Chemical Fruit Profiles of Different Raspberry Cultivars Grown in Specific Norwegian Agroclimatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Plant Materials
2.3. Sample Preparation
2.4. Preparation of Extracts
2.5. Methods
2.6. Statistical Analysis
3. Results and Discussion
3.1. Determination of Minerals
3.2. Determination of Fruit Acids
3.3. Determination of Sugars
3.4. Determination of Total Phenolic Content (TPC) and Relative Scavenging Activity (RSA)
3.5. Determination of Polyphenols
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Figures
Appendix B. Additional Table
Njøs | NMBU | Both Regions | ||||
---|---|---|---|---|---|---|
TPC | RSA | TPC | RSA | TPC | RSA | |
TPC | 1 | 1 | 1 | |||
RSA | 0.92 | 1 | 0.85 | 1 | 0.90 | 1 |
References
- Hytönen, T.; Graham, J.; Harrison, R. The Genomes of Rosaceous Berries and Their Wild Relatives; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- FAOStat. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 January 2022).
- Statista. 2021. Available online: https://www.statista.com/statistics/644467/annual-production-volume-of-raspberries-in-norway/ (accessed on 19 October 2021).
- Nikolić, M.; Radović, A.; Fotirić, M.; Milojević, J.; Nikolić, D. Pomological properties of promising raspberry seedlings with yellow fruit. Genetika 2009, 413, 255–262. [Google Scholar] [CrossRef]
- Pantelidis, G.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Krstić, Đ.; Vukojević, V.; Mutić, J.; Fotirić Akšić, M.; Ličina, V.; Milojković-Opsenica, D.; Trifković, J. Distribution of elements in seeds of some wild and cultivated fruits. Nutrition and authenticity aspects. J. Sci. Food Agric. 2019, 99, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Castilho Maro, L.A.; Pio, R.; Santos Guedes, M.N.; Patto de Abreu, C.M.; Nogueira Curi, P. Bioactive compounds, antioxidant activity and mineral composition of fruits of raspberry cultivars grown in subtropical areas in Brazil. Fruits 2013, 68, 209–217. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum.Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef]
- Stojanov, D.; Milošević, T.; Mašković, P.; Milošević, N. Impact of fertilization on the antioxidant activity and mineral composition of red raspberry berries of cv.‘Meeker’. Mitt. Klost. Rebe Wein Obstbau Früchteverwertung 2019, 69, 184–195. [Google Scholar]
- Mazur, S.P.; Nes, A.; Wold, A.B.; Remberg, S.F.; Aaby, K. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 2014, 160, 233–240. [Google Scholar] [CrossRef]
- . Frías-Moreno, M.N.; Parra-Quezada, R.Á.; Ruíz-Carrizales, J.; González-Aguilar, G.A.; Sepulveda, D.; Molina-Corral, F.J.; Jacobo-Cuellar, J.L.; Olivas, G.I. Quality, bioactive compounds and antioxidant capacity of raspberries cultivated in northern Mexico. Int. J. Food Prop. 2021, 24, 603–614. [Google Scholar] [CrossRef]
- Woznicki, T.L.; Heide, O.M.; Remberg, S.F.; Sonsteby, A. Effects of controlled nutrient feeding and different temperatures during floral initiation on yield, berry size and drupelet numbers in red raspberry (Rubus idaeus L.). Sci. Hortic. 2016, 212, 148–154. [Google Scholar] [CrossRef]
- Contreras, E.; Grez, J.; Alcalde Furber, J.A.; Neri, D.; Gambardella, M. Effect of low temperature in the first development stage for five red raspberry genotypes. Hortic. Sci. 2019, 46, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- Kumar, D.; Rizvi, S.I. Significance of vitamin C in human health and disease. Ann. Phytomed. 2012, 1, 9–13. [Google Scholar]
