Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment
Abstract
:1. Climate Change Scenario and Production, Mitigation, Resilience of Woody Fruit Plants
1.1. General Considerations
1.2. Environmental Effects
1.3. Overview on Effects on Woody Crops
2. Methods
3. Evergreen Trees
3.1. Citrus
3.2. Olive (Olea europaea L.)
3.3. Loquat (Eriobotrya japonica Lindl.)
4. Deciduous Trees
4.1. Grape (Vitis vinifera L.)
4.2. Apple (Malus communis L.)
4.3. Pear (Pyrus communis L.)
4.4. Almond (Prunus dulcis Mill.)
4.5. Peach (Prunus persica L. Batsch)
4.6. Apricot (Prunus armeniaca L.)
4.7. Cherry Species
4.8. Fig (Ficus carica L.)
4.9. Persimmon (Diospyros kaki L.)
4.10. Kiwi (Actinidia spp.)
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tosti, V.; Bertozzi, B.; Fontana, L. The Mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 73, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponti, L.; Gutierrez, A.P.; Boggia, A.; Neteler, M. Analysis of grape production in the face of climate change. Climate 2018, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Funes, I.; Aranda, X.; Biel, C.; Carbó, J.; Camps, F.; Molina, A.J.; Savé, R. Future climate Change impacts on apple flowering date in a Mediterranean subbasin. Agric. Water Manag. 2016, 164, 19–27. [Google Scholar] [CrossRef]
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/ (accessed on 30 September 2021).
- Romagnolo, D.F.; Selmin, O.I. Mediterranean diet and prevention of chronic diseases. Nutrition 2017, 52, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espadas-Aldana, G.; Vialle, C.; Belaud, J.P.; Vaca-Garcia, C.; Sablayrolles, C. Analysis and trends for Life Cycle Assessment of olive oil production. Sustain. Prod. Consum. 2019, 19, 2. [Google Scholar] [CrossRef] [Green Version]
- Salama, A.M.; Ezzat, A.; El-Ramady, H.; Alam-Eldein, S.M.; Okba, S.; Elmenofy, H.M.; Holb, I.J. Temperate Fruit Trees under Climate Change: Challenges for Dormancy and Chilling Requirements in Warm Winter Regions. Horticulturae 2021, 7, 86. [Google Scholar] [CrossRef]
- Proietti, I.; Frazzoli, C.; Mantovani, A. Exploiting nutritional value of staple foods in the world’s semi-arid areas: Risks, benefits, challenges and opportunities of sorghum. Healthcare 2015, 3, 172–193. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, C.J.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the challenges of avoiding a ghastly future. Front Conserv. Sci. 2021, 1, 9. [Google Scholar] [CrossRef]
- Andrade, C.; Contente, J.; Santos, J.A. Climate Change Projections of Aridity Conditions in the Iberian Peninsula. Water 2021, 13, 2035. [Google Scholar] [CrossRef]
- Sunil, A.; Deepthi, B.; Mirajkar, A.B.; Adarsh, S. Modeling future irrigation water demands in the context of climate change: A case study of Jayakwadi command area, India. MESE 2021, 7, 1963–1977. [Google Scholar] [CrossRef]
- Müller, C.; Franke, J.; Jägermeyr, J.; Ruane, A.C.; Elliott, J.; Moyer, E.; Zabel, F. Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 2021, 16, 034040. [Google Scholar] [CrossRef]
- Wang, D.; Jenkins, K.; Forstenhäusler, N.; Lei, T.; Price, J.; Warren, R.; Jenkins, R.; Guan, D. Economic impacts of climate-induced crop yield changes: Evidence from agri-food industries in six countries. Clim. Chang. 2021, 166, 1–19. [Google Scholar] [CrossRef]
- Morianou, G.; Ziogas, V.; Kourgialas, N.N.; Karatzas, G.P. Effect of irrigation practices upon yield and fruit quality of four grapefruit (Citrus paradisi Mac.) cultivars. Water Supply 2021, 21, 2735–2747. [Google Scholar] [CrossRef]
- Luh, Y.H.; Chang, Y.C. Effect of Climate Change on Staple Food Production: Empirical Evidence from a Structural Ricardian Analysis. Agronomy 2021, 11, 369. [Google Scholar] [CrossRef]
- Atreya, P.N.; Kaphle, M. Visible evidence of climate Change and its impact on fruit production in Nepal. Int. J. Agric. Environ. Food Sci. 2020, 4, 200–208. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Chang. 2021 The Physical Science Basis; Masson Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Casson, N.J.; Contosta, A.R.; Burakowski, E.A.; Campbell, J.L.; Crandall, M.S.; Creed, I.F.; Eimers, S.; Garlick, D.A.; Lutz, M.Q.; Morison, A.T.; et al. Winter weather whiplash: Impacts of meteorological events misaligned with natural and human Systems in Seasonally Snow-Covered Regions. Earth’s Future 2019, 7, 1434–1450. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendía, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; 2019; in press; Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 7 February 2022).
- Vyshkvarkova, E.; Rybalko, E.; Marchukova, O.; Baranova, N. Assessment of the Current and Projected Conditions of Water Availability in the Sevastopol Region for Grape Growing. Agronomy 2021, 11, 1665. [Google Scholar] [CrossRef]
- Höfer, M.; Giovannini, D. Phenotypic characterization and evaluation of European cherry collections: A survey to determine the most commonly used descriptors. J. Hortic. Res. 2017, 1, 7–12. [Google Scholar]
- Fraga, H.; Santos, J.A. Assessment of Climate Change Impacts on Chilling and Forcing for the Main Fresh Fruit Regions in Portugal. Front Plant Sci. 2021, 12, 1263. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; 2018. in press. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 7 February 2022).
