato fruit size through the floral meristem development network. Proc. Natl. Acad. Sci. USA 2020, 117, 8187–8195. [Google Scholar] [CrossRef] [Green Version]
- Frary, A.; Nesbitt, T.C.; Frary, A.; Grandillo, S.; van der Knaap, E.; Cong, B.; Liu, J.; Meller, J.; Elber, R.; Alpert, K.A.; et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 2000, 289, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, T.C.; Tanksley, S.D. fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution. Plant Physiol. 2001, 127, 575–583. [Google Scholar] [CrossRef] [PubMed]
Genotype | AA (mg/100 g FW) | TSS (°Brix) | LF (N) | TF (N) | Lycopene (μg/g FW) | α-Carotene (μg/g FW) | β-Carotene (μg/g FW) | Lutein (μg/g FW) | TC (μg/g FW) | Fructose (mg/g FW) | Glucose (mg/g FW) | L-Malic Acid (mg/g FW) | CA (mg/g FW) | Quinic Acid (mg/g FW) | Sugar/Acid |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e9292 | 14.21 ± 0.23 | 4.44 ± 0.24 | 11.31 ± 1.15 | 10.71 ± 1.04 | 27.84 ± 0.27 | 12.59 ± 1.47 | 5.29 ± 0.61 | 6.21 ± 0.61 | 51.93 ± 2.96 | 18.10 ± 0.93 | 12.12 ± 0.24 | 0.26 ± 0.01 | 2.80 ± 0.26 | 0.05 ± 0.01 | 9.70 |
LA1585 | 43.93 ± 0.28 | 8.12 ± 1.45 | 3.28 ± 0.27 | 3.13 ± 0.58 | 174.39 ± 1.70 | 4.85 ± 0.48 | 18.55 ± 0.84 | 2.69 ± 0.39 | 200.48 ± 3.41 | 9.45 ± 0.74 | 9.48 ± 0.16 | 0.42 ± 0.04 | 4.83 ± 0.44 | 0.04 ± 0.00 | 3.57 |
F1 | 33.05 ± 0.26 | 6.86 ± 0.15 | 11.57 ± 0.25 | 11.02 ± 0.24 | 109.51 ± 2.75 | 6.76 ± 0.72 | 8.84 ± 0.45 | 2.00 ± 0.28 | 127.11 ± 4.20 | 8.98 ± 0.374 | 10.43 ± 0.70 | 0.31 ± 0.02 | 5.01 ± 0.27 | 0.04 ± 0.00 | 3.62 |
F2-253 | 40.32 ± 0.33 | 6.04 ± 0.32 | 12.63 ± 0.83 | 8.90 ± 0.78 | 34.84 ± 2.55 | 17.70 ± 2.40 | 16.62 ± 2.88 | 3.07 ± 0.44 | 72.23 ± 8.27 | 16.39 ± 1.34 | 12.17 ± 1.04 | 0.27 ± 0.07 | 2.55 ± 0.34 | 0.04 ± 0.01 | 9.98 |
F2-259 | 33.11 ± 0.37 | 4.52 ± 0.08 | 8.59 ± 0.76 | 5.54 ± 0.61 | 160.54 ± 1.18 | 20.98 ± 3.58 | 7.03 ± 1.72 | 0.47 ± 0.02 | 189.02 ± 6.50 | 19.73 ± 0.53 | 9.96 ± 0.44 | 0.28 ± 0.02 | 2.58 ± 0.11 | 0.02 ± 0.00 | 10.32 |
F2-266 | 43.02 ± 0.30 | 6.24 ± 0.54 | 5.05 ± 0.77 | 4.83 ± 0.56 | 45.99 ± 2.70 | 20.32 ± 2.00 | 18.79 ± 2.85 | 2.00 ± 0.07 | 87.1 ± 7.62 | 21.65 ± 0.67 | 10.64 ± 0.08 | 0.32 ± 0.00 | 4.92 ± 0.12 | 0.02 ± 0.00 | 6.14 |
