Nutritional Composition and Volatile Compounds of Black Cumin (Nigella sativa L.) Seed, Fatty Acid Composition and Tocopherols, Polyphenols, and Antioxidant Activity of Its Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Proximate Analysis
2.1.2. Mineral and Amino Acid Analysis
2.1.3. Determination of Volatile Compound
2.1.4. Fatty Acids (FA) Composition
2.1.5. Determination of the Triacylglycerol Profile Using UPLC-Q-TOF-MS
2.1.6. Tocopherols and Total Phenolic Content of Black Seed Oil
2.1.7. DPPH Radical Scavenging Ability
2.1.8. Fourier Transform Infrared (FT-IR) Spectroscopy
2.1.9. Statistical Analysis
3. Results
3.1. Proximate Composition of Black Seed Powder
3.2. Amino Acid Composition
3.3. Volatile Organic Compounds
3.4. Fatty Acid and Triacylglycerol (TAG) Composition
3.5. Tocopherol, Polyphenols, and Antioxidant Activity
3.6. Infrared Spectral Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ramadan, M.F. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): An overview. Int. J. Food Sci. Technol. 2007, 42, 1208–1218. [Google Scholar] [CrossRef]
- Khoddami, A.; Ghazali, H.M.; Yassoralipour, A.; Ramakrishnan, Y.; Ganjloo, A. Physicochemical characteristics of nigella seed (Nigella sativa L.) oil as affected by different extraction methods. J. Am. Oil Chem. Soc. 2011, 88, 533–540. [Google Scholar] [CrossRef]
- Kiralan, M.; Özkan, G.; Bayrak, A.; Ramadan, M.F. Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Ind. Crops Prod. 2014, 57, 52–58. [Google Scholar] [CrossRef]
- Mamun, M.; Absar, N. Major nutritional compositions of black cumin seeds–cultivated in Bangladesh and the physicochemical characteristics of its oil. Int. Food Res. J. 2018, 25, 2634–2639. [Google Scholar]
- Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 2003, 7, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- Trigui, I.; Yaich, H.; Zouari, A.; Cheikh-Rouhou, S.; Blecker, C.; Attia, H.; Ayadi, M. Structure-function relationship of black cumin seeds protein isolates: Amino-acid profiling, surface characteristics, and thermal properties. Food Struct. 2021, 29, 100203. [Google Scholar] [CrossRef]
- Kabir, Y.; Akasaka-Hashimoto, Y.; Kubota, K.; Komai, M. Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon 2020, 6, e05343. [Google Scholar] [CrossRef]
- Liu, X.; Park, J.H.; Abd El-Aty, A.; Assayed, M.; Shimoda, M.; Shim, J.H. Isolation of volatiles from Nigella sativa seeds using microwave—Assisted extraction: Effect of whole extracts on canine and murine CYP1A. Biomed. Chromatogr. 2013, 27, 938–945. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Gaithersburg, MA, USA, 2005. [Google Scholar]
- Karrar, E.; Sheth, S.; Wei, W.; Wang, X. Gurum (Citrullus lanatus var. Colocynthoide) seed: Lipid, amino acid, mineral, proximate, volatile compound, sugar, vitamin composition and functional properties. J. Food Meas. Charact. 2019, 13, 2357–2366. [Google Scholar] [CrossRef]
- Jarrett, H.W.; Cooksy, K.D.; Ellis, B.; Anderson, J.M. The separation of o-phthalaldehyde derivatives of amino acids by reversed-phase chromatography on octylsilica columns. Anal. Biochem. 1986, 153, 189–198. [Google Scholar] [CrossRef]
