Growth and Mineral Relations of Beta vulgaris var. cicla and Beta vulgaris ssp. maritima Cultivated Hydroponically with Diluted Seawater and Low Nitrogen Level in the Nutrient Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Determinations
2.2.1. Crop Yield, Plant Growth and Water Uptake
2.2.2. Plant Mineral Content and Uptake
2.3. Contribution of Leaf Consumption to Mineral Dietary Intake and Health Risk
2.4. Statistical Analysis
3. Results
3.1. Crop Yield and Mineral Relations
3.1.1. Crop Yield
3.1.2. Root Mineral Content
3.1.3. Water and Mineral Uptake
3.2. Leaf Production, Succulence and Mineral Content in Different Harvests
3.2.1. Swiss Chard
3.2.2. Sea Beet
4. Discussion
4.1. Leaf Mineral Relations
4.2. Crop Yield and Mineral Uptake
4.3. Leaf Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atzori, G.; Mancuso, S.; Masi, E. Seawater Potential Use in Soilless Culture: A Review. Sci. Hortic. 2019, 249, 199–207. [Google Scholar] [CrossRef]
- Awaad, H.A.; Mansour, E.; Akrami, M.; Fath, H.E.S.; Javadi, A.A.; Negm, A. Availability and Feasibility of water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review. Sustainability 2020, 12, 7592. [Google Scholar] [CrossRef]
- Kotzen, B.; Emerenciano, M.G.C.; Moheimani, N.; Burnell, G.M. Aquaponics: Alternative Types and Approaches. In Aquaponics Food Production Systems; Springer Nature: Cham, Switzerland, 2019; pp. 301–330. ISBN 9783030159436. [Google Scholar]
- Quintã, R.; Santos, R.; Thomas, D.N.; le Vay, L. Growth and Nitrogen Uptake by Salicornia europaea and Aster tripolium in Nutrient Conditions Typical of Aquaculture Wastewater. Chemosphere 2015, 120, 414–421. [Google Scholar] [CrossRef]
- Tsukagoshi, S.; Shinohara, Y. Nutrition and Nutrient Uptake in Soilless Culture Systems. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 221–229. ISBN 9780128166918. [Google Scholar]
- Kaburagi, E.; Yamada, M.; Baba, T.; Fujiyama, H.; Murillo-Amador, B.; Yamada, S. Aquaponics Using Saline Groundwater: Effect of Adding Microelements to Fish Wastewater on the Growth of Swiss Chard (Beta vulgaris L. spp. cicla). Agric. Water Manag. 2020, 227, 105851. [Google Scholar] [CrossRef]
- Nozzi, V.; Parisi, G.; di Crescenzo, D.; Giordano, M.; Carnevali, O. Evaluation of Dicentrarchus labrax Meats and the Vegetable Quality of Beta vulgaris var. cicla Farmed in Freshwater and Saltwater Aquaponic Systems. Water 2016, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Ghoulam, C.; Foursy, A.; Fares, K. Effects of Salt Stress on Growth, Inorganic Ions and Proline Accumulation in Relation to Osmotic Adjustment in Five Sugar Beet Cultivars. Environ. Exp. Bot. 2002, 47, 39–50. [Google Scholar] [CrossRef]
- Mwazi, F.N.; Amoonga, S.; Mubiana, F.S. Evaluation of the Effects of Salinity on Spinach (Beta vulgaris Var. cicla) Grown in a Hydroponic System along the Coast of Namibia. Agricola 2010, 20, 14–17. [Google Scholar]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Rana, M.K.; Sagwal, K. Sea Beet; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315116204. [Google Scholar]
- Yolcu, S.; Alavilli, H.; Ganesh, P.; Panigrahy, M.; Song, K. Salt and Drought Stress Responses in Cultivated Beets (Beta vulgaris L.) and Wild Beet (Beta maritima L.). Plants 2021, 10, 1843. [Google Scholar] [CrossRef]
- Kaburagi, E.; Morikawa, Y.; Yamada, M.; Fujiyama, H. Sodium Enhances Nitrate Uptake in Swiss Chard (Beta vulgaris var. cicla L.). Soil Sci. Plant Nutr. 2014, 60, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Koyro, H.W. Effect of Salinity on Growth, Photosynthesis, Water Relations and Solute Composition of the Potential Cash Crop Halophyte Plantago coronopus (L.). Environ. Exp. Bot. 2006, 56, 136–146. [Google Scholar] [CrossRef]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Yamamoto, S.; Ibaraki, Y. Effect of Substrate Flow Rate on Nutrient Uptake and Use Efficiency in Hydroponically Grown Swiss Chard (Beta vulgaris L. Ssp. cicla ‘Seiyou Shirokuki’). Agronomy 2021, 11, 2050. [Google Scholar] [CrossRef]
- D’Imperio, M.; Montesano, F.F.; Renna, M.; Parente, A.; Logrieco, A.F.; Serio, F. Hydroponic Production of Reduced-Potassium Swiss Chard and Spinach: A Feasible Agronomic Approach to Tailoring Vegetables for Chronic Kidney Disease Patients. Agronomy 2019, 9, 627. [Google Scholar] [CrossRef] [Green Version]
