Producing Cherry Tomatoes in Urban Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systems and Tomato Cultivars
2.1.1. UDC’s Green Roof Planter Boxes (Hereafter “Green Roof Planters”)
2.1.2. The Farm at 55M Street Pots (Hereafter “M Street Roof Pots”) and The Station Roof Pots (Hereafter “Station Roof Pots”)
2.1.3. Firebird Farm Field Row (Hereafter “Farm Row”)
2.1.4. Firebird Farm Aquaponics (Hereafter “Aquaponics”)
2.1.5. Firebird Farm Hydroponics (Hereafter “Hydroponics”)
2.2. Plant Productivity
2.3. Statistical Analyses
3. Results
3.1. Plant Productivity
3.2. Minerals
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.N. DESA. World’s Population Increasingly Urban with more than Half Living in Urban Areas. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 17 December 2021).
- Short, J.R. Liquid City: Megalopolis and the Contemporary Northeast; Resources for the Future: Washington, DC, USA, 2007. [Google Scholar]
- USDA-Economic Research Service. How Is Land in the United States Used? A Focus on Agricultural Land. Available online: https://www.ers.usda.gov/amber-waves/2012/march/data-feature-how-is-land-used/ (accessed on 22 December 2021).
- Woods, T.; Hanson, D. Demographic Trends of Children of Immigrants. Urban Institute. October 2016. Available online: https://www.urban.org/sites/default/files/publication/85071/2000971-demographic-trends-of-children-of-immigrants_2.pdf (accessed on 23 February 2022).
- Migration Policy Institute. U.S. Immigrant Population by State and County. Available online: https://www.migrationpolicy.org/programs/data-hub/charts/us-immigrant-population-state-and-county (accessed on 17 December 2021).
- Massachusetts Department of Elementary and Secondary Education. 2021–22 Enrollment by Race/Gender Report (District). Available online: https://profiles.doe.mass.edu/statereport/enrollmentbyracegender.aspx (accessed on 17 December 2021).
- Colby, S.L.; Ortman, J.M. Projections of the Size and Composition of the U.S. Population: 2014 to 2060; 2015 P25-1143. Available online: https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf (accessed on 23 February 2022).
- Brown, K.H.; Jameton, A.L. Public health implications of urban agriculture. J. Public Health Pol. 2000, 21, 20–39. [Google Scholar] [CrossRef]
- Kirby, C.K.; Specht, K.; Fox-Kämper, R.; Hawes, J.K.; Cohen, N.; Caputo, S.; Ilieva, R.T.; Lelièvre, A.; Poniży, L.; Schoen, V.; et al. Differences in motivations and social impacts across urban agriculture types: Case studies in Europe and the US. Landsc. Urban Plan. 2021, 212, 104110. [Google Scholar] [CrossRef]
- Steenkamp, J.; Cilliers, E.J.; Cilliers, S.S.; Lategan, L. Food for thought: Addressing urban food security risks through urban agriculture. Sustainability 2021, 13, 1267. [Google Scholar] [CrossRef]
- Grewal, S.S.; Grewal, P.S. Can cities become self-reliant in food? Cities 2012, 29, 1–11. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- McDougall, R.; Kristiansen, P.; Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl. Acad. Sci. USA 2019, 116, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Donahue, B.; Burke, J.; Anderson, M.; Beal, A.; Kelly, T.; Lapping, M.; Berlin, L. A New England Food Vision; Food Solutions New England, University of New Hampshire: Durham, NH, USA, 2014; Available online: https://www.foodsolutionsne.org/sites/default/files/New-England-Food-Vision.pdf (accessed on 23 February 2022).