F2-280 | 53.28 ± 0.39 | 6.64 ± 0.41 | 4.92 ± 0.54 | 4.84 ± 0.71 | 203.55 ± 6.28 | 1.37 ± 0.08 | 27.00 ± 5.89 | 3.53 ± 0.39 | 235.45 ± 12.64 | 20.43 ± 1.20 | 12.51 ± 0.48 | 0.22 ± 0.02 | 4.53 ± 0.62 | 0.02 ± 0.00 | 6.90 |
F2-292 | 33.45 ± 0.14 | 6.64 ± 0.37 | 5.39 ± 0.66 | 4.14 ± 0.74 | 170.63 ± 4.93 | 5.37 ± 0.60 | 15.21 ± 0.86 | 2.57 ± 0.22 | 193.78 ± 6.61 | 26.48 ± 0.84 | 16.76 ± 1.45 | 0.27 ± 0.03 | 4.13 ± 0.04 | 0.05 ± 0.01 | 9.71 |
F2-299 | 55.12 ± 0.50 | 7.22 ± 0.13 | 4.63 ± 0.69 | 4.66 ± 0.85 | 34.71 ± 2.03 | 21.82 ± 3.63 | 22.54 ± 3.27 | 3.46 ± 0.42 | 82.53 ± 9.35 | 21.93 ± 0.66 | 14.16 ± 0.04 | 0.24 ± 0.01 | 3.63 ± 0.19 | 0.00 ± 0.00 | 9.32 |
F2-318 | 32.46 ± 0.17 | 5.42 ± 0.13 | 13.02 ± 0.82 | 8.34 ± 0.84 | 114.01 ± 3.90 | 16.79 ± 0.42 | 4.21 ± 0.16 | nd | 135.01 ± 4.48 | 17.78 ± 1.06 | 12.77 ± 0.27 | 0.34 ± 0.02 | 3.43 ± 0.31 | 0.15 ± 0.01 | 7.78 |
F2-328 | 37.62 ± 0.29 | 6.50 ± 0.48 | 7.15 ± 0.77 | 7.47 ± 0.64 | 47.49 ± 4.21 | 20.76 ± 3.81 | 5.51 ± 1.65 | 3.01 ± 0.57 | 76.77 ± 10.24 | 21.76 ± 1.33 | 16.60 ± 1.19 | 0.16 ± 0.01 | 2.83 ± 0.32 | 0.06 ± 0.00 | 12.56 |
F2-330 | 35.40 ± 0.23 | 7.04 ± 1.05 | 5.21 ± 0.28 | 3.91 ± 0.82 | 36.35 ± 0.85 | 17.89 ± 2.25 | 24.76 ± 2.79 | 6.08 ± 0.10 | 85.08 ± 5.99 | 10.14 ± 0.47 | 10.17 ± 0.42 | 0.13 ± 0.02 | 4.73 ± 0.57 | 0.07 ± 0.01 | 4.12 |
F2-332 | 44.95 ± 0.22 | 5.82 ± 0.33 | 7.64 ± 0.99 | 6.09 ± 0.97 | 251.30 ± 6.23 | 5.45 ± 0.25 | 10.19 ± 1.85 | 0.69 ± 0.12 | 267.63 ± 8.45 | 26.86 ± 2.06 | 18.44 ± 0.76 | 0.26 ± 0.03 | 3.77 ± 0.39 | 0.08 ± 0.01 | 11.01 |
Quality Traits | gv | ev | Mean | sd | hb | Cv |
---|---|---|---|---|---|---|
TSS | 1.01 | 0.34 | 6.27 | 1.13 | 75.06% | 18.10% |
Fruit apex firmness | 11.31 | 0.52 | 7.72 | 3.34 | 95.56% | 43.19% |
Equatorial plane firmness | 6.71 | 0.56 | 6.43 | 2.62 | 92.29% | 40.72% |
AA | 109.20 | 0.09 | 38.46 | 10.18 | 99.92% | 26.46% |
α-Carotene | 54.39 | 4.52 | 13.28 | 7.49 | 92.33% | 56.37% |
β-Carotene | 59.81 | 6.21 | 14.20 | 7.93 | 90.59% | 55.85% |
Lycopene | 5877.49 | 12.78 | 108.55 | 74.71 | 99.78% | 68.82% |