- Maucieri, C.; Nicoletto, C.; Zanin, G.; Xiccato, G.; Borin, M.; Sambo, P. Composition and Quality Traits of Vegetables Grown in a Low-Tech Aquaponic System at Different Fish Stocking Densities. J. Sci. Food Agric. 2020, 100, 4310–4318. [Google Scholar] [CrossRef]
- Koyro, H.W.; Daoud, S.; Harrouni, C.; Huchzermeyer, B. Strategies of a Potential Cash Crop Halophyte (Beta vulgaris ssp. maritima) to Avoid Salt Injury. Trop. Ecol. 2006, 47, 191–200. [Google Scholar]
- Pantanella, E. Nutrition and Quality of Aquaponic Systems [Nutrizione e Qualità Dei Sistemi Acquaponici]. Ph.D. Thesis, Università degli Studi della Tuscia, Viterbo, Italy, 24 May 2012. [Google Scholar]
- Wongkiew, S.; Hu, Z.; Chandran, K.; Lee, J.W.; Khanal, S.K. Nitrogen Transformations in Aquaponic Systems: A Review. Aquac. Eng. 2017, 76, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Bibbiani, C.; Fierro-Sañudo, J.F.; Maibam, C.; Incrocci, L.; Pardossi, A.; Fronte, B. Selection of Marine Fish for Integrated Multi-Trophic Aquaponic Production in the Mediterranean Area Using DEXi Multi-Criteria Analysis. Aquaculture 2021, 535, 736402. [Google Scholar] [CrossRef]
- Nicola, S.; Ertani, A. The Floating Growing System and New Growing System® to Grow Leafy Vegetables and Herbs. Acta Hortic. 2021, 1321, 251–257. [Google Scholar] [CrossRef]
- Tootoonchi, M.; Gettys, L.A. Testing Salt Stress on Aquatic Plants: Effect of Salt Source and Substrate. Aquat. Ecol. 2019, 53, 325–334. [Google Scholar] [CrossRef]
- The European Parliament; The European Council. Regulation (EU) No 1169/2011 of 25 October 2011 on the provision of food information to consumers, 2011. Off. J. Eur. Union 2011, L 304, 18–63. [Google Scholar]
- Hochmuth, G.; Maynard, D.; Vavrina, C.; Hanlon, E.; Simonne, E. HS964/EP081: Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida. UF/IFAS Extension. Univ. Fla. 2012, 964, 55. [Google Scholar]
- Wakeel, A.; Steffens, D.; Schubert, S. Potassium Substitution by Sodium in Sugar Beet (Beta vulgaris) Nutrition on K-Fixing Soils. J. Plant Nutr. Soil Sci. 2010, 173, 127–134. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Hydroponic Production of Purslane as a Sodium-Removing Vegetable in NaCl-Rich Nutrient Solution. HortScience 2014, 49, 201–206. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity-Mineral Nutrient Relations in Horticultural Crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Raddatz, N.; Morales de los Ríos, L.; Lindahl, M.; Quintero, F.J.; Pardo, J.M. Coordinated Transport of Nitrate, Potassium, and Sodium. Front. Plant Sci. 2020, 11, 247. [Google Scholar] [CrossRef] [Green Version]
- Kaburagi, E.; Yamada, M.; Fujiyama, H. Sodium, but Not Potassium, Enhances Root to Leaf Nitrate Translocation in Swiss Chard (Beta vulgaris var. cicla L.). Environ. Exp. Bot. 2015, 112, 27–32. [Google Scholar] [CrossRef]
- Assaha, D.V.M.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Front. Physiol. 2017, 8, 509. [Google Scholar] [CrossRef]
- Shawer, S.S. Interaction Effect between Nitrate and Chloride on Yield, Uptake and Translocation of Nutrients in Cucumber Plant under Nutrient Film Technique (NFT). Middle East J. Agric. Res. 2014, 3, 42–48. [Google Scholar]
- Liu, X.; Yang, Y.; Li, W.; Li, C.; Duan, D.; Tadano, T. Interactive Effects of Sodium Chloride and Nitrogen on Growth and Ion Accumulation of a Halophyte. Commun. Soil Sci. Plant Anal. 2004, 35, 2111–2123. [Google Scholar] [CrossRef]
- Wege, S.; Gilliham, M.; Henderson, S.W. Chloride: Not Simply a “Cheap Osmoticum”, but a Beneficial Plant Macronutrient. J. Exp. Bot. 2017, 68, 3057–3069. [Google Scholar] [CrossRef] [Green Version]
- Ouazzani Chahidi, L.; Fossa, M.; Priarone, A.; Mechaqrane, A. Energy Saving Strategies in Sustainable Greenhouse Cultivation in the Mediterranean Climate—A Case Study. Appl. Energy 2021, 282, 116156. [Google Scholar] [CrossRef]
- Maboko, M.M.; du Plooy, C.P. Effect of Plant Spacing and Harvesting Frequency on the Yield of Swiss Chard Cultivars (Beta vulgaris L.) in a Closed Hydroponic System. Afr. J. Agric. Res. 2013, 8, 936–942. [Google Scholar] [CrossRef]