- Inague, G.M.; Zwiener, V.P.; Marques, M.C. Climate Change Threatens the woody plant taxonomic and functional diversities of the Restinga vegetation in Brazil. Perspect. Ecol. Conserv. 2021, 19, 53–60. [Google Scholar] [CrossRef]
- Delgado, A.; Egea, J.A.; Luedeling, E.; Dapena, E. Agroclimatic requirements and phenological responses to climate Change of local apple cultivars in northwestern Spain. Sci. Hortic. 2021, 283, 110093. [Google Scholar] [CrossRef]
- Sippel, S.; Meinshausen, N.; Fischer, E.M.; Székely, E.; Knutti, R. Climate Change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 2020, 10, 35–41. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thach, L. The impact of climate Change on the global wine industry: Challenges & solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar]
- Antolín, M.C.; Toledo, M.; Pascual, I.; Irigoyen, J.J.; Goicoechea, N. The Exploitation of local Vitis vinifera L. biodiversity as a valuable tool to cope with climate Change maintaining berry quality. Plants 2021, 10, 71. [Google Scholar] [CrossRef]
- Arrizabalaga-Arriazu, M.; Morales, F.; Irigoyen, J.J.; Hilbert, G.; Pascual, I. Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate Change scenarios: Elevated CO2 and temperature. J. Plant Physiol. 2020, 252, 153226. [Google Scholar] [CrossRef] [PubMed]
- Seleiman Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- De Ollas, C.; Morillón, R.; Fotopoulos, V.; Puértolas, J.; Ollitrault, P.; Gómez-Cadenas, A.; Arbona, V. Facing climate change: Biotechnology of iconic Mediterranean woody crops. Front. Plant Sci. 2019, 10, 427. [Google Scholar] [CrossRef]
- Mitra, S. Guava: Botany, Production and Uses; CABI: New Delhi, India, 2021; p. 187. [Google Scholar]
- Ettinger, A.K.; Chamberlain, C.J.; Morales-Castilla, I.; Buonaiuto, D.M.; Flynn, D.F.B.; Savas, T.; Samaha, J.A.; Wolkovich, E.M. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Chang. 2020, 10, 1137–1142. [Google Scholar] [CrossRef]
- Romero, H.; Pott, D.M.; Vallarino, J.G.; Osorio, S. Metabolomics-Based Evaluation of Crop Quality Changes as a Consequence of Climate Change. Metabolites 2021, 11, 461. [Google Scholar] [CrossRef]
- Fares, A.; Bayabil, H.K.; Zekri, M.; Mattos, D., Jr.; Awal, R. Potential climate Change impacts on citrus water requirement across major producing areas in the world. J. Water Clim. Chang. 2017, 8, 576–592. [Google Scholar] [CrossRef] [Green Version]
- Urbaneja-Bernat, P.; Ibáñez-Gual, V.; Montserrat, M.; Aguilar-Fenollosa, E.; Jaques, J.A. Can interactions among predators alter the natural regulation of an herbivore in a climate Change scenario? The case of Tetranychus urticae and its predators in citrus. J. Pest. Sci. 2019, 92, 1149–1164. [Google Scholar] [CrossRef]
- Heyman, L.; Chrysargyris, A.; Demeestere, K.; Tzortzakis, N.; Höfte, M. Responses to drought stress modulate the susceptibility to Plasmopara viticola in Vitis vinifera self-rooted cuttings. Plants 2021, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Glenn, M.; Kim, S.H.; Ramirez-Villegas, J.; Laderach, P. Response of perennial horticultural crops to climate change. Hortic. Rev. 2013, 41, 47–130. [Google Scholar]
- Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M.W.; Fischer, A.M.; Duffy, B.; Samietz, J. Downscaling climate Change scenarios for apple pest and disease modeling in Switzerland. Earth Syst. Dyn. 2012, 3, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Morton, E.M.; Rafferty, N.E. Plant–pollinator interactions under climate change: The use of spatial and temporal transplants. Appl. Plant Sci. 2017, 5, 1600133. [Google Scholar] [CrossRef]
- Klein, T.; Zeppel, M.J.; Anderegg, W.R.; Bloemen, J.; De Kauwe, M.G.; Hudson, P.; Ruehr, N.K.; Powell, T.L.; von Arx, G.; Nardini, A. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: Processes and trade-offs. Ecol. Res. 2018, 33, 839–855. [Google Scholar] [CrossRef]
- Matallana-Ramirez, L.P.; Whetten, R.W.; Sanchez, G.M.; Payn, K.G. Breeding for Climate Change Resilience: A Case Study of Loblolly Pine (Pinus taeda L.) in North America. Front Plant Sci. 2011, 12, 790. [Google Scholar] [CrossRef]
- Qaderi, M.M.; Martel, A.B.; Dixon, S.L. Environmental factors influence plant vascular system and water regulation. Plants 2019, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Šircelj, H.; Tausz, M.; Grill, D.; Batič, F. Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. J. Plant Phys. 2005, 162, 1308–1318. [Google Scholar] [CrossRef]
- Pájaro-Esquivia, Y.S.; Domínguez-Haydar, Y.; Tinoco-Ojanguren, C. Intraspecific variation in morpho-functional traits and plastic response to water and light in seedlings of Aspidosperma polyneuron (Apocynaceae). Flora 2021, 282, 151903. [Google Scholar] [CrossRef]
- Stotz, G.C.; Salgado-Luarte, C.; Escobedo, V.M.; Valladares, F.; Gianoli, E. Global trends in phenotypic plasticity of plants. Ecol. Lett. 2021, 24, 2267–2281. [Google Scholar] [CrossRef] [PubMed]
- Pivovaroff, A.L.; Pasquini, S.C.; de Guzman, M.E.; Alstad, K.P.; Stemke, J.S.; Santiago, L.S. Multiple strategies for drought survival among woody plant species. Funct. Ecol. 2016, 30, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [Green Version]
- Borghi, M.; de Perez Souza, L.; Yoshida, T.; Fernie, A.R. Flowers and climate change: A metabolic perspective. New Phytol. 2019, 224, 1425–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Griffin, T.S.; Kraner, D.; Schaffner, M.K.; Sharma, D.; Hazel, M.; Leitch, A.R.; Orians, C.M.; Han, W.; Stepp, J.R.; et al. Environmental factors variably impact tea secondary metabolites in the context of climate change. Front. Plant Sci. 2019, 10, 939. [Google Scholar] [CrossRef] [Green Version]
- Teklić, T.; Parađiković, N.; Špoljarević, M.; Zeljković, S.; Lončarić, Z.; Lisjak, M. Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann. Appl. Biol. 2021, 178, 169–191. [Google Scholar] [CrossRef]
- Chaudhry, S.; Sidhu, G.P.S. Climate Change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2021, 41, 1–31. [Google Scholar] [CrossRef]
- Villate, A.; San Nicolas, M.; Gallastegi, M.; Aulas, P.A.; Olivares, M.; Usobiaga, A.; Etxebarria, N.; Aizpurua-Olaizola, O. Metabolomics as a prediction tool for plants performance under environmental stress. Plant Sci. 2020, 303, 110789. [Google Scholar] [CrossRef]
- Luro, F.; Garcia Neves, C.; Costantino, G.; da Silva Gesteira, A.; Paoli, M.; Ollitrault, P.; Gibernau, M. Effect of environmental conditions on the yield of peel and composition of essential oils from citrus cultivated in Bahia (Brazil) and Corsica (France). Agronomy 2020, 10, 1256. [Google Scholar] [CrossRef]