- Richardson, J.J.; Moskal, L.M. Urban food crop production capacity and competition with the urban forest. Urban For. Urban Green. 2016, 15, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.; Eckelman, M.J. Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landsc. Urban Plan. 2017, 165, 130–141. [Google Scholar] [CrossRef]
- Taylor, J.R.; Hanumappa, M.; Miller, L.; Shane, B.; Richardson, M.L. Facilitating governance of multifunctional green infrastructure in Washington, DC through a Tableau interface. Sustainability 2021, 13, 8390. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities: A review. Agr. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Oberholtzer, L.; Dimitri, C.; Pressman, A. Urban agriculture in the United States: Characteristics, challenges, and technical assistance needs. J. Ext. 2014, 52, 6FEA1. [Google Scholar]
- USDA-Economic Research Service. Potatoes and Tomatoes Are the Most Commonly Consumed Vegetables. Available online: https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58340 (accessed on 21 December 2021).
- Baskins, S.; Bond, J.; Minor, T. Unpacking the Growth in Per Capita Availability of Fresh Market Tomatoes; USDA-Economic Research Service VGS-19C-01. 2019. Available online: https://www.ers.usda.gov/webdocs/outlooks/92442/vgs-19c-01.pdf?v=430.5 (accessed on 23 February 2022).
- Asgedom, S.; Struik, P.C.; Heuvelink, E.; Araia, W. Opportunities and constraints of tomato production in Eritrea. Afr. J. Agr. Res. 2011, 6, 956–967. [Google Scholar]
- Sesso, H.D.; Liu, S.; Gaziano, J.M.; Buring, J.E. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 2003, 133, 2336–2341. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Cho, E.; Willett, W.C.; Sastry, S.M.; Schaumberg, D.A. Intakes of lutein, zeaxanthin, and other carotenoids and age-related macular degeneration during 2 decades of prospective follow-up. JAMA Ophthalmol. 2015, 133, 1415–1424. [Google Scholar] [CrossRef]
- Rowles, J.L.; Ranard, K.M.; Applegate, C.C.; Jeon, S.; An, R.; Erdman, J.W. Processed and raw tomato consumption and risk of prostate cancer: A systematic review and dose–response meta-analysis. Prostate Cancer Prostatic Dis. 2018, 21, 319–336. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.; Papadopoulos, A. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Luthria, D.; Tareq, F.S.; Kotha, R.R.; Marupaka, R.; Harnly, J.M.; Arlotta, C.G.; Richardson, M.L. Variation of phytochemicals in leaves of seven accessions of Hibiscus sabdariffa grown under field row, green roof and high tunnel conditions. ACS Food Sci. Technol. 2021, 1, 1702–1710. [Google Scholar] [CrossRef]
- Richardson, M.L.; Arlotta, C.G. Differential yield and nutrients of Hibiscus sabdariffa L. genotypes when grown in urban production systems. Sci. Hortic. 2021, 288, 110349. [Google Scholar] [CrossRef]