- Hlophe, P.A.; Nxumalo, K.A.; Oseni, T.O.; Masarirambi, M.T.; Wahome, P.K.; Shongwe, V.D. Effects of Different Media on the Growth and Yield of Swiss Chard (Beta vulgaris var. cicla) Grown in Hydroponics. Hortic. Int. J. 2019, 3, 147–151. [Google Scholar] [CrossRef]
- Skorupa, M.; Gołȩbiewski, M.; Kurnik, K.; Niedojadło, J.; Kȩsy, J.; Klamkowski, K.; Wójcik, K.; Treder, W.; Tretyn, A.; Tyburski, J. Salt Stress vs. Salt Shock—The Case of Sugar Beet and Its Halophytic Ancestor. BMC Plant Biol. 2019, 19, 57. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, I.C.; Pinheiro, C.; Ribeiro, C.M.; Veloso, M.M.; Simões-Costa, M.C.; Evaristo, I.; Paulo, O.S.; Ricardo, C.P. Genetic Diversity and Physiological Performance of Portuguese Wild Beet (Beta vulgaris Spp. maritima) from Three Contrasting Habitats. Front. Plant Sci. 2016, 7, 1293. [Google Scholar] [CrossRef] [Green Version]
- Nicola, S.; Egea-Gilabert, C.; Niñirola, D.; Conesa, E.; Pignata, G.; Fontana, E.; Fernández, J.A.A. Nitrogen and Aeration Levels of the Nutrient Solution in Soilless Cultivation Systems as Important Growing Conditions Affecting Inherent Quality of Baby Leaf Vegetables: A Review. Acta Hortic. 2015, 1099, 167–178. [Google Scholar] [CrossRef]
- Hessini, K.; Lachaâl, M.; Cruz, C.; Soltani, A. Role of Ammonium to Limit Nitrate Accumulation and to Increase Water Economy in Wild Swiss Chard. J. Plant Nutr. 2009, 32, 821–836. [Google Scholar] [CrossRef]
- Papp, J.C.; Ball, M.C.; Terry, N. A Comparative Study of the Effects of NaCl Salinity on Respiration, Photosynthesis, and Leaf Extension Growth in Beta vulgaris L. (Sugar Beet). Plant Cell Environ. 1983, 6, 675–677. [Google Scholar] [CrossRef]
- Puccinelli, M.; Pezzarossa, B.; Rosellini, I.; Malorgio, F. Selenium Enrichment Enhances the Quality and Shelf Life of Basil Leaves. Plants 2020, 9, 801. [Google Scholar] [CrossRef]
- Damerum, A.; Chapman, M.A.; Taylor, G. Innovative Breeding Technologies in Lettuce for Improved Post-Harvest Quality. Postharvest Biol. Technol. 2020, 168, 111266. [Google Scholar] [CrossRef]
- Rana, M.K. Salad Crops: Leaf-Type Crops. Encycl. Food Health 2015, 4, 673–678. [Google Scholar]
- Clarkson, G.J.J.; O’Byrne, E.E.; Rothwell, S.D.; Taylor, G. Identifying Traits to Improve Postharvest Processability in Baby Leaf Salad. Postharvest Biol. Technol. 2003, 30, 287–298. [Google Scholar] [CrossRef]
- Hernández, J.A. Salinity Tolerance in Plants: Trends and Perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef] [Green Version]
- Atzori, G.; Nissim, W.; Macchiavelli, T.; Vita, F.; Azzarello, E.; Pandolfi, C.; Masi, E.; Mancuso, S. Tetragonia Tetragonioides (Pallas) Kuntz. as Promising Salt-Tolerant Crop in a Saline Agricultural Context. Agric. Water Manag. 2020, 240, 106261. [Google Scholar] [CrossRef]
- Leal, L.Y.D.C.; de Souza, E.R.; Júnior, J.A.S.; Dos Santos, M.A. Comparison of Soil and Hydroponic Cultivation Systems for Spinach Irrigated with Brackish Water. Sci. Hortic. 2020, 274, 109616. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in Fruits and Vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as Eustressor for Enhancing Quality of Vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Takahama, M.; Nicola, S.; Suzuki, T.; Araki, H. Effect of Salinity Application on Yield and Quality in the Hydroponically Grown Baby-Leaf Vegetables. Acta Hortic. 2020, 1296, 851–859. [Google Scholar] [CrossRef]
- Yuan, J.F.; Tian, C.Y.; Feng, G. Effects of Sodium on Nitrate Uptake and Osmotic Adjustment of Suaeda physophora. J. Arid Land 2010, 2, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Chen, X. EFSA Tolerable Upper Intake Level on Vitamins and Minerals. Sci. Comm. Food 2006, 33, 480. [Google Scholar]
- European Food Safety Authority (EFSA). Nitrate in Vegetables—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 689. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Tolerable Upper Intake Level of Calcium. EFSA J. 2012, 10, 1–44. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Dietary Reference Values for Chloride. EFSA J. 2019, 17. [Google Scholar] [CrossRef]
Sowing | 17 February 2020 | ||
Transplant | 9 March 2020 | ||
Start of treatment | 23 March 2020 (14 DAT *) | ||
1st cut (C1) | 2nd cut (C2) | 3rd cut (C3) | |