- Li, X.; Sun, J.; Chen, Z.; Jiang, J.; Jackson, A. Characterization of carotenoids and phenolics during fruit ripening of Chinese raspberry (Rubus chingii Hu). RSC Adv. 2021, 11, 10804–10813. [Google Scholar] [CrossRef] [PubMed]
- Hendawy, O.; Gomaa, H.A.; Hussein, S.; Alzarea, S.I.; Qasim, S.; Rahman, F.E.Z.S.A.; Ali, A.T.; Ahmed, S.R. Cold-pressed raspberry seeds oil ameliorates high-fat diet triggered non-alcoholic fatty liver disease. Saudi Pharm. J. 2021, 29, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Marić, B.; Pavlić Čolović, D.; Abramović, B.; Zeković, Z.; Bodroža-Solarov, M.; Ilić, N.; Teslić, N. Recovery of high-content ω–3 fatty acid oil from raspberry (Rubus idaeus L.) seeds: Chemical composition and functional quality. LWT-Food Sci. Technol. 2020, 130, 109627. [Google Scholar] [CrossRef]
- Bensalem, J.; Dal-Pan, A.; Gillard, E.; Calon, F.; Pallet, V. Protective effects of berry polyphenols against age-related cognitive impairment. Nutr. Aging. 2015, 3, 89–106. [Google Scholar] [CrossRef]
- Baby, B.; Antony, P.; Vijayan, R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. Nutr. 2018, 58, 2491–2507. [Google Scholar] [CrossRef]
- Veljković, B.; Dordević, N.; Dolićanin, Z.; Ličina, B.; Topuzović, M.; Stanković, M.; Zlatić, N. Antioxidant and Anticancer Properties of Leaf and Fruit Extracts of the Wild Raspberry (Rubus iadeus L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 359–367. [Google Scholar] [CrossRef]
- Noratto, G.D.; Chew, B.P.; Atienza, L.M. Red raspberry (Rubus iadeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chem. 2017, 225, 305–314. [Google Scholar] [CrossRef]
- Szymanowska, U.; Baraniak, B.; Bogucka-Kocka, A. Antioxidant, anti-inflammatory, and postulated cytotoxic activity of phenolic and anthocyanin-rich fractions from polana raspberry (Rubus idaeus L.) fruit and juice—In vitro study. Molecules 2018, 23, 1812. [Google Scholar] [CrossRef]
- Kallscheuer, N.; Menezes, R.; Foito, A.; da Silva, H.M.; Braga, A.; Dekker, W.; Méndez Sevillano, D.; Rosado-Ramos, R.; Jardim, C.; Oliveira, J.; et al. Identification and Microbial Production of the Raspberry Phenol Salidroside that Is Active against Huntington’s Disease. Plant Physiol. 2019, 179, 969–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, T. Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants 2016, 5, 13. [Google Scholar] [CrossRef]
- Yang, J.; Cui, J.; Wu, Y.; Han, H.; Chen, J.; Yao, J.; Liu, Y. Comparisons of the active components in four unripe raspberry extracts and their activities. Food Sci. Technol. 2019, 39, 632–639. [Google Scholar] [CrossRef]
- Das, H.; Samanta, A.K.; Kumar, S.; Roychoudhury, P.; Sarma, K. Exploration of Antimicrobial, Antibiofilm and Antiquorum Sensing Activity of the Himalayan Yellow Raspberry (Rubus ellipticus) against Clinical Isolates of Escherichia coli and Staphylococcus aureus. Indian J. Anim. Res. 2021, 1, 6. [Google Scholar] [CrossRef]
- Hallmann, E.; Ponder, A.; Aninowski, M.; Narangerel, T.; Leszczyńska, J. The interaction between antioxidants content and allergenic potency of different raspberry cultivars. Antioxidants 2020, 9, 256. [Google Scholar] [CrossRef]
- Chang, C.; Leung, P.S.C.; Todi, S.; Zadoorian, L. Definition of Allergens: Inhalants, Food and Insects Allergens. In Allergy and Asthma; Mahmoudi, M., Ed.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Vrgović, P.; Pojić, M.; Teslić, N.; Mandić, A.; Kljakić, A.C.; Pavlić, B.; Stupar, A.; Pestorić, M.; Škrobot, D.; Mišan, A. Communicating Function and Co-Creating Healthy Food: Designing a Functional Food Product Together with Consumers. Foods 2022, 11, 961. [Google Scholar] [CrossRef]