- Karrar, E.; Sheth, S.; Wei, W.; Wang, X. Supercritical CO2 extraction of gurum (Citrulluslanatus var. Colocynthoide) seed oil and its properties comparison with conventional methods. J. Food Process Eng. 2019, 42, e13129. [Google Scholar] [CrossRef]
- Ali, A.H.; El-Wahed, E.M.A.; Abed, S.M.; Korma, S.A.; Wei, W.; Wang, X. Analysis of triacylglycerols molecular species composition, total fatty acids, and sn-2 fatty acids positional distribution in different types of milk powders. J. Food Meas. Charact. 2019, 13, 2613–2625. [Google Scholar] [CrossRef]
- Karrar, E.; Mahdi, A.A.; Sheth, S.; Ahmed, I.A.M.; Manzoor, M.F.; Wei, W.; Wang, X. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. Int. J. Biol. Macromol. 2021, 171, 208–216. [Google Scholar] [CrossRef]
- Morsi, N.M. Antimicrobial effect of crude extracts of Nigella sativa on multiple antibiotics-resistant bacteria. Acta Microbiol. Pol. 2000, 49, 63–74. [Google Scholar]
- Atta, M.B. Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chem. 2003, 83, 63–68. [Google Scholar] [CrossRef]
- Navarro, S.L.; Capellini, M.C.; Aracava, K.K.; Rodrigues, C.E.C. Corn germ-bran oils extracted with alcoholic solvents: Extraction yield, oil composition and evaluation of protein solubility of defatted meal. Food Bioprod. Processing 2016, 100, 185–194. [Google Scholar] [CrossRef]
- Teng, W.; Zhang, B.; Zhang, Q.; Li, W.; Wu, D.; Yang, H.; Zhao, X.; Han, Y.; Li, W. Identification of quantitative trait loci underlying seed oil content of soybean including main, epistatic and QTL× environment effects in different regions of Northeast China. Crop Pasture Sci. 2017, 68, 625–631. [Google Scholar] [CrossRef]
- Herlina; Aziz, S.A.; Kurniawati, A.; Faridah, D.N. Changes of Thymoquinone, Thymol, and Malondialdehyde Content of Black Cumin (Nigella sativa L.) in Response to Indonesia Tropical Altitude Variation. HAYATI J. Biosci. 2017, 24, 156–161. [Google Scholar] [CrossRef]
- Aboshora, W.; Lianfu, Z.; Dahir, M.; Gasmalla, M.A.A.; Musa, A.; Omer, E.; Thapa, M. Physicochemical, nutritional and functional properties of the epicarp, flesh and pitted sample of doum fruit (Hyphaene Thebaica). J. Food Nutr. Res. 2014, 2, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Al-Jassir, M.S. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chem. 1992, 45, 239–242. [Google Scholar] [CrossRef]
- Rchid, H.; Nmila, R.; Bessière, J.M.; Sauvaire, Y.; Chokaïri, M. Volatile components of Nigella damascena L. and Nigella sativa L. seeds. J. Essent. Oil Res. 2004, 16, 585–587. [Google Scholar] [CrossRef]
- Wajs, A.; Bonikowski, R.; Kalemba, D. Composition of essential oil from seeds of Nigella sativa L. cultivated in Poland. Flavour Fragr. J. 2008, 23, 126–132. [Google Scholar] [CrossRef]
- Hamrouni-Sellami, I.; Kchouk, M.E.; Marzouk, B. Lipid and aroma composition of black cumin (Nigella sativa L.) seeds from Tunisia. J. Food Biochem. 2008, 32, 335–352. [Google Scholar] [CrossRef]