- Richardson, M.L.; Arlotta, C.G.; Lewers, K.S. Differential production and nutrients of six cultivars of strawberries grown in five urban cropping systems. Sci. Hortic. 2022, 294, 110775. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012; Method 990.08 mod. [Google Scholar]
- SAS Institute. SAS/STAT User’s Guide for Personal Computers; release 9.4.; SAS Institute: Cary, NC, USA, 2020. [Google Scholar]
- Ipe, D. Performing the Friedman Test and the Associated Multiple Comparison Test Using PROC GLM. In Proceedings of the Twelfth Annual SAS Users Group International Conference, Dallas, TX, USA, 8–11 February 1987; SAS Institute: Cary, NC, USA, 1987. [Google Scholar]
- Hodgdon, E.; Noseworthy, J.B.; Sideman, R.G. ‘Rambling Rose’: A pink-fruited cherry tomato for hanging basket production. HortScience 2015, 50, 1255–1256. [Google Scholar] [CrossRef] [Green Version]
- Bénard, C.; Gautier, H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; Weiss, M.; Genard, M. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 2009, 57, 4112–4123. [Google Scholar] [CrossRef]
- Ximénez-Embún, M.G.; Castañera, P.; Ortego, F. Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae. J. Insect Physiol. 2017, 96, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Tabuchi, T. Tomato cultivation in a plant factory with artificial light: Effect of UV-A irradiation during the growing period on yield and quality of ripening fruit. Hortic. J. 2022, 91, 16–23. [Google Scholar] [CrossRef]
- Basra, S.M.A.; Lovatt, C.J. Exogenous applications of moringa leaf extract and cytokinins improve plant growth, yield, and fruit quality of cherry tomato. HortTechnology 2016, 26, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Dunn, B.; Maness, N.; Brandenberger, L.; Carrier, L.; Hu, B. Evaluating performance of cherry and slicer tomato cultivars in greenhouse and open field conditions: Yield and fruit quality. HortScience 2021, 56, 946–953. [Google Scholar] [CrossRef]
Cultivar | p | System Average | ||||||
---|---|---|---|---|---|---|---|---|
System | ‘Terenzo’ | ‘Tumbler’ | ‘Sweet ‘n’ Neat’ | ‘Tiny Tim’ | ‘Red Robin’ | ‘Micro Tom’ | ||
Aquaponic | 456 | 706 | 488 | 332 | 336 | . | 0.02 | 464 |
Hydroponic | 2011 a | 1740 a | 578 b | 386 b | 218 b | 100 b | <0.01 | 871 |
Farm row | 671 ab | 1548 a | 212 b | 70 b | 49 b | 47 b | <0.01 | 450 |
Green roof planters | 1259 | 1375 | 1047 | 1089 | 526 | 753 | <0.01 | 1019 |
Station roof pots | 664 a | 495 ab | 147 ab | 561 ab | 233 ab | 27 b | <0.01 | 369 |
M Street roof pots | 3299 a | 3908 a | 835 bc | 1390 ab | 655 bc | 81 c | <0.01 | 1765 |
Cultivar average | 1393 | 1629 | 551 | 637 | 336 | 181 |
Cultivar | p | System Average | ||||||
---|---|---|---|---|---|---|---|---|