- Pool, S.; Francés, F.; Garcia-Prats, A.; Puertes, C.; Pulido-Velazquez, M.; Sanchis-Ibor, C.; Jiménez-Martínez, J. Hydrological Modeling of the Effect of the Transition from Flood to Drip Irrigation on Groundwater Recharge Using Multi-Objective Calibration. Water Resour. Res. 2021, 57, e2021WR029677. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Jia, X.M.; Zheng, Y.Q.; He, S.L.; Deng, L.; Ma, Y.; Xie, R.; Yi, S.; Qiang, L. Fruit yield and quality response of Newhall navel orange to different irrigation regimes and ground cover in Chongqing Three Gorges Reservoir area. Sci. Hortic. 2018, 241, 57–64. [Google Scholar] [CrossRef]
- Bouchaou, L.; Choukr-Allah, R.; Hirich, A.; Seif-Ennasr, M.; Malki, M.; Abahous, H.; Nghira, A. Climate Change and water valuation in Souss-Massa region: Management and adaptive measures. Eur. Water 2017, 60, 203–209. [Google Scholar]
- Hondebrink, M.A.; Cammeraat, L.H.; Cerdà, A. The impact of agricultural management on selected soil properties in citrus orchards in Eastern Spain: A comparison between conventional and organic citrus orchards with drip and flood irrigation. Sci. Total Environ. 2017, 581, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Bastida, F.; Torres, I.F.; Romero-Trigueros, C.; Baldrian, P.; Větrovský, T.; Bayona, J.M.; Nicolás, E. Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions. Soil. Biol. Biochem. 2017, 104, 226–237. [Google Scholar] [CrossRef]
- Elomari, H.; Fallah, M.; Elmousadik, A. Effect of irrigation methods on water use efficiency applied to citrus crop in the Souss region (Morocco) in the context of climate change. Int. J. Agric. Biol. Eng. 2016, 9, 1308–1313. [Google Scholar]
- Shafqat, W.; Naqvi, S.A.; Maqbool, R.; Haider, M.S.; Jaskani, M.J.; Khan, I.A. Climate Change and Citrus. In Citrus-Research, Development and Biotechnology; Khan, M.S., Khan, I.A., Eds.; IntechOpen: London, UK, 2021; p. 147. [Google Scholar]
- Sato, K. Influence of drought and high temperature on citrus. In Abiotic Stress Biology in Horticultural Plants; Kanayama, Y., Kochetov, A., Eds.; Springer: Tokyo, Japan, 2015; pp. 77–86. [Google Scholar]
- Lourkisti, R.; Oustric, J.; Quilichini, Y.; Froelicher, Y.; Herbette, S.; Morillon, R.; Berti, L.; Santini, J. Improved response of triploid citrus varieties to water deficit is related to anatomical and cytological properties. Plant Physiol. Biochem. 2021, 162, 762–775. [Google Scholar] [CrossRef]
- Dovjik, I.; Nemera, D.B.; Cohen, S.; Shahak, Y.; Shlizerman, L.; Kamara, I.; Florentin, A.; Ratner, K.; McWilliam, S.C.; Puddephat, I.J.; et al. Top Photoselective Netting in Combination with Reduced Fertigation Results in Multi-Annual Yield Increase in Valencia Oranges (Citrus sinensis). Agronomy 2021, 11, 2034. [Google Scholar] [CrossRef]
- Flora, G.N.; Babu, J.D.; Lakshmi, L.M.; Swami, D.V.; Suneetha, S. Effect of anti-transpirants on the transpiration rate and photosynthetic index of sweet orange (Citrus sinensis L. Osbeck). J. Pharmacogn. Phytochem. 2020, 9, 3011–3017. [Google Scholar]
- Nawaz, R.; Abbasi, N.A.; Hafiz, I.A.; Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour × Citrus deliciosa Tenora) grown at different ecological zones under climate Change scenario. Sci. Hortic. 2020, 260, 108868. [Google Scholar] [CrossRef]
- Alhader, M.M.; Hafez, M.S. The Effect of Some Climatic Variables and Frosts Waves on Citrus Crops. Al Adab. J. 2021, 1, 51–66. [Google Scholar] [CrossRef]
- Montalt, R.; Vives, M.C.; Navarro, L.; Ollitrault, P.; Aleza, P. Parthenocarpy and self-incompatibility in Mandarins. Agronomy 2021, 11, 2023. [Google Scholar] [CrossRef]
- Aloisi, I.; Distefano, G.; Antognoni, F.; Potente, G.; Parrotta, L.; Faleri, C.; Gentile, A.; Bennici, S.; Mareri, L.; Cai, G.; et al. Temperature-dependent compatible and incompatible pollen-style interactions in Citrus clementina Hort. ex Tan. Show different transglutaminase features and polyamine pattern. Front. Plant Sci. 2020, 11, 1018. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.P.; Zhou, H.F.; Zhang, L.C. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci. Hortic. 2006, 108, 260–267. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Zacarias, L.; Martínez-Téllez, M.A.; Sanchez-Ballesta, M.T.; Dupille, E. Phenylalanine ammonia-lyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. J. Agric. Food Chem. 2001, 49, 6020–6025. [Google Scholar] [CrossRef]
- Shi, F.; Li, X.; Meng, H.; Wei, W.; Wang, Y. Reduction in chilling injury symptoms by hot electrolyzed functional water treatment may function by regulating ROS metabolism in Satsuma orange fruit. LWT 2020, 125, 109218. [Google Scholar] [CrossRef]
- Rey, F.; Zacarías, L.; Rodrigo, M.J. Carotenoids, vitamin C, and antioxidant capacity in the peel of mandarin fruit in relation to the susceptibility to chilling injury during postharvest cold Storage. Antioxidants 2020, 9, 1296. [Google Scholar] [CrossRef]
- Flora, G.N.; Babu, J.D.; Lakshmi, L.M.; Swami, D.V.; Suneetha, S. Effect of bioregulators on the transpiration rate and photosynthetic index of sweet orange (Citrus sinensis L. Osbeck). J. Pharm. Innov. 2020, 9, 513–518. [Google Scholar]
- Raddatz-Mota, D.; Barbosa-Martínez, C.; Jacuinde-Guzmán, J.K.; Alia-Tejacal, I.; Soriano-Melgar, L.D.A.A.; Rivera-Cabrera, F. Oleocellosis development in Persian lime (Citrus latifolia T.) fruit influenced by citrus rootstock. Sci. Hortic. 2020, 271, 109461. [Google Scholar] [CrossRef]
- Xie, J.; Deng, L.; Zhou, Y.; Yao, S.; Zeng, K. Analysis of changes in volatile constituents and expression of genes involved in terpenoid metabolism in oleocellosis peel. Food Chem. 2018, 243, 269–276. [Google Scholar] [CrossRef]
- Malik, A.U.; Hasan, M.U.; Khalid, S.; Mazhar, M.S.; Shafique, M.; Khalid, M.N.K.; Anwar, R. Biotic and abiotic factors causing rind blemishes in citrus and management strategies to improve the cosmetic quality of fruits. Int. J. Agric. Biol. 2021, 25, 298–318. [Google Scholar] [CrossRef]
- Khefifi, H.; Selmane, R.; Ben Mimoun, M.; Tadeo, F.; Morillon, R.; Luro, F. Abscission of Orange Fruit (Citrus sinensis L. Osb.) in the Mediterranean Basin depends more on environmental conditions than on fruit ripeness. Agronomy 2020, 10, 591. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, M.; Basumatary, M. Estimation of the chlorophyll concentration in seven Citrus species of Kokrajhar district, BTAD, Assam, India. Trop. Plant Res. 2018, 5, 83–87. [Google Scholar] [CrossRef]
- Fathi, A.; Tari, D.B. Effect of drought stress and its mechanism in plants. Int. J. Life Sci. 2016, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Brar, H.S.; Thakur, A.; Singh, H.; Kaur, N. Photoselective coverings influence plant growth, root development, and buddability of citrus plants in protected nursery. Acta Physiol. Plant 2020, 42, 1–15. [Google Scholar] [CrossRef]
- Balfagón, D.; Zandalinas, S.I.; Mittler, R.; Gómez-Cadenas, A. High temperatures modify plant responses to abiotic stress conditions. Physiol. Plant 2020, 170, 335–344. [Google Scholar] [CrossRef]