Lutein | 3.50 | 0.12 | 2.75 | 1.85 | 96.77% | 67.39% |
Succinic acid | ld | ld | ld | ld | 89.12% | 36.81% |
Malic acid | 0.01 | ld | 0.27 | 0.08 | 88.59% | 28.68% |
Citric acid | 0.83 | 0.12 | 3.83 | 0.95 | 87.31% | 24.91% |
Quinic acid | ld | nd | 0.05 | 0.04 | 97.10% | 73.49% |
Fructose | 34.55 | 1.08 | 18.44 | 5.81 | 96.98% | 31.54% |
Glucose | 8.26 | 0.49 | 12.78 | 2.88 | 94.36% | 22.56% |
Sucrose | ld | ld | ld | ld | ld | ld |
Genotypes | Vitamin C | Total Soluble Solids | Carotenoids | Sugar/Acid Ratio | Total Score | Ranking |
---|---|---|---|---|---|---|
e9292 | 13 | 13 | 13 | 6 | 45 | 13 |
LA1585 | 4 | 1 | 3 | 13 | 21 | 4 |
F1 | 11 | 4 | 7 | 12 | 34 | 11 |
F2-253 | 6 | 9 | 12 | 4 | 31 | 10 |
F2-259 | 10 | 12 | 5 | 3 | 30 | 7 |
F2-266 | 5 | 8 | 8 | 10 | 31 | 9 |
F2-280 | 2 | 5 | 2 | 9 | 18 | 2 |
F2-292 | 9 | 6 | 4 | 5 | 24 | 5 |
F2-299 | 1 | 2 | 10 | 7 | 20 | 3 |
F2-318 | 12 | 11 | 6 | 8 | 37 | 12 |
F2-328 | 7 | 7 | 11 | 1 | 26 | 6 |
F2-330 | 8 | 3 | 9 | 11 | 31 | 8 |
F2-332 | 3 | 10 | 1 | 2 | 16 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, Y.; Liang, Y.; Ni, L.; Huang, H.; Wei, Y.; Wang, M.; Zhang, L.; Zhao, L. Generating Novel Tomato Germplasm Using the Ancestral Wild Relative of Solanum pimpinellifolium. Horticulturae 2023, 9, 34. https://doi.org/10.3390/horticulturae9010034
Li W, Li Y, Liang Y, Ni L, Huang H, Wei Y, Wang M, Zhang L, Zhao L. Generating Novel Tomato Germplasm Using the Ancestral Wild Relative of Solanum pimpinellifolium. Horticulturae. 2023; 9(1):34. https://doi.org/10.3390/horticulturae9010034
Chicago/Turabian StyleLi, Wenzhen, Yuhang Li, Yingnuan Liang, Linlin Ni, Huofeng Huang, Yushuang Wei, Mingcui Wang, Lida Zhang, and Lingxia Zhao. 2023. "Generating Novel Tomato Germplasm Using the Ancestral Wild Relative of Solanum pimpinellifolium" Horticulturae 9, no. 1: 34. https://doi.org/10.3390/horticulturae9010034
APA StyleLi, W., Li, Y., Liang, Y., Ni, L., Huang, H., Wei, Y., Wang, M., Zhang, L., & Zhao, L. (2023). Generating Novel Tomato Germplasm Using the Ancestral Wild Relative of Solanum pimpinellifolium. Horticulturae, 9(1), 34. https://doi.org/10.3390/horticulturae9010034