- Goyal, S.N.; Prajapati, C.P.; Gore, P.R.; Patil, C.; Mahajan, U.; Sharma, C.; Talla, S.P.; Ojha, S.K. Therapeutic potential and pharmaceutical development of thymoquinone: A multitargeted molecule of natural origin. Front. Pharmacol. 2017, 8, 656. [Google Scholar] [CrossRef]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Alam Khan, S.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Oz, E. Inhibitory effects of black cumin on the formation of heterocyclic aromatic amines in meatball. PLoS ONE 2019, 14, e0221680. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Zhang, L.; Li, P.; Yu, L.; Mao, J.; Wang, X.; Zhang, Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci. Technol. 2018, 74, 26–32. [Google Scholar] [CrossRef]
- Bayati, P.; Karimmojeni, H.; Razmjoo, J. Changes in essential oil yield and fatty acid contents in black cumin (Nigella sativa L.) genotypes in response to drought stress. Ind. Crops Prod. 2020, 155, 112764. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Rezadoost, H.; Nadjafi, F.; Asareh, M.H. Comparative essential oil composition and fatty acid profiling of some Iranian black cumin landraces. Ind. Crops Prod. 2019, 140, 111628. [Google Scholar] [CrossRef]
- Beyzi, E.; Gunes, A.; Beyzi, S.B.; Konca, Y. Changes in fatty acid and mineral composition of rapeseed (Brassica napus ssp. oleifera L.) oil with seed sizes. Ind. Crops Prod. 2019, 129, 10–14. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Q.; Zhang, Q.; Zhang, C.; Liu, D.; Fan, D.; Yang, H. Comparative study on composition, physicochemical and antioxidant characteristics of different varieties of kiwifruit seed oil in China. Food Chem. 2018, 264, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Cicero, N.; Albergamo, A.; Salvo, A.; Bua, G.D.; Bartolomeo, G.; Mangano, V.; Rotondo, A.; Di Stefano, V.; Di Bella, G.; Dugo, G. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Res. Int. 2018, 109, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Romano, R.; Filosa, G.; Pizzolongo, F.; Durazzo, A.; Lucarini, M.; Severino, P.; Souto, E.B.; Santini, A. Oxidative stability of high oleic sunflower oil during deep-frying process of purple potato Purple Majesty. Heliyon 2021, 7, e06294. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Doh, H.-J.; Choi, M.-K.; Chung, S.-J.; Shim, C.-K.; Kim, D.-D.; Kim, J.S.; Yong, C.-S.; Choi, H.-G. Skin permeation enhancement of diclofenac by fatty acids. Drug Deliv. 2008, 15, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Karrar, E.; Sheth, S.; Navicha, W.B.; Wei, W.; Hassanin, H.; Abdalla, M.; Wang, X. A potential new source: Nutritional and antioxidant properties of edible oils from cucurbit seeds and their impact on human health. J. Food Biochem. 2018, 43, e12733. [Google Scholar] [CrossRef]
- Nergiz, C.; Ötleş, S. Chemical composition of Nigella sativa L. seeds. Food Chem. 1993, 48, 259–261. [Google Scholar] [CrossRef]