- Chelong, I.A.; Sdoodee, S. Pollen viability, pollen germination and pollen tube growth of shogun (Citrus reticulate Blanco) under climate variability in southern Thailand. J. Agric. Technol. 2012, 8, 2297–2307. [Google Scholar]
- Khadivi-Khub, A. Physiological and genetic factors influencing fruit cracking. Acta Physiol. Plant 2015, 37, 1–14. [Google Scholar] [CrossRef]
- Juan, L.I.; Jiezhong, C. Citrus fruit-cracking: Causes and occurrence. Hortic. Plant J. 2017, 3, 255–260. [Google Scholar] [CrossRef]
- Sadka, A.; Shlizerman, L.; Kamara, I.; Blumwald, E. Primary metabolism in citrus fruit as affected by its unique structure. Front Plant Sci. 2019, 10, 1167. [Google Scholar] [CrossRef]
- Rehman, F. Citrus leprosis and its impacts on citrus food industry: A review. EC Agric. 2020, 6, 34–39. [Google Scholar]
- Lado, J.; Alós, E.; Manzi, M.; Cronje, P.J.; Gómez-Cadenas, A.; Rodrigo, M.J.; Zacarías, L. Light regulation of carotenoid biosynthesis in the peel of mandarin and sweet orange fruits. Front. Plant Sci. 2019, 10, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshita, Y. Effect of temperature on fruit color development. In Abiotic Stress Biology in Horticultural Plants; Kanayama, Y., Kochetov, A., Eds.; Springer: Tokyo, Japan, 2015; pp. 47–58. [Google Scholar]
- Ma, G.; Zhang, L.; Kato, M.; Yamawaki, K.; Kiriiwa, Y.; Yahata, M.; Matsumoto, H. Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. Postharvest Biol. Tec. 2015, 99, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Yang, C.; Zhang, L.; Feng, J.; Xi, W. Effect of light-emitting diodes and ultraviolet irradiation on the soluble sugar, organic acid, and carotenoid content of postharvest sweet oranges (Citrus sinensis L. Osbeck). Molecules 2019, 24, 3440. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Zhang, L.; Kitaya, Y.; Seoka, M.; Kudaka, R.; Yahata, M.; Kato, M. Blue LED light induces regreening in the flavedo of Valencia orange in vitro. Food Chem. 2021, 335, 127621. [Google Scholar] [CrossRef]
- Lo Piero, A.R.; Puglisi, I.; Rapisarda, P.; Petrone, G. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J. Agric. Food Chem. 2005, 53, 9083–9088. [Google Scholar] [CrossRef]
- Carmona, L.; Alquézar, B.; Marques, V.V.; Peña, L. Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures. Food Chem. 2017, 237, 7–14. [Google Scholar] [CrossRef]
- Lado, J.; Gambetta, G.; Zacarias, L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 2018, 233, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Hernández, M.L.; Sicardo, M.D.; Belaj, A.; Martínez-Rivas, J.M. The Oleic/Linoleic Acid Ratio in Olive (Olea europaea L.) Fruit Mesocarp Is Mainly Controlled by OeFAD2-2 and OeFAD2-5 Genes Together with the Different Specificity of Extraplastidial Acyltransferase Enzymes. Front. Plant Sci. 2021, 12, 345. [Google Scholar] [CrossRef]
- García-Inza, G.P.; Castro, D.N.; Hall, A.J.; Rousseaux, M.C. Opposite oleic acid responses to temperature in oils from the seed and mesocarp of the olive fruit. Eur. J. Agron. 2016, 76, 138–147. [Google Scholar] [CrossRef]
- Rallo, L.; Díez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- Orlandi, F.; Rojo, J.; Picornell, A.; Oteros, J.; Pérez-Badia, R.; Fornaciari, M. Impact of climate Change on olive crop production in Italy. Atmosphere 2020, 11, 595. [Google Scholar] [CrossRef]
- Benlloch-González, M.; Sánchez-Lucas, R.; Benlloch, M.; Ricardo, F.E. An approach to global warming effects on flowering and fruit set of olive trees growing under field conditions. Sci. Hortic. 2018, 240, 405–410. [Google Scholar] [CrossRef]
- Branquinho, S.; Rolim, J.; Teixeira, J.L. Climate Change Adaptation Measures in the Irrigation of a Super-Intensive Olive Orchard in the South of Portugal. Agronomy 2021, 11, 1658. [Google Scholar] [CrossRef]
- Fraga, H.; Guimarães, N.; Freitas, T.R.; Malheiro, A.C.; Santos, J.A. Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy 2022, 12, 350. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Searles, P.; Rousseaux, M.C.; García-Inza, G.; Miserere, A.; Maestri, D. Olive cultivation in the southern hemisphere: Flowering, water requirements and oil quality responses to new crop environments. Front Plant Sci. 2017, 8, 1830. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Climate Change projections for chilling and heat forcing conditions in European vineyards and olive orchards: A multi-model assessment. Clim. Chang. 2019, 152, 179–193. [Google Scholar] [CrossRef]
- Miserere, A.; Searles, P.S.; Manchó, G.; Maseda, P.H.; Rousseaux, M.C. Sap flow responses to warming and fruit load in young olive trees. Front. Plant Sci. 2019, 10, 1199. [Google Scholar] [CrossRef]
- Miserere, A.; Rousseaux, M.C.; Ploschuk, E.L.; Brizuela, M.M.; Curcio, M.H.; Zabaleta, R.; Searles, P.S. Effects of prolonged elevated temperature on leaf gas exchange and other leaf traits in young olive trees. Tree Physiol. 2020, 41, 254–268. [Google Scholar] [CrossRef]
- Baccari, S.; Elloumi, O.; Chaari-Rkhis, A.; Fenollosa, E.; Morales, M.; Drira, N.; Ben Abdallah, F.; Fki, L.; Munné-Bosch, S. Linking Leaf Water Potential, Photosynthesis and Chlorophyll Loss with Mechanisms of Photoand Antioxidant Protection in Juvenile Olive Trees Subjected to Severe Drought. Front. Plant Sci. 2020, 11, 614144. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.; Dinis, L.T.; Moutinho-Pereira, J.; Correia, C.M. Drought stress effects and olive tree acclimation under a changing climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mafrica, R.; Piscopo, A.; de Bruno, A.; Poiana, M. Effects of Climate on Fruit Growth and Development on Olive Oil Quality in Cultivar Carolea. Agriculture 2021, 11, 147. [Google Scholar] [CrossRef]
- Benlloch-González, M.; Sánchez-Lucas, R.; Bejaoui, M.A.; Benlloch, M.; Escoba, F. Global warming effects on yield and fruit maturation of olive trees growing under field conditions. Sci. Hortic. 2019, 249, 162–167. [Google Scholar] [CrossRef]
- Caruso, G.; Gucci, R.; Sifola, M.I.; Selvaggini, R.; Urbani, S.; Esposto, S.; Tattichi, A.; Servili, M. Irrigation and fruit canopy position modify oil quality of olive trees (cv. Frantoio). J. Sci. Food Agric. 2017, 97, 3530–3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán, G.; Jiménez, A.; del Rio, C.; Sánchez, S.; Martínez, L.; Uceda, M.; Aguilera, M.P. Variability of vitamin E in virgin olive oil by agronomical and genetic factors. J. Food Compos. Anal. 2010, 23, 633–639. [Google Scholar] [CrossRef]
- Tura, D.; Failla, O.; Bassi, D.; Pedo, S.; Serraiocco, A. Environmental and seasonal influence on virgin olive (Olea europaea L.) oil volatiles in northern Italy. Sci. Hortic. 2009, 122, 385–392. [Google Scholar] [CrossRef]
- Ben-Ari, G.; Biton, I.; Many, Y.; Namdar, D.; Samach, A. Elevated Temperatures Negatively Affect Olive Productive Cycle and Oil Quality. Agronomy 2021, 11, 1492. [Google Scholar] [CrossRef]