- Mazur, S.P.; Sonsteby, A.; Wold, A.B.; Foito, A.; Freitag, S.; Verrall, S.; Heide, O.M. Post-flowering photoperiod has marked effects on fruit chemical composition in red raspberry (Rubus idaeus). Ann. Appl. Biol. 2014, 165, 454–465. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Will, F.; Mesa-Marín, J.; Lewandowski, M.; Celejewska, K.; Masny, A.; Zurawicz, E.; Jennings, N.; Sønsteby, A.; et al. Exploring Genotype-by-Environment Interactions of Chemical Composition of Raspberry by Using a Metabolomics Approach. Metabolites 2021, 11, 490. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Polyphenolics and chemical profiles of domestic Norwegian apple (Malus × domestica Borkh.) cultivars. Front. Nutr. 2022, in press. [Google Scholar] [CrossRef]
- Pavlović, A.V.; Dabić, D.C.; Momirović, N.M.; Dojčinović, B.P.; Milojković-Opsenica, D.M.; Tešić, Ž.L.; Natić, M.M. Chemical composition of two different extracts of berries harvested in Serbia. J. Agric. Food Chem. 2013, 61, 4188–4194. [Google Scholar] [CrossRef]
- Rao, A.V.; Snyder, D.M. Raspberries and Human Health: A review. J. Agric. Food Chem. 2010, 58, 3871–3883. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Park, S.W. Edible berries: Bio-active components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-González, M.; Fernández-Prior, Á.; Oria, A.B.; Rodríguez-Juan, E.M.; Pérez-Rubio, A.G.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. LWT-Food Sci. Technol. 2020, 130, 109645. [Google Scholar] [CrossRef]
- De Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef]
- Bett-Garber, K.L.; Lea, J.M.; Watson, M.A.; Grimm, C.C.; Lloyd, S.W.; Beaulieu, J.C.; Stein-Chisholm, R.E.; Andrzejewski, B.P.; Marshall, D.A. Flavor of fresh blueberry juice and the comparison to amount of sugars, acids, anthocyanidins, and physicochemical measurements. J. Food Sci. 2015, 80, S818–S827. [Google Scholar] [CrossRef]
- Walker, R.P.; Famiani, F. Organic acids in fruits: Metabolism, functions and contents. Ian Warrington, Ed.; Jon Wiley and Sons Inc: Hoboken, NJ, USA. Hortic. Rev. 2018, 45, 371–430. [Google Scholar]
- de Ancos, B.; Gonzalez, E.; Cano, M.P. Differentiation of raspberry varieties according to anthocyanin composition. Z. Lebensm. Forsch. A 1999, 208, 33–38. [Google Scholar] [CrossRef]
- Rennie, E.A.; Turgeon, R. A comprehensive picture of phloem loading strategies. In Proceedings of the National Academy of Sciences, Washington, DC, USA, 18 August 2009; Volume 106, pp. 14162–14167. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, X.; Chen, S.; Sun, Y.; Shen, Y.; Ye, X. Chemical composition and antioxidant activity of Chinese wild raspberry (Rubus hirsutus Thunb). LWT-Food Sci. Technol. 2015, 60, 1262–1268. [Google Scholar] [CrossRef]
- Bradish, C.M.; Perkins-Veazie, P.; Fernandez, G.E.; Xie, G.; Jia, W. Comparison of flavonoid composition of red raspberries (Rubus idaeus L.) grown in the Southern United States. J. Agric. Food Chem. 2012, 60, 5779–5786. [Google Scholar] [CrossRef]
- Pimpão, R.C.; Dew, T.; Oliveira, P.B.; Williamson, G.; Ferreira, R.B.; Santos, C.N. Analysis of phenolic compounds in Portuguese wild and commercial berries after multienzyme hydrolysis. J. Agric. Food Chem. 2013, 61, 4053–4062. [Google Scholar] [CrossRef]