Harvest date | 6 April 2020 | 20 April 2020 | 4 May 2020 |
Days of treatment | 14 (28 DAT) | 14 (42 DAT) | 14 (56 DAT) * |
Mean air temperature (°C) | 21.6 | 23.2 | 23.1 |
Mean daily solar radiation (MJ m−2 day−1) | 10.0 ** | 12.8 | 12.7 |
Cumulative solar radiation (MJ m−2) | 291.0 ** | 179.2 | 177.2 |
Treatment Abbreviation | ||||
---|---|---|---|---|
0IO-10N | 0IO-1N | 10IO-10N | 10IO-1N | |
Instant Ocean salt (IO; g L−1) | 0 | 0 | 10.00 | 10.00 |
N-NO3 (mM) | 10.00 | 1.00 | 10.00 | 1.00 |
P (mM) | 0.50 | 0.50 | 0.50 | 0.50 |
K (mM) | 9.00 | 9.00 | 9.00 | 9.00 |
Ca (mM) | 4.50 | 4.50 | 4.50 | 4.50 |
Mg (mM) | 2.00 | 2.00 | 17.48 | 12.98 |
Na (mM) | 8.58 | 8.58 | 110.80 | 110.80 |
S-SO4 (mM) | 1.28 | 5.78 | 11.21 | 11.21 |
Cl (mM) | 14.87 | 14.87 | 146.40 | 146.40 |
Fe (µM) | 40.00 | 40.00 | 40.00 | 40.00 |
B (µM) | 40.00 | 40.00 | 103.74 | 103.74 |
Cu (µM) | 3.00 | 3.00 | 145.73 | 145.73 |
Zn (µM) | 10.00 | 10.00 | 10.00 | 10.00 |
Mn (µM) | 10.00 | 10.00 | 10.00 | 10.00 |
Mo (µM) | 1.00 | 1.00 | 1.00 | 1.00 |
Electrical conductivity (dS m−1) | 3.10 | 3.06 | 14.52 | 14.82 |
pH | 5.60 | 5.60 | 5.60 | 5.60 |
Plant Species | IO (g L−1) | N-NO3 (mM) | Yield (kg FW m−2) | Leaf DW (kg m−2) | Root DW(kg m−2) | Total DW (kg m−2) | Root/Leaf (%) | Water Uptake (L m−2) |
---|---|---|---|---|---|---|---|---|
Swiss chard | 0 | 10 | 11.06 | 0.470 | 0.086 | 0.543 | 15.4 | 217.3 a |
1 | 7.64 | 0.424 | 0.093 | 0.531 | 25.2 | 208.5 ab | ||
10 | 10 | 7.35 | 0.448 | 0.050 | 0.499 | 11.4 | 156.3 cd | |
1 | 5.89 | 0.400 | 0.055 | 0.461 | 15.3 | 160.1 cd | ||
Sea beet | 0 | 10 | 13.11 | 0.768 | 0.101 | 0.851 | 10.8 | 178.7 bc |
1 | 9.36 | 0.632 | 0.045 | 0.668 | 5.8 | 161.4 cd | ||
10 | 10 | 8.63 | 0.639 | 0.065 | 0.691 | 8.0 | 135.3 d | |
1 | 7.05 | 0.547 | 0.044 | 0.579 | 5.9 | 131.5 d | ||
MEAN EFFECTS | ||||||||
Swiss chard | 7.99 b | 0.436 b | 0.072 | 0.508 b | 16.8 a | 185.5 a | ||
Sea beet | 9.54 a | 0.646 a | 0.064 | 0.697 a | 7.6 b | 151.7 b | ||
0 | 10.29 a | 0.573 | 0.082 a | 0.648 a | 14.3 a | 191.5 a | ||
10 | 7.23 b | 0.509 | 0.053 b | 0.557 b | 10.1 b | 145.8 b | ||
10 | 10.04 a | 0.581 a | 0.074 | 0.646 a | 11.4 | 171.9 | ||
1 | 7.49 b | 0.501 b | 0.062 | 0.560 b | 13.0 | 165.4 | ||
Swiss chard | 0 | 9.35 | 0.447 | 0.089 a | 0.537 | 20.3 a | 212.9 a | |
10 | 6.62 | 0.424 | 0.052 b | 0.480 | 13.3 ab | 158.2 b | ||
Sea beet | 0 | 11.24 | 0.700 | 0.073 ab | 0.759 | 8.3 bc | 170.1 b | |
10 | 7.84 | 0.593 | 0.054 b | 0.635 | 7.0 c | 133.4 c | ||
Swiss chard | 10 | 9.21 | 0.459 | 0.068 | 0.521 | 13.4 b | 186.8 | |
1 | 6.76 | 0.412 | 0.077 | 0.496 | 20.2 a | 184.3 | ||
Sea beet | 10 | 10.87 | 0.703 | 0.083 | 0.771 | 9.4 bc | 157.0 | |
1 | 8.21 | 0.589 | 0.044 | 0.623 | 5.8 c | 146.5 | ||
0 | 10 | 12.09 a | 0.619 | 0.092 | 0.697 | 13.1 | 198.0 | |
1 | 8.50 b | 0.528 | 0.072 | 0.599 | 15.5 | 185.0 | ||
10 | 10 | 7.99 bc | 0.544 | 0.056 | 0.595 | 9.7 | 145.8 | |
1 | 6.47 c | 0.474 | 0.049 | 0.520 | 10.6 | 145.8 | ||
ANOVA | ||||||||
Plant species (PS) | ** | *** | ns | *** | *** | * | ||
IO concentration | *** | ns | ** | * | ** | *** | ||
N-NO3 concentration | *** | * | ns | * | ns | ns | ||
PS × IO | ns | ns | ns | ns | * | *** | ||
PS × N-NO3 | ns | ns | * | ns | ** | ns | ||
IO × N-NO3 | * | ns | ns | ns | ns | ns | ||
PS × IO × N-NO3 | ns | ns | ns | ns | ns | ** |
Plant Species | IO | N-NO3 | N | P | K | Ca | Mg | Cl | Na |
---|---|---|---|---|---|---|---|---|---|
(g L−1) | (mM) | (g m−2) | |||||||
Swiss chard | 0 | 10 | 25.72 | 1.14 cd | 40.77 | 4.12 | 4.22 cd | 20.12 | 16.76 |
1 | 19.76 | 2.34 a | 33.92 | 3.79 | 4.84 c | 22.44 | 15.75 | ||
10 | 10 | 24.42 | 1.00 cd | 33.52 | 2.34 | 4.54 c | 24.43 | 25.17 | |
1 | 16.61 | 0.94 cd | 20.46 | 2.09 | 2.94 d | 27.08 | 26.24 | ||
Sea beet | 0 | 10 | 45.79 | 1.61 b | 77.66 | 6.60 | 9.05 a | 25.52 | 38.95 |
1 | 27.86 | 1.29 bc | 45.01 | 5.25 | 4.69 c | 21.38 | 46.18 | ||
10 | 10 | 38.78 | 1.06 cd | 49.09 | 3.70 | 7.16 b | 24.97 | 55.32 | |
1 | 25.32 | 0.83 d | 36.04 | 3.66 | 4.40 cd | 23.55 | 54.87 | ||
MEAN EFFECTS | |||||||||
Swiss chard | 21.6 b | 1.36 | 32.17 b | 3.09 b | 4.13 b | 23.52 | 20.98 b | ||
Sea beet | 34.4 a | 1.20 | 51.95 a | 4.80 a | 6.32 a | 23.86 | 48.83 a | ||
0 | 29.78 | 1.60 a | 49.34 a | 4.94 a | 5.70 a | 22.4 | 29.41 b | ||