- Criado-Navarro, I.; López-Bascón, M.A.; Priego-Capote, F. Evaluating the variability in the phenolic concentration of extra virgin olive oil according to the Commission Regulation (EU) 432/2012 health claim. J. Agric. Food Chem. 2020, 68, 9070–9080. [Google Scholar] [CrossRef]
- Ziogas, V.; Tanou, G.; Molassiotis, A.; Diamantidis, G.; Vasilakakis, M. Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem. 2010, 120, 1097–1103. [Google Scholar] [CrossRef]
- Fortes, A.M.; Agudelo-Romero, P.; Pimentel, D.; Alkan, N. Transcriptional modulation of polyamine metabolism in fruit species under abiotic and biotic stress. Front Plant Sci. 2019, 10, 816. [Google Scholar] [CrossRef] [PubMed]
- Stellfeldt, A.; Maldonado, M.A.; Hueso, J.J.; Cuevas, J. Gas ex Change and water relations of young potted loquat cv. Algerie under progressive drought conditions. J. Integr. Agric. 2018, 17, 1360–1368. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, X.; Sun, C.; Li, X.; Chen, K. Phenolic composition from different loquat (Eriobotrya japonica L.) cultivars grown in China and their antioxidant properties. Molecules 2015, 20, 542–555. [Google Scholar] [CrossRef]
- Ercisli, S.; Gozlekci, S.; Sengul, M.; Hegedus, A.; Tepe, S. Some physicochemical characteristics, bioactive content and antioxidant capacity of loquat (Eriobotrya japonica (Thunb.) L.) fruits from Turkey. Sci. Hortic. 2012, 148, 185–189. [Google Scholar] [CrossRef]
- Cuevas, J.; Canete, M.L.; Pinillos, V.; Zapata, A.J.; Fernandez, M.D.; Gonzalez, M.; Hueso, J.J. Optimal dates for regulated deficit irrigation in ‘Algerie’ loquat (Eriobotrya japonica L.) cultivated in Southeast Spain. Agric. Water Manag. 2007, 89, 131–136. [Google Scholar] [CrossRef]
- Zeng, J.K.; Li, X.; Zhang, J.; Ge, H.; Yin, X.R.; Chen, K.S. Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. Plant Cell Environ. 2016, 39, 1780–1789. [Google Scholar] [CrossRef]
- Cai, C.; Xu, C.J.; Shan, L.L.; Li, X.; Zhou, C.H.; Zhang, W.S.; Ferguson, I.; Chen, K.S. Low temperature conditioning reduces postharvest chilling injury in loquat fruit. Postharvest. Biol. Tec. 2006, 41, 252–259. [Google Scholar] [CrossRef]
- Gugliuzza, G.; Talluto, G.; Martinelli, F.; Farina, V.; Lo Bianco, R. Water deficit affects the growth and leaf metabolite composition of young loquat plants. Plants 2020, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.S.; Tripathi, A.; Nimbolkar, P.K. Review on physiological disorders of tropical and subtropical fruits: Causes and management approach. Int. J. Agric. Environ. Biotechnol. 2016, 9, 925–935. [Google Scholar] [CrossRef]
- Cuevas, J.; Hueso, J.J.; Rodríguez, M.C. Deficit irrigation as a tool for manipulating flowering date in loquat (Eriobotrya japonica Lindl.). In Agricultural Water Management Research Trends; Sorensen, M.L., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2008; pp. 237–253. [Google Scholar]
- Cuevas, J.; Pinillos, V.; Pérez-Macías, M.; Alonso, F.; González, M.; Hueso, J.J. Water-Stressed Loquat Trees Need More Time and Heat to Ripen Their Fruits. Agronomy 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Hueso, J.J.; Cuevas, J. Ten consecutive years of regulated deficit irrigation probe the sustainability and profitability of this water saving strategy in loquat. Agric. Water Manag. 2010, 97, 645–650. [Google Scholar] [CrossRef]
- Ballester, C.; Buesa, I.; Soler, E.; Besada, C.; Salvador, A.; Bonet, L.; Intrigliolo, D.S. Postharvest regulated deficit irrigation in early-and intermediate-maturing loquat trees. Agric. Water Manag. 2005, 205, 1–8. [Google Scholar] [CrossRef]
- Ahmad, S.; Khalofah, A.; Khan, S.A.; Khan, K.A.; Jilani, M.J.; Hussain, T.; Skalicky, M.; Ghramh, H.A.; Ahmad, Z. Effects of native pollinator communities on the physiological and chemical parameters of loquat tree (Eriobotrya japonica) under open field condition. Saudi J. Biol. Sci. 2021, 28, 3235–3241. [Google Scholar] [CrossRef] [PubMed]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Schultz, H.R. A review of the potential climate Change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Castellarin, S.D. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Front. Plant Sci. 2021, 12, 262. [Google Scholar] [CrossRef]
- Delrot, S.; Grimplet, J.; Carbonell-Bejerano, P.; Schwandner, A.; Bert, P.F.; Bavaresco, L.; Dalla Costa, L.; Di Gaspero, G.; Duchêne, E.; Hausmann, L.; et al. Genetic and genomic approaches for adaptation of grapevine to climate change. In Genomic Designing of Climate-Smart Fruit Crops; Springer: Cham, Switzerland, 2020; pp. 157–270. [Google Scholar]
- Ubeda, C.; Hornedo-Ortega, R.; Cerezo, A.B.; Garcia-Parrilla, M.C.; Troncoso, A.M. Chemical hazards in grapes and wine, climate Change and challenges to face. Food Chem. 2020, 314, 126222. [Google Scholar] [CrossRef]
- Beech, N.; Hewer, M.J. A Climate Change Impact Assessment (CCIA) of Key Indicators and Critical Thresholds for Viticulture and Oenology in the Fraser Valley, British Columbia, Canada. Weather Clim. Soc. 2021, 13, 687–705. [Google Scholar] [CrossRef]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 777–803. [Google Scholar] [CrossRef]
- Ashenfelter, O.; Storchmann, K. Climate Change and wine: A review of the economic implications. J. Wine Econ. 2016, 11, 105–138. [Google Scholar] [CrossRef]
- Mihailescu, E.; Bruno Soares, M. The Influence of Climate on Agricultural Decisions for Three European Crops: A Systematic Review. Front. Sustain. Food Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Borsani, O.; Gonzalez-Neves, G.; Ferrer, M.; Monza, J. Anthocyanins accumulation and genes-related expression in berries of cv. Tannat (Vitis vinifera L.). J. Appl. Hortic. 2010, 12, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Graça, A.; Fontes, N.; Teixeira, M.; Gerós, H.; Santos, J.A. The interplay between atmospheric conditions and grape berry quality parameters in Portugal. Appl. Sci. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Zhu, L.; Huang, Y.; Lu, J. Influence of growing season on phenolic compounds and antioxidant properties of grape berries from vines grown in subtropical climate. J. Agric. Food Chem. 2011, 59, 1078–1086. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.T.; Tombesi, S. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Gouot, J.; Smith, J.P.; Holzapfel, B.P.; Walker, A.R.; Barril, C. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. J. Exp. Bot. 2019, 70, 397–423. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Chrysargyris, A.; Aziz, A. Adaptive response of a native mediterranean grapevine cultivar upon short-term exposure to drought and heat stress in the context of climate change. Agronomy 2020, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Savoi, S.; Wong, D.C.; Degu, A.; Herrera, J.C.; Bucchetti, B.; Peterlunger, E.; Castellarin, S.D. Multi-omics and integrated network analyses reveal new insights into the systems relationships between metabolites, structural genes, and transcriptional regulators in developing grape berries (Vitis vinifera L.) exposed to water deficit. Front. Plant Sci. 2017, 8, 1124. [Google Scholar] [CrossRef] [Green Version]