- Freeman, B.L.; Stocks, J.C.; Eggett, D.L.; Parker, T.L. Antioxidant and phenolic changes across one harvest season and two storage conditions in primocane raspberries (Rubus idaeus L.) grown in a hot, dry climate. HortScience 2011, 46, 236–239. [Google Scholar] [CrossRef]
- Dragišić-Maksimović, J.J.; Milivojević, J.M.; Poledica, M.M.; Nikolić, M.D.; Maksimović, V.M. Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and Polka). J. Food Compos. Anal. 2013, 31, 173–179. [Google Scholar] [CrossRef]
- Jiménez-Aspee, F.; Theoduloz, C.; Ávila, F.; Thomas-Valdés, S.; Mardones, C.; von Baer, D.; Schmeda-Hirschmann, G. The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells. Food Chem. 2016, 194, 908–919. [Google Scholar] [CrossRef] [PubMed]
- González, E.M.; de Ancos, B.; Cano, M.P. Relation between bioactive compounds and free radical-scavenging capacity in berry fruits during frozen storage. J. Sci. Food Agric. 2003, 83, 722–726. [Google Scholar] [CrossRef]
- Pavlović, A.V.; Papetti, A.; Zagorac, D.Č.; Gašić, U.M.; Mišić, D.M.; Tešić, Ž.L.; Natić, M.M. Phenolics composition of leaf extracts of raspberry and blackberry cultivars grown in Serbia. Ind. Crops Prod. 2016, 87, 304–314. [Google Scholar] [CrossRef]
- Dobson, P.; Graham, J.; Stewart, D.; Brennan, R.; Hackett, C.A.; McDougall, G.J. Over-seasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J. Agric. Food Chem. 2012, 60, 5360–5366. [Google Scholar] [CrossRef]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef]
- Kula, M.; Majdan, M.; Głód, D.; Krauze-Baranowska, M. Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland. J. Food Compos. Anal. 2016, 52, 74–82. [Google Scholar] [CrossRef]
- Anjos, R.; Cosme, F.; Gonçalves, A.; Nunes, F.M.; Vilela, A.; Pinto, T. Effect of agricultural practices, conventional vs organic, on the phytochemical composition of ‘Kweli’ and ‘Tulameen’ raspberries (Rubus idaeus L.). Food Chem. 2020, 328, 126833. [Google Scholar] [CrossRef]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Sójka, M.; Macierzyński, J.; Zaweracz, W.; Buczek, M. Transfer and mass balance of ellagitannins, anthocyanins, flavan-3-ols, and flavonols during the processing of red raspberries (Rubus idaeus L.) to juice. J. Agric. Food Chem. 2016, 64, 5549–5563. [Google Scholar] [CrossRef] [PubMed]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Mineral composition of fruit in black and red currant. South-West. J. Hortic. Biol. Environ. 2015, 6, 43–51. [Google Scholar]
- Garazhian, M.; Gharaghani, A.; Eshghi, S. Genetic diversity and inter-relationships of fruit bio-chemicals and antioxidant activity in Iranian wild blackberry species. Sci. Rep. 2020, 10, 18983. [Google Scholar] [CrossRef] [PubMed]
- Karlsons, A.; Osvalde, A.; Čekstere, G.; Pormale, J. Research on the mineral composition of cultivated and wild blueberries and cranberries. Agron. Res. 2018, 16, 454–463. [Google Scholar] [CrossRef]
- Dincheva, I.; Badjakov, I.; Kondakova, V.; Batchvarova, R. Metabolic profiling of red raspberry (Rubus idaeus) during fruit development and ripening. Int. J. Agric. Sci. Res. 2013, 3, 81–88. [Google Scholar]
- Wang, Y.; Yang, H.; Zhong, S.; Liu, X.; Li, T.; Zong, C. Variations in sugar and organic acid content of fruit harvested from different Vaccinium uliginosum populations in the Changbai Mountains of China. J. Am. Soc. Hortic. Sci. 2019, 144, 420–428. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, J.; Jing, L.; Zhang, H.; Ye, L.; Farooq, S.; Bacha, S.A.S.; Wang, J. Evaluation of sugar and organic acid composition and their levels in highbush blueberries from two regions of China. J. Integr. Agric. 2020, 19, 2352–2361. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 4th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2006. [Google Scholar]