10 | 26.28 | 0.96 b | 34.78 b | 2.95 b | 4.76 b | 25.0 | 40.40 a | ||
10 | 33.68 a | 1.20 | 50.26 a | 4.19 | 6.24 a | 23.8 | 34.05 | ||
1 | 22.39 b | 1.35 | 33.86 b | 3.70 | 4.22 b | 23.6 | 35.76 | ||
Swiss chard | 0 | 22.74 | 1.74 | 37.34 | 3.96 | 4.53 | 21.28 | 16.26 | |
10 | 20.52 | 0.97 | 26.99 | 2.21 | 3.74 | 25.75 | 25.71 | ||
Sea beet | 0 | 36.82 | 1.45 | 61.33 | 5.93 | 6.87 | 23.45 | 42.57 | |
10 | 32.05 | 0.95 | 42.57 | 3.68 | 5.78 | 24.26 | 55.09 | ||
Swiss chard | 10 | 25.1 | 1.07 b | 37.14 | 3.23 | 4.38 b | 22.27 | 20.97 | |
1 | 18.2 | 1.64 a | 27.19 | 2.94 | 3.89 b | 24.76 | 21.00 | ||
Sea beet | 10 | 42.3 | 1.33 ab | 63.37 | 5.15 | 8.10 a | 25.25 | 47.13 | |
1 | 26.6 | 1.06 b | 40.52 | 4.46 | 4.55 b | 22.47 | 50.53 | ||
0 | 10 | 35.76 | 1.38 ab | 59.21 | 5.36 | 6.64 | 22.82 | 27.86 | |
1 | 23.81 | 1.82 a | 39.46 | 4.52 | 4.76 | 21.91 | 30.97 | ||
10 | 10 | 31.60 | 1.03 b | 41.30 | 3.02 | 5.85 | 24.70 | 40.24 | |
1 | 20.96 | 0.89 b | 28.25 | 2.87 | 3.67 | 25.32 | 40.56 | ||
ANOVA | |||||||||
Plant species (PS) | *** | ns | *** | *** | *** | ns | *** | ||
IO concentration | ns | *** | ** | *** | * | ns | ** | ||
N-NO3 concentration | *** | ns | *** | ns | *** | ns | ns | ||
PS × IO | ns | ns | ns | ns | ns | ns | ns | ||
PS × N-NO3 | ns | ** | ns | ns | ** | ns | ns | ||
IO × N-NO3 | ns | ** | ns | ns | ns | ns | ns | ||
PS × IO × N-NO3 | ns | ** | ns | ns | * | ns | ns |
Cut | IO (g L−1) | N-NO3 (mM) | Leaf Production (kg m−2 FW) | Leaf DW/FW (%) | Leaf Area (m2 m−2) | Leaf Succulence (kg m−2) |
---|---|---|---|---|---|---|
1st cut | 0 | 10 | 4.87 | 3.88 | 13.71 | 0.374 |
1 | 3.32 | 4.79 | 8.48 | 0.446 | ||
10 | 10 | 4.08 | 5.43 | 9.56 | 0.456 | |
1 | 2.67 | 6.63 | 5.43 | 0.539 | ||
2nd cut | 0 | 10 | 2.96 | 4.32 | 10.41 | 0.240 |
1 | 1.77 | 6.23 | 9.59 | 0.185 | ||
10 | 10 | 1.27 | 6.31 | 7.10 | 0.199 | |
1 | 1.48 | 6.57 | 7.32 | 0.188 | ||
3rd cut | 0 | 10 | 3.23 | 4.80 | 15.27 | 0.223 |
1 | 2.55 | 6.06 | 9.39 | 0.277 | ||
10 | 10 | 2.00 | 7.28 | 10.21 | 0.202 | |
1 | 1.74 | 7.28 | 7.82 | 0.226 | ||
MEAN EFFECTS | ||||||
0 | 3.12 a | 5.01 b | 10.93 a | 0.291 | ||
10 | 2.21 b | 6.58 a | 7.98 b | 0.302 | ||
10 | 3.07 a | 5.34 b | 11.00 a | 0.282 | ||
1 | 2.25 b | 6.26 a | 8.06 b | 0.310 | ||
1st cut | 3.73 a | 5.18 c | 9.23 ab | 0.454 a | ||
2nd cut | 1.87 b | 5.86 b | 8.58 b | 0.203 b | ||
3rd cut | 2.38 b | 6.35 a | 10.44 a | 0.232 b | ||
0 | 10 | 3.69 a | 4.33 | 13.13 | 0.279 | |
1 | 2.55 ab | 5.70 | 9.13 | 0.302 | ||
10 | 10 | 2.45 b | 6.34 | 9.08 | 0.286 | |
1 | 1.96 b | 6.83 | 6.99 | 0.317 | ||
1st cut | 0 | 4.09 | 4.34 | 10.72 | 0.410 | |
10 | 3.37 | 6.03 | 7.49 | 0.498 | ||
2nd cut | 0 | 2.37 | 5.28 | 9.94 | 0.212 | |
10 | 1.38 | 6.44 | 7.22 | 0.194 | ||
3rd cut | 0 | 2.89 | 5.43 | 12.33 | 0.250 | |
10 | 1.87 | 7.28 | 9.02 | 0.214 | ||
1st cut | 10 | 4.47 a | 4.65 | 11.63 a | 0.415 | |
1 | 2.99 b | 5.71 | 7.17 c | 0.492 | ||
2nd cut | 10 | 2.12 bc | 5.32 | 8.76 abc | 0.220 | |
1 | 1.63 c | 6.40 | 8.46 bc | 0.186 | ||
3rd cut | 10 | 2.62 bc | 6.04 | 12.38 a | 0.212 | |
1 | 2.14 bc | 6.67 | 8.49 bc | 0.251 | ||
ANOVA | ||||||
IO concentration | *** | *** | *** | ns | ||
N-NO3 concentration | *** | *** | *** | ns | ||
Cut | *** | ** | * | *** | ||
IO × N-NO3 | * | ns | ns | ns | ||
IO × Cut | ns | ns | ns | ns | ||
N-NO3 × Cut | * | ns | ** | ns | ||
IO × N-NO3 × Cut | ns | ns | ns | ns |
Cut | IO (g L−1) | N-NO3 (mM) | N | P | K | Ca | Mg | Cl | Na | K/Na |
---|---|---|---|---|---|---|---|---|---|---|
(g kg−1 DW) | ||||||||||
1st cut | 0 | 10 | 48.7 | 1.7 | 80.5 | 7.1 b | 6.4 | 31.6 | 26.8 | 1.76 |
1 | 39.6 | 1.2 | 70.5 | 8.0 a | 5.2 | 34.6 | 26.7 | 1.57 | ||
10 | 10 | 49.6 | 1.7 | 83.7 | 4.5 de | 7.1 | 43.3 | 44.3 | 1.10 | |
1 | 31.7 | 1.5 | 42.8 | 4.1 e | 3.5 | 44.5 | 31.0 | 0.82 | ||
2nd cut | 0 | 10 | 51.2 | 1.3 | 91.2 | 7.7 ab | 9.0 | 34.1 | 34.3 | 1.60 |
1 | 39.3 | 1.1 | 70.0 | 7.2 ab | 6.1 | 37.7 | 32.8 | 1.28 | ||
10 | 10 | 55.4 | 2.0 | 84.5 | 5.4 c | 12.4 | 39.6 | 56.3 | 0.88 | |
1 | 44.2 | 1.5 | 46.3 | 4.9 cd | 8.1 | 48.3 | 80.6 | 0.33 | ||
3rd cut | 0 | 10 | 47.7 | 0.9 | 72.9 | 7.9 a | 9.2 | 35.5 | 41.1 | 1.05 |
1 | 42.9 | 1.3 | 68.1 | 7.3 ab | 6.2 | 40.1 | 44.4 | 0.90 | ||