- Salvador, M.; Aranda, F.; Gómez-Alonso, S.; Fregapane, G. Cornicabra virgin olive oil: A study of five crop seasons. Composition, quality and oxidative stability. Food Chem. 2001, 74, 267–274. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Manap, M.Y.A.; Tan, C.P.; Muhialdin, B.J.; Alhelli, A.M.; Hussin, A.S.M. The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed (Nigella sativa L.) oil. Evid. Based Complementary Altern. Med. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Alara, O.R.; Abayomi, O.O. Extraction, characterization and antioxidant activity of fenugreek (Trigonella-foenum graecum) seed oil. Mater. Sci. Energy Technol. 2019, 2, 349–355. [Google Scholar] [CrossRef]
- José, C.; Evaristo, A.B.; Marques, G.; Martín-Ramos, P.; Martín-Gil, J.; Gutiérrez, A. Chemical composition and thermal behavior of the pulp and kernel oils from macauba palm (Acrocomia aculeata) fruit. Ind. Crops Prod. 2016, 84, 294–304. [Google Scholar]
Component | Values * |
---|---|
Moisture a | 5.02 ± 0.01 |
Crude protein a | 21.07 ± 0.01 |
Crude fata (Petroleum ether extract lipid) | 39.02 ± 0.09 |
Ash a | 3.02 ± 0.02 |
Fiber a | 6.01 ± 0.06 |
Carbohydrates a | 25.86 ± 0.10 |
Sodium (Na) b | 27.60 ± 0.20 |
Magnesium (Mg) b | 276.87 ± 0.05 |
Potassium (K) b | 716.47 ± 0.18 |
Calcium (Ca) b | 810.54 ± 0.36 |
Iron (Fe) b | 0.95 ± 0.68 |
Copper (Cu) b | 0.25 ± 0.03 |
Zinc (Zn) b | 0.43 ± 0.02 |
Phosphorus (P) b | 358.62 ± 0.17 |
Amino Acids | Black Seed | FAO/WHO/UNU b | |
---|---|---|---|
Essential Amino Acids (EAAs) | Adult | Child | |
Leucine a | 0.93 ± 0.02 | 6.60 | 1.90 |
Valine a | 0.84 ± 0.01 | 3.50 | 1.30 |
Lysine a | 0.55 ± 0.05 | 5.80 | 1.60 |
Threonine a | 0.57 ± 0.03 | 3.40 | 0.90 |
Phenylalanine a | 0.57 ± 0.03 | 6.30 | 1.90 |
Methionine a | 0.29 ± 0.01 | 2.70 | 1.70 |
Histidine a | 0.40 ± 0.09 | 1.90 | 1.60 |
Isoleucine a | 0.63 ± 0.07 | 2.80 | 1.30 |
Tyrosine a | 0.52 ± 0.05 | 6.30 | 1.90 |
Cystine a | 0.09 ± 0.01 | - | - |
Total essential amino acids | 5.39 ± 0.37 | ||
Non-essential amino acids (NEAAs) | |||
Glutamic acid a | 4.10 ± 0.12 | - | 0.99 |
Arginine a | 1.40 ± 0.08 | - | 0.46 |
Aspartic acid a | 1.59 ± 0.10 | - | 0.65 |
Glycine a | 0.91 ± 0.02 | - | 0.55 |
Proline a | 0.83 ± 0.04 | - | 0.55 |
Serine a | 0.61 ± 0.01 | - | 0.55 |
Alanine a | 0.67 ± 0.02 | - | 0.26 |
Total non-essential amino acids | 10.11 ± 0.39 | ||
Total amino acids | 15.50 ± 0.76 | ||
E/N | 0.53 |
RT | Compound Name | Content % * |
---|---|---|
3.41 | β-Thujene | 17.22 ± 0.25 |
4.64 | β-Pinene | 5.08 ± 1.05 |
6.05 | α-Terpinolene | 0.41 ± 0.07 |
6.44 | D-Limonene | 3.46 ± 0.98 |
7.45 | gamma-Terpinene | 0.77 ± 0.05 |
8.04 | o-Cymene | 18.23 ± 1.09 |
8.61 | cis-4-methoxy thujane | 7.04 ± 0.81 |
11.20 | p-Mentha-1,5,8-triene | 0.12 ± 0.03 |
11.46 | p-Cymenene | 0.19 ± 0.09 |
11.67 | Acetic acid | 0.28 ± 0.02 |
12.21 | (E)-Longipinene | 2.19 ± 0.06 |
12.55 | Ylangene | 0.04 ± 0.01 |
12.97 | trans-2-Caren-4-ol | 0.69 ± 0.11 |
13.80 | 3-Cyclohexene-1-carboxaldehyde, 1,3,4-trimethyl- | 1.69 ± 0.05 |
14.01 | D-Verbenone | 0.02 ± 0.01 |
14.23 | Longifolene | 6.43 ± 0.16 |
15.26 | Butanoic acid | 0.26 ± 0.03 |
16.08 | Estragole | 0.07 ± 0.01 |
17.25 | (-)-Carvone | 0.18 ± 0.02 |
17.63 | Thymoquinone | 21.01 ± 0.09 |