- Mesarović, J.; Trifković, J.; Tosti, T.; Fotirić Akšić, M.; Milatović, D.; Ličina, V.; Milojković-Opsenica, D. Relationship between ripening time and sugar content of apricot (Prunus armeniaca L.) kernels. Acta Physiol. Plant. 2018, 40, 157. [Google Scholar] [CrossRef]
- Howard, L.R.; Clark, J.R.; Brownmiller, C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar] [CrossRef]
- Scalzo, J.; Stevenson, D.; Hedderley, D. Polyphenol compounds and other quality traits in blueberry cultivars. J. Berry Res. 2015, 5, 117–130. [Google Scholar] [CrossRef]
- Pliszka, B. Content and correlation of polyphenolic compounds, bioelements and antiradical activity in black elder berries (Sambucus nigra L.). J. Elem. 2020, 25, 2. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Dabić Zagorac, D.; Sredojević, M.; Milivojević, J.; Gašić, U.; Meland, M.; Natić, M. Chemometric characterization of strawberries and blueberries according to their phenolic profile: Combined effect of cultivar and cultivation system. Molecules 2019, 24, 4310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Njøs (No. 1–No. 11) | NMBU (No. 12–No. 18) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | CV (%) | |
Elements | ‘Stiora’ | ‘Varnes’ | ‘Asker’ | ‘Balder’ | ‘Anitra’ | ‘Borgund’ | ‘Ninni’ | ‘Agat’ | ‘Veten’ | ‘Preussen’ | ‘Vene’ | ‘Malling June’ | ‘2. Ninni’ | ‘Cascade delight’ | ‘Glen Ample’ | ‘2.Veten’ | ‘Glen Fyne’ | ‘Ru’ | |
Al | 10.25 | 10.50 | 3.33 | 4.61 | 6.45 | 6.34 | 7.37 | 6.95 | 7.43 | 7.70 | 9.40 | 5.37 | 3.98 | 6.47 | 7.13 | 8.31 | 5.54 | 4.48 | 5.56 |
B | 3.96 | 3.12 | 3.32 | 2.32 | 3.19 | 3.46 | 3.93 | 3.91 | 3.67 | 2.39 | 3.35 | 3.11 | 3.70 | 3.76 | 5.42 | 4.31 | 4.74 | 2.87 | 4.15 |
Cu | 2.37 | 1.94 | 1.25 | 1.61 | 2.19 | 1.83 | 2.09 | 2.41 | 1.88 | 3.12 | 1.96 | 2.00 | 1.69 | 1.51 | 1.91 | 1.58 | 2.19 | 1.37 | 3.12 |
Fe | 11.11 | 10.55 | 8.44 | 8.33 | 9.12 | 10.68 | 9.51 | 9.20 | 9.04 | 10.14 | 8.39 | 18.45 | 24.35 | 17.91 | 13.10 | 13.02 | 10.98 | 8.57 | 4.50 |
Mn | 1.61 | 1.59 | 3.13 | 1.36 | 2.23 | 1.38 | 1.58 | 2.98 | 2.92 | 1.86 | 2.58 | 2.25 | 2.85 | 2.30 | 3.33 | 3.72 | 2.81 | 3.01 | 5.60 |
Zn | 20.38 | 16.22 | 14.77 | 10.53 | 15.35 | 17.21 | 15.62 | 16.64 | 17.74 | 18.96 | 12.17 | 16.44 | 13.63 | 16.11 | 14.39 | 15.74 | 17.48 | 11.38 | 3.56 |
Ca | 297.45 | 220.34 | 277.82 | 263.70 | 253.44 | 301.91 | 238.53 | 211.40 | 293.36 | 327.70 | 250.47 | 266.73 | 273.54 | 241.84 | 239.29 | 336.89 | 268.78 | 262.95 | 2.71 |
K | 2466.81 | 3687.23 | 2802.32 | 2483.29 | 3103.56 | 2740.54 | 3920.87 | 2301.38 | 3120.06 | 3545.19 | 2377.33 | 2028.05 | 2554.99 | 2355.77 | 3152.81 | 2800.06 | 2839.98 | 2403.43 | 4.95 |
Mg | 210.68 | 202.69 | 201.54 | 186.14 | 244.42 | 215.89 | 188.48 | 192.95 | 276.09 | 240.45 | 234.78 | 188.48 | 184.58 | 177.16 | 202.49 | 208.20 | 198.63 | 172.09 | 5.63 |
Na | 38.42 | 15.55 | 9.22 | 14.77 | 25.44 | 20.39 | 26.06 | 37.93 | 43.04 | <0.50 | 42.58 | 7.22 | 20.94 | 16.20 | 36.89 | 30.85 | 22.24 | 16.58 | 4.50 |
P | 10,034.66 | 10,562.90 | 7040.68 | 7194.57 | 7771.83 | 7826.10 | 9710.59 | 8233.57 | 9594.57 | 12,195.08 | 11,725.16 | 5180.77 | 5957.55 | 6310.10 | 8523.35 | 7290.04 | 8245.82 | 4803.48 | 3.03 |
S | 630.19 | 464.48 | 488.82 | 383.76 | 594.56 | 512.05 | 452.30 | 464.13 | 523.69 | 608.01 | 515.84 | 499.44 | 458.74 | 449.42 | 529.52 | 528.13 | 571.47 | 443.15 | 3.36 |