10 | 10 | 47.3 | 0.9 | 44.2 | 4.4 de | 9.8 | 43.9 | 63.3 | 0.42 | |
1 | 39.9 | 1.0 | 44.5 | 4.5 de | 6.8 | 58.6 | 78.8 | 0.33 | ||
MEAN EFFECTS | ||||||||||
0 | 44.9 | 1.2 | 75.5 a | 7.5 a | 7.0 b | 35.6 b | 34.3 b | 1.36 a | ||
10 | 44.7 | 1.4 | 57.7 b | 4.7 b | 8.0 a | 46.4 a | 59.0 a | 0.65 b | ||
10 | 50.0 a | 1.4 | 76.2 a | 6.2 | 9.0 a | 38.0 b | 44.3 | 1.14 a | ||
1 | 39.6 b | 1.3 | 57.1 b | 6.0 | 6.0 b | 44.0 a | 49.0 | 0.87 b | ||
1st cut | 42.4 c | 1.5 a | 69.4 ab | 5.9 | 5.6 b | 38.5 b | 32.2 b | 1.31 a | ||
2nd cut | 47.5 a | 1.5 a | 73.0 a | 6.3 | 8.9 a | 39.9 ab | 51.0 a | 1.02 ab | ||
3rd cut | 44.4 b | 1.0 b | 57.4 b | 6.0 | 8.0 a | 44.5 a | 56.9 a | 0.68 b | ||
0 | 10 | 49.2 a | 1.3 | 81.6 | 7.5 | 8.2 | 33.7 c | 40.8 | 1.47 | |
1 | 40.6 b | 1.2 | 69.5 | 7.5 | 5.8 | 37.5 bc | 39.4 | 1.25 | ||
10 | 10 | 50.8 a | 1.5 | 70.8 | 4.8 | 9.8 | 42.3 b | 42.3 | 0.80 | |
1 | 38.6 c | 1.3 | 44.6 | 4.5 | 6.2 | 50.5 a | 37.5 | 0.50 | ||
1st cut | 0 | 44.2 b | 1.5 | 75.5 | 7.5 a | 5.8 c | 33.1 | 26.7 b | 1.67 | |
10 | 40.6 c | 1.6 | 63.3 | 4.3 c | 5.3 c | 43.9 | 37.6 b | 0.96 | ||
2nd cut | 0 | 45.2 b | 1.2 | 80.6 | 7.4 a | 7.5 b | 35.9 | 33.5 b | 1.44 | |
10 | 49.8 a | 1.7 | 65.4 | 5.2 b | 10.3 a | 43.9 | 68.4 a | 0.61 | ||
3rd cut | 0 | 45.3 b | 1.1 | 70.5 | 7.6 a | 7.7 b | 37.8 | 42.8 b | 0.98 | |
10 | 43.6 b | 1.0 | 44.4 | 4.5 bc | 8.3b | 51.2 | 71.1 a | 0.38 | ||
1st cut | 10 | 49.1 b | 1.7 a | 82.1 | 5.8 | 6.8 | 37.4b | 35.5 | 1.43 | |
1 | 35.6 d | 1.4 ab | 56.7 | 6.1 | 4.4 | 39.5 ab | 28.8 | 1.19 | ||
2nd cut | 10 | 53.3 a | 1.6 a | 87.9 | 6.5 | 10.7 | 36.8 b | 45.3 | 1.24 | |
1 | 41.7 c | 1.3 abc | 58.2 | 6.1 | 7.1 | 43.0 ab | 56.7 | 0.81 | ||
3rd cut | 10 | 47.5 b | 0.9 c | 58.5 | 6.1 | 9.5 | 39.7 ab | 52.2 | 0.73 | |
1 | 41.4 c | 1.1 bc | 56.3 | 5.9 | 6.5 | 49.4 a | 61.6 | 0.62 | ||
ANOVA | ||||||||||
IO concentration | ns | ns | ** | *** | ** | *** | *** | *** | ||
N-NO3 concentration | *** | ns | ** | ns | *** | *** | ns | ** | ||
Cut | *** | *** | * | ns | *** | *** | *** | *** | ||
IO × N-NO3 | *** | ns | ns | ns | * | * | ns | ns | ||
IO × Cut | *** | ns | ns | * | *** | ns | * | ns | ||
N-NO3 × Cut | *** | * | ns | ns | ns | * | ns | ns | ||
IO × N-NO3 × Cut | *** | ns | ns | * | ns | ns | ns | ns |
Cut | IO (g L−1) | N-NO3 (mM) | Cu | Mn | Fe | Zn |
---|---|---|---|---|---|---|
(mg kg−1 DW) | ||||||
1st cut | 0 | 10 | 13.0 cd | 137.0 | 157.0 | 67.0 |
1 | 15.0 bcd | 202.0 | 161.0 | 79.0 | ||
10 | 10 | 13.0 cd | 106.0 | 138.0 | 65.0 | |
1 | 11.0 d | 82.0 | 136.0 | 52.0 | ||
2nd cut | 0 | 10 | 22.0 ab | 151.0 | 317.0 | 82.0 |
1 | 22.0 ab | 274.0 | 376.0 | 97.0 | ||
10 | 10 | 20.0 abc | 126.0 | 244.0 | 98.0 | |
1 | 14.0 cd | 111.0 | 302.0 | 87.0 | ||
3rd cut | 0 | 10 | 23.0 a | 156.0 | 269.0 | 88.0 |
1 | 22.0 ab | 256.0 | 231.0 | 108.0 | ||
10 | 10 | 18.0 abcd | 92.0 | 198.0 | 93.0 | |
1 | 22.0 ab | 106.0 | 142.0 | 80.0 | ||
MEAN EFFECTS | ||||||
0 | 19.5 a | 196.0 a | 251.8 | 86.8 | ||
10 | 16.3 b | 103.8 b | 193.3 | 79.2 | ||
10 | 18.2 | 128.0 b | 220.5 | 82.2 | ||
1 | 17.7 | 171.8 a | 224.7 | 83.8 | ||
1st cut | 13.0 b | 131.8 b | 148.0 | 65.8 b | ||
2nd cut | 19.5 a | 165.5 a | 309.8 | 91.0 a | ||
3rd cut | 21.3 a | 152.5 a | 210.0 | 92.3 a | ||
0 | 10 | 19.3 | 148.0 | 247.7 | 79.0 | |
1 | 19.7 | 244.0 | 256.0 | 94.7 | ||
10 | 10 | 17.0 | 108.0 | 193.3 | 85.3 | |
1 | 15.7 | 99.7 | 193.3 | 73.0 | ||
1st cut | 0 | 14.0 | 169.5 | 159.0 | 73.0 | |
10 | 12.0 | 94.0 | 137.0 | 58.5 | ||
2nd cut | 0 | 22.0 | 212.5 | 346.5 | 89.5 | |
10 | 17.0 | 118.5 | 273.0 | 92.5 | ||
3rd cut | 0 | 22.5 | 206.0 | 250.0 | 98.0 | |
10 | 20.0 | 99.0 | 170.0 | 86.5 | ||
1st cut | 10 | 13.0 | 121.5 b | 147.5 | 66.0 | |
1 | 13.0 | 142.0 b | 148.5 | 65.5 | ||
2nd cut | 10 | 21.0 | 138.5 b | 280.5 | 90.0 | |
1 | 18.0 | 192.5 a | 339.0 | 92.0 | ||
3rd cut | 10 | 20.5 | 124.0 b | 233.5 | 90.5 | |
1 | 22.0 | 181.0 a | 186.5 | 94.0 | ||
ANOVA | ||||||
IO concentration | ** | *** | ns | ns | ||
N-NO3 concentration | ns | *** | ns | ns | ||
Cut | *** | *** | ns | *** | ||
IO × N-NO3 | ns | *** | ns | ns | ||
IO × Cut | ns | ns | ns | ns | ||
N-NO3 × Cut | ns | * | ns | ns | ||
IO × N-NO3 × Cut | * | ns | ns | ns |
Cut | IO (g L−1) | N-NO3 (mM) | Leaf Production (kg m−2 FW) | Leaf DW/FW (%) | Leaf Area (m2 m−2) | Leaf Succulence (kg m−2) |