- Arrizabalaga-Arriazu, M.; Gomès, E.; Morales, F.; Irigoyen, J.J.; Pascual, I.; Hilbert, G. Impact of 2100-Projected Air Temperature, Carbon Dioxide, and Water Scarcity on Grape Primary and Secondary Metabolites of Different Vitis vinifera cv. Tempranillo Clones. J. Agric. Food Chem. 2021, 69, 6172–6185. [Google Scholar] [CrossRef]
- Singh, N.; Sharma, D.P.; Chand, H. Impact of climate Change on apple production in India: A review. Curr. World Environ. 2016, 11, 251. [Google Scholar] [CrossRef]
- Höfer, M.; Ali, M.A.M.S.E.; Sellmann, J.; Peil, A. Phenotypic evaluation and characterization of a collection of Malus species. Genet. Resour. Crop. Evol. 2014, 61, 943–964. [Google Scholar] [CrossRef]
- Darbyshire, R.; Pope, K.; Goodwin, I. An evaluation of the chill overlap model to predict flowering time in apple tree. Sci. Hortic. 2016, 198, 142–149. [Google Scholar] [CrossRef]
- El Yaacoubi, A.; El Jaouhari, N.; Bourioug, M.; El Youssfi, L.; Cherroud, S.; Bouabid, R. Potential vulnerability of Moroccan apple orchard to climate change–induced phenological perturbations: Effects on yields and fruit quality. Int. J. Biomet. 2020, 64, 377–387. [Google Scholar] [CrossRef]
- Sugiura, T.; Ogawa, H.; Fukuda, N.; Moriguchi, T. Changes in the taste and textural attributes of apples in response to climate change. Sci. Rep. 2013, 3, 2418. [Google Scholar] [CrossRef] [Green Version]
- Luedeling, E.; Blanke, M.; Gebauer, J. Chilling challenges in a warming world. Acta Hortic. 2015, 1099, 901–907. [Google Scholar] [CrossRef]
- Legave, J.M.; Guédon, Y.; Malagi, G.; El Yaacoubi, A.; Bonhomme, M. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions. Front. Plant Sci. 2015, 6, 1054. [Google Scholar] [CrossRef] [Green Version]
- Rivero, R.; Sønsteby, A.; Heide, O.M.; Måge, F.; Remberg, S.F. Flowering phenology and the interrelations between phenological stages in apple trees (Malus domestica B.) as influenced by the Nordic climate. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 292–302. [Google Scholar] [CrossRef]
- Malagi, G.; Sachet, M.R.; Citadin, I.; Herter, F.G.; Bonhomme, M.; Regnard, J.L.; Legave, J.M. The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches. Trees 2015, 29, 13. [Google Scholar] [CrossRef]
- Kunz, A.; Blanke, M.M. Effects of climate change on fruit tree physiology—Based on 55 years of meteorological and phenological data at Klein-Altendorf. Acta Hortic. 2016, 1130, 49–54. [Google Scholar] [CrossRef]
- Ahmadi, H.; Ghalhari, G.F.; Baaghideh, M. Impacts of climate Change on apple tree cultivation areas in Iran. Clim. Chang. 2019, 153, 91–103. [Google Scholar] [CrossRef]
- Chitu, E.; Paltineanu, C. Timing of phenological stages for apple and pear trees under climate change in a temperate-continental climate. Int. J. Biom. 2020, 64, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Chen, L.; Li, H. Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata). Environ. Monit. Assess. 2017, 189, 404. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.W.S. An evaluation of possible effects of climate change on pathogenic fungi in apple production using fruit rots as examples. Erwerbsobstbau 2009, 51, 115–120. [Google Scholar] [CrossRef]
- Melloy, P.; Hollaway, G.; Luck, J.O.; Norton, R.O.B.; Aitken, E.; Chakraborty, S. Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Glob. Chang. Biol. 2010, 16, 3363. [Google Scholar] [CrossRef]
- Basannagari, B.; Kala, C.P. Climate change and apple farming in Indian Himalayas: A study of local perceptions and responses. PLoS ONE 2013, 8, e77976. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, L.; Wang, Y.; Tao, H.; Fan, J.; Zhao, Z.; Guo, Y. Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in ‘Gala’apple. Sci. Hortic. 2019, 258, 108753. [Google Scholar] [CrossRef]
- Dietrich, H.; Krüger-Steden, E.; Patz, C.D.; Will, F.; Rheinberger, A.; Hopf, I. Increase of sorbitol in pear and apple juice by water stress, a consequence of climatic change. Fruit Process. 2007, 6, 348–355. [Google Scholar]
- Feng, F.; Mingjun, L.; Fengwang, M.; Lailiang, C. Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars. Hortic. Res. 2014, 1, 14019. [Google Scholar] [CrossRef] [Green Version]
- Honda, C.; Moriya, S. Anthocyanin biosynthesis in apple fruit. Hortic. J. 2018, 87, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Gouws, A.; Steyn, W.J. The effect of temperature, region and season on red colour development in apple peel under constant irradiance. Sci. Hortic. 2014, 173, 79–85. [Google Scholar] [CrossRef]
- Ubi, B.E.; Honda, C.; Bessho, H.; Kondo, S.; Wada, M.; Kobayashi, S.; Moriguchi, T. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci. 2006, 170, 571–578. [Google Scholar] [CrossRef]
- Lin-Wang, K.U.I.; Micheletti, D.; Palmer, J.; Volz, R.; Lozano, L.; Espley, R.; Allan, A.C. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ. 2011, 34, 1176–1190. [Google Scholar] [CrossRef]
- Telias, A.; Lin-Wang, K.; Stevenson, D.E.; Cooney, J.M.; Hellens, R.P.; Allan, A.C.; Hoover, E.E.; Bradeen, J.M. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol. 2011, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhao, Z.; Liu, S.; Huang, X.; Wang, W. Does partial root-zone drying have advantages over regulated deficit irrigation in pear orchard under desert climates? Sci. Hortic. 2020, 262, 109099. [Google Scholar] [CrossRef]
- Vélez-Sánchez, J.E.; Balaguera-López, H.E.; Alvarez-Herrera, J.G. Effect of regulated deficit irrigation (RDI) on the production and quality of pear Triunfo de Viena variety under tropical conditions. Sci. Hortic. 2021, 27, 109880. [Google Scholar] [CrossRef]
- Venturi, M.; Manfrini, L.; Perulli, G.D.; Boini, A.; Bresilla, K.; Corelli Grappadelli, L.; Morandi, B. Deficit Irrigation as a Tool to Optimize Fruit Quality in Abbé Fetél Pear. Agronomy 2021, 11, 1141. [Google Scholar] [CrossRef]
- Lepaja, L.; Kullaj, E.; Lepaja, K.; Avdiu, V.; Krasniqi, N. The Ratio between Leave and Fruit Parameters on ‘William’ Pear Orchard Affected by Regulated Deficit Irrigation and Mulching. Albanian J. Agric. Sci. 2016, 15, 8. [Google Scholar]
- Babaei, L.; Sharifani, M.M.; Darvishzadeh, R.; Abbaspour, N.; Henareh, M. Impact of drought stress on photosynthetic response of some pear species. Int. J. Hortic. Sci. 2021, 8, 353–369. [Google Scholar]
- Yang, S.; Bai, M.; Hao, G.; Zhang, X.; Guo, H.; Fu, B. Transcriptome survey and expression analysis reveals the adaptive mechanism of ’Yulu Xiang’ Pear in response to long-term drought stress. PLoS ONE 2021, 16, e0246070. [Google Scholar] [CrossRef]