System | ‘Terenzo’ | ‘Tumbler’ | ‘Sweet ‘n’ Neat’ | ‘Tiny Tim’ | ‘Red Robin’ | ‘Micro Tom’ | ||
Aquaponic | 107 (19) | 132 (16) | 39 (7) | 51 (13) | 44 (12) | . | <0.01 | 75 |
Hydroponic | 121 b (6) | 503 a (22) | 116 b (17) | 51 b (12) | 81 b (27) | 43 b (30) | <0.01 | 157 |
Farm rows | 4207 a (86) | 3096 ab (67) | 765 b (78) | 1193 b (94) | 710 b (94) | 63 c (57) | <0.01 | 1742 |
Green roof planters | 882 ab (41) | 1175 a (46) | 465 bc (31) | 227 c (17) | 266 bc (34) | 570 abc (43) | <0.01 | 588 |
Station roof pots | 1025 a (61) | 1239 a (71) | 904 ab (86) | 1088 a (66) | 797 ab (77) | 72 b (72) | <0.01 | 888 |
M Street roof pots | 101 (3) | 181 (4) | 149 (15) | 125 (8) | 252 (28) | 28 (26) | 0.12 | 144 |
Cultivar average | 1064 | 1054 | 406 | 456 | 358 | 139 |
Cultivar | p | |||||||
---|---|---|---|---|---|---|---|---|
System | Mineral | ‘Micro Tom’ | ‘Red Robin’ | ‘Sweet ‘n’ Neat’ | ‘Terenzo’ | ‘Tiny Tim | ‘Tumbler’ | |
Aquaponic | Boron | . | 4.7 | 5.8 | 4.7 | 6.3 | 6.8 | 0.34 |
Calcium | . | 1290 | 1320 | 1170 | 1245 | 1300 | 0.95 | |
Copper | . | 4.0 | 4.1 | 4.0 | 2.9 | 4.5 | 0.04 | |
Iron | . | 34.0 | 32.3 | 52.3 | 42.7 | 63.0 | <0.01 | |
Magnesium | . | 2060 | 2180 | 1857 | 1600 | 2033 | 0.07 | |
Manganese | . | 8.8 | 8.9 | 6.7 | 6.9 | 8.5 | 0.11 | |
Phosphorous | . | 5880 | 6240 | 4767 | 4043 | 5253 | 0.02 | |
Potassium | . | 29,800 | 31,933 | 29,433 | 29,300 | 35,000 | 0.15 | |
Silicon | . | 123.0 | 137.7 | 91.1 | 83.6 | 109.3 | 0.13 | |
Sodium | . | 451 ab | 374 b | 469 ab | 930 a | 533 ab | <0.01 | |
Sulfur | . | 1353 | 1417 | 1283 | 1071 | 1420 | 0.02 | |
Zinc | . | 2.6 | 0.9 | 2.9 | 8.3 | 4.5 | 0.10 | |
Hydroponic | Boron | 8.1 a | 4.3 ab | 3.0 b | 2.6 b | 3.9 ab | 3.5 ab | <0.01 |
Calcium | 2513 | 934 | 1187 | 931 | 1094 | 818 | 0.01 | |
Copper | 8.3 a | 5.0 ab | 4.2 ab | 4.4 ab | 3.6 b | 4.1 ab | <0.01 | |
Iron | 51.7 a | 26.0 b | 25.7 b | 23.0 b | 20.0 b | 23.3 b | <0.01 | |
Magnesium | 2357 | 2053 | 1917 | 2297 | 1793 | 2063 | 0.03 | |
Manganese | 11.5 | 10.1 | 8.4 | 9.2 | 7.7 | 9.8 | 0.17 | |
Phosphorous | 4940 | 5967 | 5153 | 5223 | 5573 | 5370 | 0.36 | |
Potassium | 30,600 ab | 31,000 ab | 26,633 b | 31,767 ab | 32,633 a | 33,000 a | <0.01 | |
Silicon | 84.1 | 130.7 | 145.7 | 121.7 | 121.0 | 94.1 | 0.02 | |
Sodium | 712 ab | 323 ab | 282 b | 344 ab | 909 a | 308 ab | <0.01 | |
Sulfur | 1980 | 1547 | 1387 | 1683 | 1387 | 1437 | 0.10 | |
Zinc | 4.0 | 9.6 | 8.1 | 15.3 | 12.7 | 13.3 | 0.01 | |
Greenroof planters | Boron | 12.7 | 12.3 | 10.7 | . | 10.9 | 10.2 | 0.15 |
Calcium | 3367 a | 2440 ab | 2740 ab | . | 2610 ab | 1434 b | <0.01 | |
Copper | 6.7 | 6.5 | 9.3 | . | 6.7 | 6.2 | 0.53 | |
Iron | 43.0 | 56.7 | 53.7 | . | 48.0 | 43.0 | 0.05 | |
Magnesium | 1897 | 2007 | 1887 | . | 1435 | 1328 | <0.01 | |