N (%) * | 2.03 | 2.05 | 1.94 | 1.87 | 2.20 | 1.86 | 1.88 | 1.97 | 1.95 | 1.91 | 2.06 | 1.96 | 2.02 | 2.14 | 2.34 | 2.21 | 2.11 | 2.03 | 2.43 |
Fruit Acid | Njøs (No. 1–No. 11) | NMBU (No. 12–No. 18) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | CV (%) | |
‘Stiora’ | ‘Varnes’ | ‘Asker’ | ‘Balder’ | ‘Anitra’ | ‘Borgund’ | ‘Ninni’ | ‘Agat’ | ‘Veten’ | ‘Preussen’ | ‘Vene’ | ‘Malling June’ | ‘2. Ninni’ | ‘Cascade delight’ | ‘Glen Ample’ | ‘2.Veten’ | ‘Glen Fyne’ | ‘Ru’ | ||
Citric | 24.12 | 31.67 | 24.05 | 30.37 | 32.40 | 23.74 | 25.05 | 26.15 | 25.86 | 33.27 | 24.26 | 21.25 | 26.12 | 30.03 | 28.49 | 26.78 | 25.38 | 27.81 | 3.13 |
Maleic | 0.88 | 0.61 | 0.81 | 1.63 | 0.77 | 0.67 | 0.54 | 0.81 | 0.98 | 0.85 | 0.64 | 1.00 | 0.60 | 0.87 | 1.03 | 0.95 | 0.90 | 0.90 | 5.96 |
Malic | 0.03 | 0.03 | 0.06 | 0.06 | 0.06 | 0.06 | 0.04 | 0.05 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.03 | 0.06 | 0.06 | 0.06 | 0.05 | 4.38 |
Pyruvic | 0.12 | 0.11 | 0.12 | 0.11 | 0.12 | 0.13 | 0.11 | 0.13 | 0.17 | 0.11 | 0.13 | 0.21 | 0.11 | 1.99 | 0.11 | 0.11 | 0.11 | 0.11 | 5.82 |
Shikimic | 0.06 | 0.06 | 0.03 | 0.05 | 0.06 | 0.08 | 0.06 | 0.06 | 0.07 | 0.05 | 0.07 | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.06 | 0.06 | 5.40 |
Lactic | 0.08 | 0.08 | 0.06 | 0.06 | 0.07 | 0.09 | 0.07 | 0.08 | 0.11 | 0.07 | 0.08 | 0.07 | 0.08 | 0.10 | 0.07 | 0.07 | 0.07 | 0.07 | 3.12 |
Propionic | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 3.02 |
Butyric | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.26 | 0.02 | 0.02 | 0.02 | 0.02 | 6.90 |
Quinic | 0.22 | 0.30 | 0.19 | 0.25 | 0.23 | 0.15 | 0.18 | 0.23 | 0.32 | 0.15 | 0.31 | 0.27 | 0.19 | 0.21 | 0.22 | 0.20 | 0.19 | 0.18 | 3.79 |
Oxalic | 0.16 | 0.12 | 0.20 | 0.22 | 0.22 | 0.20 | 0.17 | 0.20 | 0.19 | 0.16 | 0.19 | 0.20 | 0.20 | 0.15 | 0.21 | 0.20 | 0.20 | 0.19 | 3.64 |
Fumaric | 0.17 | 0.16 | 0.06 | 0.22 | 0.12 | 0.13 | 0.11 | 0.15 | 0.35 | 0.38 | 0.20 | 0.31 | 0.10 | 0.18 | 0.13 | 0.13 | 0.13 | 0.21 | 5.14 |
Sugar Compound | Njøs (No. 1–No. 11) | NMBU (No. 12–No. 18) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | CV (%) | |
‘Stiora’ | ‘Varnes’ | ‘Asker’ | ‘Balder’ | ‘Anitra’ | ‘Borgund‘ | ‘Ninni’ | ‘Agat’ | ‘Veten’ | ‘Preussen’ | ‘Vene’ | ‘Malling June’ | ‘2. Ninni’ | ‘Cascade delight’ | ‘Glen Ample’ | ‘2.Veten’ | ‘Glen Fyne’ | ‘Ru’ | ||
Sorbitol | 0.16 | 2.08 | 3.90 | 7.51 | 4.55 | 6.24 | 1.81 | 5.08 | 5.58 | 11.68 | 4.71 | 10.46 | 2.88 | 4.45 | 4.96 | 5.42 | 4.39 | 6.41 | 6.64 |
Trehalose | 0.32 | 0.32 | 0.11 | 0.41 | 0.58 | 0.15 | 0.40 | 0.33 | 0.49 | 0.46 | 0.32 | 0.41 | 0.35 | 0.33 | 0.34 | 0.30 | 0.27 | 0.36 | 4.73 |
Arabinose | 0.67 | 1.12 | 0.52 | 0.45 | 0.22 | 0.85 | 0.43 | 0.38 | 0.59 | 0.55 | 0.49 | 0.49 | 0.37 | 0.54 | 0.37 | 0.50 | 0.56 | 0.58 | 9.75 |
Glucose | 270.25 | 322.36 | 330.67 | 193.99 | 206.88 | 326.81 | 323.95 | 258.19 | 187.10 | 308.96 | 226.54 | 245.62 | 252.42 | 263.07 | 214.44 | 229.64 | 216.46 | 242.94 | 3.33 |
Fructose | 142.04 | 183.25 | 196.03 | 151.90 | 202.49 | 201.09 | 188.91 | 172.05 | 143.35 | 205.80 | 129.23 | 235.68 | 207.67 | 210.15 | 179.43 | 185.55 | 192.48 | 201.87 | 3.31 |
Sucrose | 27.28 | 11.68 | 19.56 | 10.53 | 19.15 | 3.36 | 13.69 | 10.66 | 7.71 | 0.91 | 0.97 | 8.14 | 20.80 | 26.63 | 53.19 | 42.48 | 51.98 | 47.52 | 5.01 |
Turanose | 1.35 | 1.28 | 2.55 | 2.80 | 2.47 | 1.32 | 1.04 | 10.35 | 1.55 | 1.32 | 1.19 | 1.18 | 0.89 | 2.10 | 3.71 | 1.73 | 1.39 | 1.09 | 6.63 |