- Niu, T.; Zhang, T.; Qiao, Y.; Wen, P.; Zhai, G.; Liu, E.; Al-Bakre, D.; Al-Harbi, S.M.; Gao, X.; Yang, X. Glycinebetaine mitigates drought stress-induced oxidative damage in pears. PLoS ONE 2021, 16, e0251389. [Google Scholar] [CrossRef] [PubMed]
- Paudel, I.; Gerbi, H.; Zisovich, A.; Sapir, G.; Ben-Dor, S.; Brumfeld, V.; Klein, T. Drought tolerance mechanisms and aquaporin expression of wild vs. cultivated pear tree species in the field. Environ. Exp. Bot. 2019, 167, 103832. [Google Scholar] [CrossRef]
- Paudel, I.; Gerbi, H.; Zisovich, A.; Sapir, G.; Klein, T. Intraspecific plasticity in hydraulic and stomatal regulation under drought is linked to aridity at the seed source in a wild pear species. Tree Physiol. 2021, 41, 960–973. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wei, J.; Zhang, G.; Sun, X.; Wang, W.; Wu, C.; Tang, M.; Gan, Z.; Xu, X.; Chen, S.; et al. Effects of cooling measures on ‘Nijisseiki’ pear (Pyrus pyrifolia) tree growth and fruit quality in the hot climate. Sci. Hortic. 2018, 238, 318–324. [Google Scholar] [CrossRef]
- Horikoshi, H.M.; Sekozawa, Y.; Kobayashi, M.; Saito, K.; Kusano, M.; Sugaya, S. Metabolomics analysis of ‘Housui’ Japanese pear flower buds during endodormancy reveals metabolic suppression by thermal fluctuation. Plant Physiol. Biochem. 2018, 126, 134–141. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Niu, Q.; He, L.; Teng, Y.; Bai, S. Abscisic acid (ABA) promotes the induction and maintenance of pear (Pyrus pyrifolia white pear group) flower bud endodormancy. Int. J. Mol. Sci. 2018, 19, 310. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Gong, X.; Gao, J.; Dong, H.; Zhang, S.; Tao, S.; Huang, X. Transcriptomic and evolutionary analyses of white pear (Pyrus bretschneideri) β-amylase genes reveals their importance for cold and drought stress responses. Gene 2019, 689, 102–113. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Zhang, M.; Jia, B.; Heng, W.; Ye, Z.; Zhu, L.; Xu, X. Transcriptome sequencing analysis of two different genotypes of Asian pear reveals potential drought stress genes. Tree Genet. Genomes 2018, 14, 40. [Google Scholar] [CrossRef]
- Gong, X.; Zhao, L.; Song, X.; Lin, Z.; Gu, B.; Yan, J.; Zhang, S.; Tao, S.; Huang, X. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biol. 2019, 19, 161. [Google Scholar] [CrossRef]
- Michailidis, M.; Karagiannis, E.; Nasiopoulou, E.; Skodra, C.; Molassiotis, A.; Tanou, G. Peach, Apple, and Pear Fruit Quality: To Peel or Not to Peel? Horticulturae 2021, 7, 85. [Google Scholar] [CrossRef]
- Qiu, D.; Guo, J.; Yu, H.; Yan, J.; Yang, S.; Li, X.; Zhang, Y.; Sun, J.; Cong, J.; He, S.; et al. Antioxidant phenolic compounds isolated from wild Pyrus ussuriensis Maxim. fruit peels and leaves. Food Chem. 2018, 241, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhou, X.; Zhou, Q.; Shi, F.; Wei, B.; Cheng, S.; Tan, Z.; Ji, S. Low temperature conditioning alleviates loss of aroma-related esters of ‘Nanguo’pears by regulation of ethylene signal transduction. Food Chem. 2018, 264, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.F.; Su, J.; Yao, G.F.; Liu, H.N.; Gu, C.; Qin, M.F.; Bai, B.; Cai, S.S.; Wang, G.M.; Wang, R.Z.; et al. Different light-response patterns of coloration and related gene expression in red pears (Pyrus L.). Sci. Hortic. 2018, 229, 240–251. [Google Scholar] [CrossRef]
- Thomson, G.E.; Turpin, S.; Goodwin, I. A review of preharvest anthocyanin development in full red and blush cultivars of European pear. N. Z. J. Crop. Hortic. Sci. 2018, 46, 81–100. [Google Scholar] [CrossRef]
- Bai, S.; Tao, R.; Tang, Y.; Yin, L.; Ma, Y.; Ni, J.; Yan, X.; Yang, Q.; Wu, Z.; Zeng, Y.; et al. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnol. J. 2019, 17, 1985–1997. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Liu, J.; Song, L.; Li, X.; Cong, L.; Yue, R.; Yang, C.; Liu, Z.; Xu, L.; Wang, Z. Differences among the anthocyanin accumulation patterns and related gene expression levels in red pears. Plants 2019, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Bai, S.; Ni, J.; Yang, Q.; Zhao, Y.; Teng, Y. The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’pear. Planta 2018, 248, 37–48. [Google Scholar] [CrossRef]
- Barreca, D.; Nabavi, S.M.; Sureda, A.; Rasekhian, M.; Raciti, R.; Silva, A.S.; Mandalari, G. Almonds (Prunus dulcis M. DA webb): A source of nutrients and health-promoting compounds. Nutrients 2020, 12, 672. [Google Scholar] [CrossRef] [Green Version]
- Yada, S.; Lapsley, K.; Huang, G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Anal. 2011, 24, 469–480. [Google Scholar] [CrossRef]
- Kodad, O.; Socias, I. Company, R.; Alonso, J.M. Genotypic and environmental effects on tocopherol content in almond. Antioxidants 2018, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Taylor, C.; Sommer, K.; Wilkinson, K.; Wirthensohn, M. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis). Food Chem. 2015, 173, 821–826. [Google Scholar] [CrossRef]
- Gitea, M.A.; Gitea, D.; Tit, D.M.; Purza, L.; Samuel, A.D.; Bungău, S.; Badea, G.E.; Aleya, L. Orchard management under the effects of climate change: Implications for apple, plum, and almond growing. Environ. Pollut. Res. 2019, 26, 9908–9915. [Google Scholar] [CrossRef] [PubMed]
- Di Lena, B.; Farinelli, D.; Palliotti, A.; Poni, S.; DeJong, T.M.; Tombesi, S. Impact of climate Change on the possible expansion of almond cultivation area pole-ward: A case study of Abruzzo, Italy. J. Hortic. Sci. Biotechnol. 2018, 93, 209–215. [Google Scholar] [CrossRef]
- Rodrigues, P.; Venâncio, A.; Lima, N. Mycobiota and mycotoxins of almonds and chestnuts with special reference to aflatoxins. Food Res. Int. 2012, 48, 76–90. [Google Scholar] [CrossRef]
- Lipan, L.; Cano-Lamadrid, M.; Collado-González, J.; Wojdyło, A.; López-Lluch, D.; Moriana, A.; Carbonell-Barrachina, Á.A. Correlation between water stress and phenolic compounds of hydroSOStainable almonds. J. Sci. Food Agric. 2021, 101, 3065–3070. [Google Scholar] [CrossRef] [PubMed]
- Lipan, L.; Cano-Lamadrid, M.; Vázquez-Araújo, L.; Sendra, E.; Hernández, F.; Corel, M.; Moriana, A.; Carbonell-Barrachina, Á.A. How does water stress and roasting temperature affect the physicochemical parameters of almonds? LWT 2021, 150, 112073. [Google Scholar] [CrossRef]
- Jahanzad, E.; Holtz, B.A.; Zuber, C.A.; Doll, D.; Brewer, K.M.; Hogan, S.; Gaudin, A.C. Orchard recycling improves climate Change adaptation and mitigation potential of almond production systems. PLoS ONE 2020, 15, e0229588. [Google Scholar] [CrossRef]
- Gutiérrez-Gordillo, S.; Lipan, L.; Durán Zuazo, V.H.; Sendra, E.; Hernández, F.; Hernández-Zazueta, M.S.; Carbonell-Barrachina, A.A.; García-Tejero, I.F. Deficit Irrigation as a Suitable Strategy to Enhance the Nutritional Composition of HydroSOS Almonds. Water 2020, 12, 3336. [Google Scholar] [CrossRef]