Manganese | 16.3 | 18.0 | 17.0 | . | 17.0 | 18.0 | 0.22 | |
Phosphorous | 4967 | 5720 | 5220 | . | 4605 | 4380 | 0.06 | |
Potassium | 27,500 | 25,633 | 24,500 | . | 24,900 | 24,450 | 0.61 | |
Silicon | 46.6 b | 110.3 ab | 120.6 a | . | 76.7 ab | 75.6 ab | <0.01 | |
Sodium | 915 | 1189 | 1157 | . | 2030 | 1247 | 0.25 | |
Sulfur | 2157 ab | 2480 a | 2293 ab | . | 1555 b | 1703 b | <0.01 | |
Zinc | 27.7 | 40.7 | 39.0 | . | 28.5 | 30.5 | 0.01 | |
Station roof pots | Boron | 11.0 | 8.8 | 8.9 | 8.7 | 7.6 | 10.3 | 0.04 |
Calcium | 2353 a | 2100 ab | 1763 abc | 972 abc | 1623 bc | 754 c | <0.01 | |
Copper | 6.6 a | 4.4 ab | 3.8 b | 2.4 b | 2.6 b | 2.6 b | <0.01 | |
Iron | 47.3 a | 45.3 a | 42.3 ab | 29.0 c | 28.7 c | 33.3 bc | <0.01 | |
Magnesium | 2093 a | 2027 a | 1763 ab | 1247 bc | 1113 c | 1413 bc | <0.01 | |
Manganese | 13.7 a | 16.3 a | 12.7 a | 7.2 b | 7.1 b | 8.7 b | <0.01 | |
Phosphorous | 6033 ab | 6313 a | 5460 ab | 4447 b | 4480 b | 4550 ab | <0.01 | |
Potassium | 34,200 | 34,033 | 33,633 | 27,700 | 27,833 | 30,833 | <0.01 | |
Silicon | 56.6 | 60.5 | 58.8 | 34.1 | 46.5 | 33.4 | 0.01 | |
Sodium | 434 b | 354 b | 437 b | 385 b | 782 a | 349 b | <0.01 | |
Sulfur | 2436 a | 2353 a | 2100 ab | 1450 b | 1447 b | 1560 b | <0.01 | |
Zinc | 25.3 | 30.7 | 28.3 | 21.0 | 18.3 | 24.0 | <0.01 | |
M Street roof pots | Boron | 13.0 a | 7.6 b | 8.5 b | 7.8 b | 7.8 b | 8.2 b | <0.01 |
Calcium | 3667 | 2297 | 2070 | 1900 | 2100 | 1510 | 0.01 | |
Copper | 7.2 a | 3.5 ab | 4.1 ab | 3.1 b | 3.3 ab | 4.6 ab | <0.01 | |
Iron | 89.7 a | 50.0 ab | 51.3 ab | 38.7 b | 40.7 b | 42.3 ab | <0.01 | |
Magnesium | 2547 | 2217 | 2017 | 2140 | 1530 | 2073 | 0.02 | |
Manganese | 24.3 | 20.0 | 22.7 | 17.0 | 12.7 | 16.7 | 0.15 | |
Phosphorous | 6040 | 6533 | 6797 | 5917 | 5723 | 6030 | 0.37 | |
Potassium | 32,467 | 35,300 | 31,633 | 35,167 | 33,833 | 37,000 | 0.42 | |
Silicon | 12.0 | 11.3 | 6.3 | 6.7 | 13.3 | 7.3 | 0.47 | |
Sodium | 585 | 453 | 460 | 348 | 918 | 292 | <0.01 | |
Sulfur | 1903 ab | 1903 ab | 2330 a | 1837 ab | 1457 b | 1737 ab | <0.01 | |
Zinc | 17.7 | 28.7 | 31.0 | 18.7 | 17.0 | 17.3 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, M.L.; Arlotta, C.G. Producing Cherry Tomatoes in Urban Agriculture. Horticulturae 2022, 8, 274. https://doi.org/10.3390/horticulturae8040274
Richardson ML, Arlotta CG. Producing Cherry Tomatoes in Urban Agriculture. Horticulturae. 2022; 8(4):274. https://doi.org/10.3390/horticulturae8040274
Chicago/Turabian StyleRichardson, Matthew L., and Caitlin G. Arlotta. 2022. "Producing Cherry Tomatoes in Urban Agriculture" Horticulturae 8, no. 4: 274. https://doi.org/10.3390/horticulturae8040274
APA StyleRichardson, M. L., & Arlotta, C. G. (2022). Producing Cherry Tomatoes in Urban Agriculture. Horticulturae, 8(4), 274. https://doi.org/10.3390/horticulturae8040274