18.97 | Anethole | 0.39 ± 0.01 |
19.34 | p-Cymen-8-ol | 0.23 ± 0.05 |
22.39 | (-)-Isolongifolol, acetate | 0.22 ± 0.02 |
24.31 | (Z)-18-Octadec-9-enolide | 0.21 ± 0.01 |
24.47 | 9(E),11(E)-Conjugated linoleic acid | 0.32 ± 0.04 |
24.71 | Nonanoic acid | 0.22 ± 0.01 |
25.21 | Phenol, 2-methyl-5-(1-methylethyl)- | 2.07 ± 0.12 |
26.19 | 5-Hepten-3-yn-2-ol, 6-methyl-5-(1-methylethyl)- | 0.08 ± 0.01 |
28.94 | p-Cymene-2,5-diol | 0.82 ± 0.04 |
29.79 | 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- | 0.38 ± 0.01 |
30.64 | Benzo[b]thiophene, 3,6-dimethyl- | 0.10 ± 0.03 |
FAs | Nomenclature | Content (%) * |
---|---|---|
C14:0 | Myristic acid | 0.19 ± 0.02 |
C14:1 | Myristoleic acid | 0.02 ± 0.01 |
C16:0 | Palmitic acid | 12.17 ± 0.04 |
C16:1 | Palmitoleic acid | 0.14 ± 0.02 |
C18:0 | Stearic acid | 2.31 ± 0.07 |
C18:1 | Oleic acid | 24.46 ± 0.10 |
C18:2 | Linoleic acid (LA) | 57.71 ± 0.15 |
C18:3n-6 | γ-Linolenic (GLA) | 0.19 ± 0.03 |
C18:3n-3 | α-Linolenic (ALA) | 0.12 ± 0.02 |
C20:0 | Arachidic acid | 0.33 ± 0.01 |
C20:2 | Eicosadienoic acid | 2.52 ± 0.08 |
SFA | 15.02 ± 0.15 | |
UFA | 85.16 ± 0.41 | |
Triacylglycerol (TAG) | ||
LLL | 22.79 ± 1.78 | |
OLL | 38.87 ± 0.67 | |
POL | 30.82 ± 0.48 | |
OOO | 7.52 ± 0.12 | |
Tocopherols (mg/100 g oil) | ||
α-tocopherol | 25.59 ± 0.09 | |
β-tocopherol | 14.21 ± 0.21 | |
γ-tocopherol | 242.83 ± 0.13 | |
Total tocopherols | 282.63 ± 0.43 | |
Polyphenols (mg GAE/kg oil) | 315.68 ± 0.56 | |
DPPH (IC50, mg/mL) | 4.02 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albakry, Z.; Karrar, E.; Ahmed, I.A.M.; Oz, E.; Proestos, C.; El Sheikha, A.F.; Oz, F.; Wu, G.; Wang, X. Nutritional Composition and Volatile Compounds of Black Cumin (Nigella sativa L.) Seed, Fatty Acid Composition and Tocopherols, Polyphenols, and Antioxidant Activity of Its Essential Oil. Horticulturae 2022, 8, 575. https://doi.org/10.3390/horticulturae8070575
Albakry Z, Karrar E, Ahmed IAM, Oz E, Proestos C, El Sheikha AF, Oz F, Wu G, Wang X. Nutritional Composition and Volatile Compounds of Black Cumin (Nigella sativa L.) Seed, Fatty Acid Composition and Tocopherols, Polyphenols, and Antioxidant Activity of Its Essential Oil. Horticulturae. 2022; 8(7):575. https://doi.org/10.3390/horticulturae8070575
Chicago/Turabian StyleAlbakry, Zainab, Emad Karrar, Isam A. Mohamed Ahmed, Emel Oz, Charalampos Proestos, Aly Farag El Sheikha, Fatih Oz, Gangcheng Wu, and Xingguo Wang. 2022. "Nutritional Composition and Volatile Compounds of Black Cumin (Nigella sativa L.) Seed, Fatty Acid Composition and Tocopherols, Polyphenols, and Antioxidant Activity of Its Essential Oil" Horticulturae 8, no. 7: 575. https://doi.org/10.3390/horticulturae8070575
APA StyleAlbakry, Z., Karrar, E., Ahmed, I. A. M., Oz, E., Proestos, C., El Sheikha, A. F., Oz, F., Wu, G., & Wang, X. (2022). Nutritional Composition and Volatile Compounds of Black Cumin (Nigella sativa L.) Seed, Fatty Acid Composition and Tocopherols, Polyphenols, and Antioxidant Activity of Its Essential Oil. Horticulturae, 8(7), 575. https://doi.org/10.3390/horticulturae8070575