Glycerol | 7.37 | 7.62 | 9.62 | 14.41 | 7.98 | 7.34 | 10.98 | 7.36 | 9.95 | 8.42 | 9.94 | 7.54 | 7.52 | 8.79 | 9.14 | 9.38 | 10.75 | 10.79 | 3.88 |
Galactitol | 0.36 | 0.19 | 0.54 | 0.48 | 0.71 | 0.19 | 0.46 | 0.14 | 0.48 | 0.24 | 0.73 | 0.22 | 0.40 | 0.39 | 0.44 | 0.46 | 0.41 | 0.35 | 4.52 |
Galactose | 22.00 | 15.07 | 28.59 | 32.10 | 24.18 | 29.12 | 29.98 | 25.33 | 31.31 | 41.00 | 36.98 | 36.70 | 11.88 | 18.50 | 24.16 | 11.35 | 14.31 | 16.34 | 7.15 |
Ribose | 7.32 | 1.11 | 1.95 | 18.37 | 4.31 | 0.37 | 1.44 | 2.44 | 8.87 | 0.98 | 0.40 | 0.88 | 1.23 | 4.60 | 8.15 | 7.70 | 7.01 | 6.80 | 4.41 |
Isomaltose | 1.55 | 0.61 | 0.64 | 2.42 | 2.50 | 0.57 | 1.73 | 0.58 | 1.60 | 2.45 | 0.34 | 2.20 | 1.47 | 1.29 | 1.47 | 1.49 | 1.32 | 1.79 | 6.48 |
Isomaltotriose | 0.45 | 1.01 | 0.94 | 0.18 | 0.64 | 0.19 | 0.39 | 0.21 | 0.51 | 0.23 | 0.15 | 0.21 | 0.34 | 0.42 | 0.46 | 0.47 | 0.41 | 0.25 | 6.76 |
Maltose | 3.99 | 4.01 | 1.88 | 2.30 | 1.69 | 2.01 | 1.72 | 1.87 | 1.98 | 3.98 | 4.04 | 3.56 | 1.47 | 2.53 | 1.82 | 1.92 | 1.94 | 2.51 | 4.67 |
Maltotriose | 0.93 | 0.51 | 1.72 | 1.92 | 1.65 | 4.48 | 1.63 | 1.39 | 1.72 | 3.54 | 1.04 | 3.17 | 1.39 | 1.78 | 1.58 | 2.42 | 2.43 | 2.92 | 4.93 |
Mannitol | 3.05 | 3.15 | 5.33 | 5.97 | 3.63 | 3.04 | 5.37 | 3.43 | 4.71 | 3.49 | 4.11 | 3.12 | 4.56 | 3.88 | 4.32 | 4.33 | 4.82 | 4.47 | 3.48 |
Xylose | 0.32 | 0.43 | 0.45 | 0.39 | 0.13 | 0.45 | 0.54 | 0.23 | 0.30 | 0.55 | 0.28 | 0.49 | 0.47 | 0.35 | 0.28 | 0.34 | 0.45 | 0.48 | 7.12 |
Melibiose | 9.53 | 9.23 | 10.00 | 9.59 | 9.43 | 8.70 | 8.71 | 10.30 | 9.39 | 8.99 | 10.03 | 8.04 | 7.38 | 9.02 | 9.23 | 9.16 | 9.08 | 9.02 | 2.35 |
Panose | 3.47 | 3.37 | 3.52 | 3.37 | 3.31 | 3.19 | 3.18 | 3.62 | 4.20 | 3.27 | 3.87 | 2.93 | 2.70 | 3.28 | 3.25 | 3.25 | 3.26 | 3.26 | 2.69 |
Rhamnose | 1.02 | 0.98 | 0.99 | 0.94 | 0.91 | 0.92 | 0.92 | 1.02 | 1.12 | 0.94 | 1.04 | 0.84 | 0.79 | 0.92 | 0.91 | 0.92 | 0.93 | 0.94 | 2.50 |
Raffinose | 6.60 | 6.38 | 5.46 | 5.29 | 5.19 | 6.00 | 6.03 | 5.75 | 7.23 | 6.20 | 6.66 | 5.55 | 5.11 | 5.73 | 5.09 | 5.34 | 5.62 | 5.91 | 2.41 |
Stachyose | 7.74 | 7.57 | 7.29 | 7.95 | 8.55 | 9.85 | 8.09 | 8.53 | 8.12 | 13.56 | 13.79 | 1.21 | 2.61 | 3.70 | 3.12 | 3.23 | 3.34 | 3.47 | 6.58 |
Parameter | Njøs (No. 1–No. 11) | NMBU (No. 12–No. 18) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | CV (%) | |
‘Stiora’ | ‘Varnes’ | ‘Asker’ | ‘Balder’ | ‘Anitra’ | ‘Borgund’ | ‘Ninni’ | ‘Agat’ | ‘Veten’ | ‘Preussen’ | ‘Vene‘ | ‘Malling June’ | ‘2. Ninni‘ | ‘Cascade delight’ | ‘Glen Ample’ | ‘2.Veten’ | ‘Glen Fyne‘ | ‘Ru‘ | ||
TPC | 18.05 | 10.05 | 11.79 | 22.00 | 12.09 | 12.42 | 12.53 | 9.90 | 22.72 | 27.21 | 25.69 | 12.42 | 11.57 | 7.59 | 12.21 | 12.54 | 15.02 | 8.08 | 7.16 |
RSA | 158.55 | 113.64 | 138.53 | 162.15 | 149.99 | 104.94 | 124.02 | 123.52 | 182.75 | 218.68 | 191.71 | 100.53 | 89.78 | 70.45 | 91.00 | 124.42 | 152.45 | 85.13 | 4.21 |
Phenolic Compound | Njøs (No. 1–No. 11) | NMBU (No. 12–No. 18) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | CV (%) | |
‘Stiora‘ | ‘Varnes‘ | ‘Asker‘ | ‘Balder‘ | ‘Anitra‘ | ‘Borgund‘ | ‘Ninni‘ | ‘Agat‘ | ‘Veten‘ | ‘Preussen‘ | ‘Vene‘ | ‘Malling June‘ | ‘2. Ninni‘ | ‘Cascade delight‘ | ‘Glen Ample‘ | ‘2.Veten‘ | ‘Glen Fyne‘ | ‘Ru‘ | ||
Protocatechuic acid | 6.47 | 5.37 | 5.15 | 11.51 | 6.75 | 4.10 | 9.89 | 5.19 | 13.03 | 2.97 | 3.49 | 41.63 | 33.95 | 26.78 | 38.83 | 48.50 | 45.44 | 26.41 | 4.68 |
Syringic acid | 53.88 | 44.70 | 58.57 | 54.24 | 33.19 | 29.02 | 53.67 | 63.28 | 53.16 | 52.85 | 44.93 | 87.90 | 67.88 | 52.33 | 88.51 | 77.11 | 64.11 | 66.32 | 5.12 |