---|---|---|---|---|---|---|
1st cut | 0 | 10 | 6.32 | 5.43 | 14.84 a | 0.433 abc |
1 | 3.98 | 6.73 | 11.53 bc | 0.341 abc | ||
10 | 10 | 5.18 | 6.74 | 12.95 ab | 0.490 ab | |
1 | 3.69 | 7.49 | 7.20 ef | 0.535 a | ||
2nd cut | 0 | 10 | 2.98 | 5.51 | 10.57 cd | 0.297 bc |
1 | 2.37 | 6.09 | 9.92 cd | 0.233 c | ||
10 | 10 | 1.38 | 7.14 | 6.23 f | 0.247 c | |
1 | 1.47 | 7.07 | 3.44 g | 0.410 abc | ||
3rd cut | 0 | 10 | 3.81 | 6.84 | 11.41 bc | 0.297 bc |
1 | 3.02 | 7.29 | 9.01 de | 0.334 abc | ||
10 | 10 | 2.06 | 9.23 | 5.10 fg | 0.382 abc | |
1 | 1.89 | 8.73 | 9.18 de | 0.240 c | ||
MEAN EFFECTS | ||||||
0 | 3.84 a | 6.32 b | 11.25 a | 0.328 b | ||
10 | 2.61 b | 7.73 a | 7.35 b | 0.384 a | ||
10 | 3.62 a | 6.81 b | 10.18 a | 0.358 | ||
1 | 2.74 b | 7.23 a | 8.38 b | 0.349 | ||
1st cut | 4.79 a | 6.60 b | 11.63 a | 0.450 a | ||
2nd cut | 2.05 b | 6.45 b | 7.54 b | 0.297 b | ||
3rd cut | 2.70 b | 8.02 a | 8.67 b | 0.313 b | ||
0 | 10 | 4.37 a | 5.93 b | 12.27 | 0.342 | |
1 | 3.12 ab | 6.70 ab | 10.15 | 0.303 | ||
10 | 10 | 2.88 ab | 7.70 a | 8.09 | 0.373 | |
1 | 2.35 b | 7.76 a | 6.61 | 0.395 | ||
1st cut | 0 | 5.15 | 6.08 | 13.18 a | 0.387 | |
10 | 4.44 | 7.12 | 10.07 b | 0.513 | ||
2nd cut | 0 | 2.67 | 5.80 | 10.24 b | 0.265 | |
10 | 1.43 | 7.11 | 4.84 d | 0.329 | ||
3rd cut | 0 | 3.42 | 7.06 | 10.21 b | 0.316 | |
10 | 1.98 | 8.98 | 7.14 c | 0.311 | ||
1st cut | 10 | 5.75 a | 6.09 b | 13.89 a | 0.462 | |
1 | 3.83 b | 7.11 ab | 9.37 b | 0.438 | ||
2nd cut | 10 | 2.18 c | 6.32 b | 8.40 b | 0.272 | |
1 | 1.92 c | 6.58 ab | 6.68 b | 0.321 | ||
3rd cut | 10 | 2.94 bc | 8.03 a | 8.25 b | 0.340 | |
1 | 2.46 c | 8.01 a | 9.09 b | 0.287 | ||
ANOVA | ||||||
IO concentration | *** | *** | *** | * | ||
N-NO3 concentration | *** | * | *** | ns | ||
Cut | *** | *** | *** | *** | ||
IO × N-NO3 | * | * | ns | ns | ||
IO × Cut | ns | ns | * | ns | ||
N-NO3 × Cut | ** | * | *** | ns | ||
IO × N-NO3 × Cut | ns | ns | ** | ** |
Cut | IO (g L−1) | N-NO3 (mM) | N | P | K | Ca | Mg | Cl | Na | K/Na |
---|---|---|---|---|---|---|---|---|---|---|
(g kg−1 DW) | ||||||||||
1st cut | 0 | 10 | 55.3 | 1.1 | 120.2 a | 8.9 | 7.6 | 27.1 | 47.9 | 1.47 a |
1 | 36.8 | 1.1 | 60.1 c | 8.9 | 5.5 | 32.0 | 74.5 | 0.48 ef | ||
10 | 10 | 58.8 | 1.0 | 75.0 bc | 5.5 | 8.7 | 29.9 | 78.5 | 0.56 de | |
1 | 36.9 | 1.0 | 62.4 c | 7.2 | 6.1 | 34.3 | 97.6 | 0.38 ef | ||
2nd cut | 0 | 10 | 61.3 | 1.5 | 93.0 b | 8.7 | 11.4 | 24.8 | 46.3 | 1.17 b |
1 | 47.9 | 1.4 | 70.4 bc | 7.4 | 7.4 | 24.5 | 77.6 | 0.53 def | ||
10 | 10 | 59.6 | 1.3 | 64.0 c | 5.2 | 11.0 | 30.5 | 88.1 | 0.44 ef | |
1 | 49.6 | 1.3 | 56.8 c | 5.5 | 8.7 | 37.3 | 91.5 | 0.37 f | ||
3rd cut | 0 | 10 | 51.8 | 1.5 | 67.7 bc | 6.0 | 8.4 | 29.9 | 52.4 | 0.75 c |
1 | 46.9 | 1.5 | 77.4 bc | 6.7 | 6.8 | 31.1 | 66.1 | 0.69 cd | ||
10 | 10 | 53.8 | 1.3 | 75.4 bc | 4.8 | 9.5 | 35.3 | 93.9 | 0.47 ef | |
1 | 54.2 | 1.6 | 67.3 bc | 5.3 | 7.7 | 41.3 | 99.2 | 0.40 ef | ||
MEAN EFFECTS | ||||||||||
0 | 50.0 b | 1.3 | 81.9 a | 7.8 a | 7.9 | 28.5 b | 58.9 b | 0.85 a | ||
10 | 52.1 a | 1.2 | 66.8 b | 5.6 b | 8.6 | 34.8 a | 91.5 a | 0.44 b | ||
10 | 56.8 a | 1.3 | 82.6 a | 6.5 | 9.4 a | 29.6 b | 67.9 b | 0.81 a | ||
1 | 45.4 b | 1.3 | 65.7 b | 6.8 | 7.0 b | 33.4 a | 84.4 a | 0.47 b | ||
1st cut | 46.9 c | 1.0 b | 79.4 | 7.6 a | 7.0 b | 30.8 | 74.6 | 0.72 | ||
2nd cut | 54.6 a | 1.4 ab | 71.1 | 6.7 ab | 9.6 a | 29.3 | 75.9 | 0.63 | ||
3rd cut | 51.6 b | 1.5 a | 72.0 | 5.7 b | 8.1 b | 34.4 | 77.9 | 0.58 | ||
0 | 10 | 56.1 | 1.4 | 93.6 | 7.9 | 9.2 | 27.3 | 48.9 d | 1.13 a | |
1 | 43.8 | 1.3 | 69.3 | 7.7 | 6.5 | 29.2 | 72.7 c | 0.57 b | ||
10 | 10 | 57.4 | 1.2 | 71.5 | 5.2 | 9.7 | 31.9 | 86.8 b | 0.49 b | |
1 | 46.9 | 1.3 | 62.2 | 6.0 | 7.5 | 37.6 | 96.1 a | 0.38 b | ||
1st cut | 0 | 46.0 | 1.1 | 90.2 | 8.9 | 6.5 | 29.6 | 61.2 | 0.98 | |
10 | 47.8 | 1.0 | 68.7 | 6.4 | 7.4 | 32.1 | 88.1 | 0.47 | ||
2nd cut | 0 | 54.6 | 1.5 | 81.7 | 8.1 | 9.4 | 24.7 | 62.0 | 0.85 | |
10 | 54.6 | 1.3 | 60.4 | 5.3 | 9.8 | 33.9 | 89.8 | 0.40 | ||
3rd cut | 0 | 49.3 | 1.5 | 72.6 | 6.4 | 7.6 | 30.5 | 59.3 | 0.72 | |
10 | 54.0 | 1.5 | 71.4 | 5.1 | 8.6 | 38.3 | 96.6 | 0.44 | ||
1st cut | 10 | 57.0 ab | 1.1 | 97.6 a | 7.2 | 8.1 | 28.5 | 63.2 | 1.02 | |