Chlorogenic acid | 2.67 | 110.77 | 6.48 | 2.51 | 4.03 | 4.09 | 5.52 | 3.99 | 3.07 | 1.21 | 1.82 | 3.40 | 3.79 | 1.99 | 3.56 | 2.90 | 3.20 | 2.80 | 7.91 |
Caffeic acid | 6.30 | 14.48 | 9.41 | 8.69 | 8.57 | 4.47 | 5.80 | 3.33 | 14.13 | 4.89 | 2.32 | 6.25 | 7.58 | 5.32 | 5.67 | 12.53 | 13.54 | 7.25 | 5.34 |
Aesculetin | 5.90 | 10.47 | 6.87 | 6.59 | 7.03 | 2.74 | 4.10 | 2.57 | 10.83 | 7.46 | 6.86 | 2.70 | 3.29 | 2.99 | 3.36 | 5.59 | 6.13 | 3.80 | 8.07 |
Rutin | 28.78 | 88.57 | 18.03 | 7.26 | 17.99 | 24.79 | 24.22 | 21.81 | 36.67 | 18.94 | 26.68 | 7.28 | 16.60 | 14.97 | 11.91 | 20.98 | 23.54 | 14.47 | 3.40 |
p-Coumaric acid | 5.76 | 4.97 | 2.45 | 6.33 | 4.62 | 6.14 | 4.41 | 5.35 | 9.18 | 2.62 | 3.14 | 18.99 | 7.62 | 7.92 | 6.87 | 10.00 | 10.09 | 7.12 | 3.48 |
Quercetin 3-O-glucoside | 10.21 | 20.22 | 5.85 | 16.38 | 5.41 | 10.17 | 10.13 | 5.49 | 14.84 | 10.60 | 5.58 | 4.97 | 6.38 | 4.15 | 7.72 | 6.56 | 6.58 | 4.91 | 9.52 |
Ellagic acid | 177.64 | 40.64 | 134.72 | 160.98 | 161.13 | 107.00 | 108.47 | 127.30 | 207.21 | 128.49 | 131.81 | 208.50 | 205.58 | 62.19 | 144.10 | 135.44 | 225.25 | 93.17 | 3.41 |
Kaempferol 3-O-glucoside | 2.02 | 1.80 | 1.61 | 2.65 | 1.01 | 1.80 | 1.44 | 1.18 | 3.10 | 1.60 | 0.36 | 1.48 | 1.41 | 1.05 | 2.81 | 1.92 | 2.05 | 1.41 | 7.38 |
Quercetin 3-O-rhamnoside | 0.67 | 0.85 | 0.60 | 0.87 | 0.56 | 0.51 | 0.62 | 0.77 | 0.94 | 0.45 | 0.29 | 1.76 | 1.59 | 0.78 | 1.14 | 1.89 | 1.89 | 1.07 | 5.50 |
Phlorizin | 0.71 | 0.76 | 1.36 | 2.64 | 1.49 | 1.05 | 0.88 | 0.81 | 1.38 | 1.75 | 1.68 | 1.09 | 0.79 | 0.70 | 0.56 | 0.79 | 1.46 | 0.67 | 8.10 |
Eriodyctiol | 0.83 | 0.60 | 1.25 | 0.99 | 0.64 | 0.68 | 0.55 | 0.43 | 1.32 | 0.61 | 0.96 | 0.72 | 0.66 | 0.43 | 0.57 | 0.83 | 0.87 | 0.46 | 5.67 |
Quercetin | 37.30 | 8.47 | 18.40 | 57.38 | 20.89 | 23.37 | 22.12 | 13.75 | 57.47 | 18.70 | 5.51 | 29.36 | 33.40 | 12.28 | 33.55 | 27.88 | 33.03 | 9.65 | 6.74 |
Naringenin | 0.42 | 0.35 | 0.52 | 0.45 | 0.38 | 0.24 | 0.46 | 0.30 | 0.54 | 0.59 | 0.24 | 0.40 | 0.36 | 0.30 | 0.23 | 0.33 | 0.43 | 0.20 | 5.47 |
Kaempferol | 4.20 | 1.26 | 2.65 | 3.43 | 2.45 | 1.84 | 2.48 | 1.31 | 3.05 | 2.66 | 3.40 | 1.48 | 2.37 | 1.34 | 2.55 | 1.63 | 2.66 | 1.18 | 6.01 |
Naringin | 1.70 | 0.69 | 1.64 | 1.43 | 2.26 | 1.22 | 1.28 | 0.96 | 1.89 | 0.56 | 0.86 | 1.79 | 1.07 | 2.16 | 1.46 | 2.53 | 2.44 | 2.42 | 9.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Chemical Fruit Profiles of Different Raspberry Cultivars Grown in Specific Norwegian Agroclimatic Conditions. Horticulturae 2022, 8, 765. https://doi.org/10.3390/horticulturae8090765
Fotirić Akšić M, Nešović M, Ćirić I, Tešić Ž, Pezo L, Tosti T, Gašić U, Dojčinović B, Lončar B, Meland M. Chemical Fruit Profiles of Different Raspberry Cultivars Grown in Specific Norwegian Agroclimatic Conditions. Horticulturae. 2022; 8(9):765. https://doi.org/10.3390/horticulturae8090765
Chicago/Turabian StyleFotirić Akšić, Milica, Milica Nešović, Ivanka Ćirić, Živoslav Tešić, Lato Pezo, Tomislav Tosti, Uroš Gašić, Biljana Dojčinović, Biljana Lončar, and Mekjell Meland. 2022. "Chemical Fruit Profiles of Different Raspberry Cultivars Grown in Specific Norwegian Agroclimatic Conditions" Horticulturae 8, no. 9: 765. https://doi.org/10.3390/horticulturae8090765
APA StyleFotirić Akšić, M., Nešović, M., Ćirić, I., Tešić, Ž., Pezo, L., Tosti, T., Gašić, U., Dojčinović, B., Lončar, B., & Meland, M. (2022). Chemical Fruit Profiles of Different Raspberry Cultivars Grown in Specific Norwegian Agroclimatic Conditions. Horticulturae, 8(9), 765. https://doi.org/10.3390/horticulturae8090765