1 | 36.8 d | 1.0 | 61.3 b | 8.0 | 5.8 | 33.2 | 86.1 | 0.43 | ||
2nd cut | 10 | 60.5 a | 1.4 | 78.5 ab | 6.9 | 11.2 | 27.7 | 67.2 | 0.80 | |
1 | 48.7 c | 1.3 | 63.6 b | 6.4 | 8.0 | 30.9 | 84.6 | 0.45 | ||
3rd cut | 10 | 52.8 bc | 1.4 | 71.6 ab | 5.4 | 9.0 | 32.6 | 73.2 | 0.61 | |
1 | 50.5 c | 1.5 | 72.4 ab | 6.0 | 7.3 | 36.2 | 82.7 | 0.54 | ||
ANOVA | ||||||||||
IO concentration | * | ns | ** | *** | ns | ** | *** | ** | ||
N-NO3 concentration | *** | ns | ** | ns | *** | * | *** | * | ||
Cut | *** | ** | ns | * | *** | ns | ns | ns | ||
IO × N-NO3 | ns | ns | ns | ns | ns | ns | * | *** | ||
IO × Cut | ns | ns | ns | ns | ns | ns | ns | ns | ||
N-NO3 × Cut | *** | ns | * | ns | ns | ns | ns | ns | ||
IO × N-NO3 × Cut | ns | ns | * | ns | ns | ns | ns | *** |
Cut | IO (g L−1) | N-NO3 (mM) | Cu | Mn | Fe | Zn |
---|---|---|---|---|---|---|
(mg kg−1 DW) | ||||||
1st cut | 0 | 10 | 24.0 | 215.0 | 199.0 | 96.0 |
1 | 19.0 | 149.0 | 174.0 | 66.0 | ||
10 | 10 | 18.0 | 205.0 | 198.0 | 99.0 | |
1 | 21.0 | 270.0 | 269.0 | 92.0 | ||
2nd cut | 0 | 10 | 20.0 | 196.0 | 253.0 | 71.0 |
1 | 15.0 | 139.0 | 260.0 | 71.0 | ||
10 | 10 | 16.0 | 185.0 | 213.0 | 96.0 | |
1 | 12.0 | 179.0 | 133.0 | 79.0 | ||
3rd cut | 0 | 10 | 11.0 | 159.0 | 116.0 | 87.0 |
1 | 7.0 | 119.0 | 177.0 | 60.0 | ||
10 | 10 | 16.0 | 205.0 | 298.0 | 60.0 | |
1 | 24.0 | 215.0 | 199.0 | 96.0 | ||
MEAN EFFECTS | ||||||
0 | 18.5 a | 207.8 a | 189.6 | 82.4 | ||
10 | 15.2 b | 167.0 b | 220.0 | 75.3 | ||
10 | 16.0 | 177.2 | 204.8 | 72.8 b | ||
1 | 17.5 | 194.2 | 212.8 | 84.8 a | ||
1st cut | 20.8 a | 194.0 | 196.8 | 82.5 | ||
2nd cut | 18.0 a | 197.5 | 248.8 | 82.5 | ||
3rd cut | 11.5 b | 165.5 | 181.0 | 71.5 | ||
0 | 10 | 18.3 | 218.7 a | 206.0 | 80.0 | |
1 | 18.3 | 190.0 a | 189.3 | 84.7 | ||
10 | 10 | 13.7 | 135.7 b | 203.7 | 65.7 | |
1 | 16.7 | 198.3 a | 236.3 | 85.0 | ||
1st cut | 0 | 23.0 | 211.0 | 207.5 | 82.5 | |
10 | 18.5 | 177.0 | 186.0 | 82.5 | ||
2nd cut | 0 | 20.5 | 233.0 | 261.0 | 81.5 | |
10 | 15.5 | 162.0 | 236.5 | 83.5 | ||
3rd cut | 0 | 11.5 | 169.0 | 124.5 | 83.0 | |
10 | 11.5 | 162.0 | 237.5 | 60.0 | ||
1st cut | 10 | 20.5 | 178.0 | 195.0 | 67.5 | |
1 | 21.0 | 210.0 | 198.5 | 97.5 | ||
2nd cut | 10 | 18.0 | 204.5 | 264.5 | 81.5 | |
1 | 18.0 | 190.5 | 233.0 | 83.5 | ||
3rd cut | 10 | 9.5 | 149.0 | 155.0 | 69.5 | |
1 | 13.5 | 182.0 | 207.0 | 73.5 | ||
ANOVA | ||||||
IO concentration | * | * | ns | ns | ||
N-NO3 concentration | ns | ns | ns | * | ||
Cut | *** | ns | ns | ns | ||
IO × N-NO3 | ns | * | ns | ns | ||
IO × Cut | ns | ns | ns | ns | ||
N-NO3 × Cut | ns | ns | ns | ns | ||
IO × N-NO3 × Cut | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puccinelli, M.; Carmassi, G.; Botrini, L.; Bindi, A.; Rossi, L.; Fierro-Sañudo, J.F.; Pardossi, A.; Incrocci, L. Growth and Mineral Relations of Beta vulgaris var. cicla and Beta vulgaris ssp. maritima Cultivated Hydroponically with Diluted Seawater and Low Nitrogen Level in the Nutrient Solution. Horticulturae 2022, 8, 638. https://doi.org/10.3390/horticulturae8070638
Puccinelli M, Carmassi G, Botrini L, Bindi A, Rossi L, Fierro-Sañudo JF, Pardossi A, Incrocci L. Growth and Mineral Relations of Beta vulgaris var. cicla and Beta vulgaris ssp. maritima Cultivated Hydroponically with Diluted Seawater and Low Nitrogen Level in the Nutrient Solution. Horticulturae. 2022; 8(7):638. https://doi.org/10.3390/horticulturae8070638
Chicago/Turabian StylePuccinelli, Martina, Giulia Carmassi, Luca Botrini, Antonio Bindi, Lorenzo Rossi, Juan Francisco Fierro-Sañudo, Alberto Pardossi, and Luca Incrocci. 2022. "Growth and Mineral Relations of Beta vulgaris var. cicla and Beta vulgaris ssp. maritima Cultivated Hydroponically with Diluted Seawater and Low Nitrogen Level in the Nutrient Solution" Horticulturae 8, no. 7: 638. https://doi.org/10.3390/horticulturae8070638
APA StylePuccinelli, M., Carmassi, G., Botrini, L., Bindi, A., Rossi, L., Fierro-Sañudo, J. F., Pardossi, A., & Incrocci, L. (2022). Growth and Mineral Relations of Beta vulgaris var. cicla and Beta vulgaris ssp. maritima Cultivated Hydroponically with Diluted Seawater and Low Nitrogen Level in the Nutrient Solution. Horticulturae, 8(7), 638. https://doi.org/10.3390/horticulturae8070638