- Čolić, S.D.; Bakić, I.V.; Zagorac, D.Č.D.; Natić, M.M.; Smailagić, A.T.; Pergal, M.V. Chemical fingerprint and kernel quality assessment in different grafting combinations of almond under stress condition. Sci. Hortic. 2021, 275, 109705. [Google Scholar] [CrossRef]
- Parker, L.E.; Abatzoglou, J.T. Warming winters reduce chill accumulation for peach production in the Southeastern United States. Climate 2019, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, S.; Fattahi, M.; Bedis, K.; Nasrolahpour-Moghadam, S.; Irigoyen, J.J.; Gogorcena, Y. Interactional effects of climate Change factors on the water status, photosynthetic rate, and metabolic regulation in peach. Front. Plant Sci. 2020, 11, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bento, C.; Gonçalves, A.C.; Silva, B.; Silva, L.R. Peach (Prunus Persica): Phytochemicals and health benefits. Food Rev. Int. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Serra, S.; Anthony, B.; Masia, A.; Giovannini, D.; Musacchi, S. Determination of biochemical composition in peach (Prunus persica L. Batsch) accessions characterized by different flesh color and textural typologies. Foods 2020, 9, 1452. [Google Scholar] [CrossRef] [PubMed]
- Minas, I.S.; Tanou, G.; Molassiotis, A. Environmental and orchard bases of peach fruit quality. Sci. Hortic. 2018, 235, 307–322. [Google Scholar] [CrossRef]
- Karagiannis, E.; Tanou, G.; Samiotaki, M.; Michailidis, M.; Diamantidis, G.; Minas, I.S.; Molassiotis, A. Comparative physiological and proteomic analysis reveal distinct regulation of peach skin quality traits by altitude. Front. Plant Sci. 2016, 7, 1689. [Google Scholar] [CrossRef] [PubMed]
- Falagán, N.; Artés, F.; Gómez, P.A.; Artés-Hernández, F.; Conejero, W.; Aguayo, E. Deficit irrigation strategies enhance health-promoting compounds through the intensification of specific enzymes in early peaches. J. Sci. Food Agric. 2016, 96, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, D.; Gartung, J.L. Influence of irrigation scheduling using thermometry on peach tree water status and yield under different irrigation systems. Agronomy 2017, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Xi, W.; Zhang, Q.; Lu, X.; Wei, C.; Yu, S.; Zhou, Z. Improvement of flavour quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chem. 2014, 164, 219–227. [Google Scholar] [CrossRef]
- Rahmati, M.; Mirás-Avalos, J.M.; Valsesia, P.; Davarynejad, G.H.; Bannayan, M.; Azizi, M.; Vercambre, G. Assessing the effects of water stress on peach fruit quality and size using the QualiTree model. In Proceedings of the XXX International Horticultural Congress IHC2018: International Symposium on Cultivars, Rootstocks and Management Systems of 1281, Istanbul, Turkey, 12–16 August 2018; pp. 539–546. [Google Scholar]
- Lopez, G.; Echeverria, G.; Bellvert, J.; Mata, M.; Behboudian, M.H.; Girona, J.; Marsal, J. Water stress for a short period before harvest in nectarine: Yield, fruit composition, sensory quality, and consumer acceptance of fruit. Sci. Hortic. 2016, 211, 1–7. [Google Scholar] [CrossRef]
- Haider, M.S.; Kurjogi, M.M.; Khalil-ur-Rehman, M.; Pervez, T.; Songtao, J.; Fiaz, M.; Fang, J. Drought stress revealed physiological, biochemical and gene-expressional variations in ‘Yoshihime’peach (Prunus Persica L.) cultivar. J. Plant Interact. 2018, 13, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, B.T.; Melgar, J.C. Variable fall climate influences nutrient resorption and reserve storage in young peach trees. Front. Plant Sci. 2018, 9, 1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, J.S.; Mali, S.S.; Naaz, N.; Malik, S.; Das, B.; Singh, A.K.; Rao, M.S.; Bhatt, B.P. Spatio and temporal variations in population abundance and distribution of peach fruit fly, Bactrocera zonata (Saunders) during future climate change scenarios based on temperature driven phenology model. Clim. Risk Manag. 2021, 32, 100277. [Google Scholar] [CrossRef]
- Khalil, A.A.; Abolmaaty, S.M.; Hassanein, M.K.; El-Mtewally, M.M.; Moustafa, S.A. Degree-days units and expected generation numbers of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) under climate change in. Egypt. Acad. J. Biol. Sci. A Entomol. 2010, 3, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Ighbareyeh, J.M.; Carmona, E.C. Impact of climate and bioclimate factors on apricot (Prunus armeniaca L.) yield to increase economy and achieve maintaining food security of Palestine. OALib J. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Andreini, L.; Viti, R.; Bartolini, S.; Ruiz, D.; Egea, J.; Campoy, J.A. The relationship between xylem differentiation and dormancy evolution in apricot flower buds (Prunus armeniaca L.): The influence of environmental conditions in two Mediterranean areas. Trees 2012, 26, 919–928. [Google Scholar] [CrossRef]
- Karakaş, G.; Doğan, H.G. The Effect of Climate Change on Apricot Yield: A Case of Malatya Province. In Academic Research in Social, Human and Administrative Sciences-I; Bülent, C.T., Sevilay, Ö., Eds.; Gece Kitaplığı: Ankara, Turkey, 2018; pp. 469–479. [Google Scholar]
- Turcu, C.I.; Ungureanu, I.V.; Perju, I. The influence of low temperatures during blooming in fruit growing trees species. Curr. Trends Nat. Sci. 2020, 9, 341–345. [Google Scholar]
- Moale, C.; Asănică, A. The effect of certain climatic parameters on the apricot tree. Sci. Pap. Ser. B Hortic. 2017, 61, 69–79. [Google Scholar]
- Szymajda, M.; Pruski, K.; Żurawicz, E.; Sitarek, M. Freezing injuries to flower buds and their influence on yield of apricot (Prunus armeniaca L.) and peach (Prunus persica L.). Can. J. Plant Sci. 2013, 93, 191–198. [Google Scholar] [CrossRef]
- Polat, A.A.; Çalışkan, O. Fruit set and yield of apricot cultivars under subtropical climate conditions of Hatay, Turkey. J. Agric. Sci. Technol. 2014, 16, 863–872. [Google Scholar]
- Viti, R.; Andreini, L.; Ruiz, D.; Egea, J.; Bartolini, S.; Iacona, C.; Campoy, J.A. Effect of climatic conditions on the overcoming of dormancy in apricot flower buds in two Mediterranean areas: Murcia (Spain) and Tuscany (Italy). Sci. Hortic. 2010, 124, 217–224. [Google Scholar] [CrossRef]
- Razavi, F.; Hajilou, J.; Tabatabaei, S.J.; Dadpour, M.R. Comparison of chilling and heat requirement in some peach and apricot cultivars. Plant Biol. 2011, 1, 40–47. [Google Scholar]
- Campoy, J.A.; Ruiz, D.; Cook, N.; Allderman, L.; Egea, J. High temperatures and time to budbreak in low chill apricot ‘Palsteyn’. Towards a better understanding of chill and heat requirements fulfilment. Sci. Hortic. 2011, 129, 649–655. [Google Scholar] [CrossRef]
- Andreini, L.; de Cortázar-Atauri, I.G.; Chuine, I.; Viti, R.; Bartolini, S.; Ruiz, D.; Campoy-Corbalan, J.A.; Legave, J.-M.; Audergon, J.M.; Bertuzzi, P. Understanding dormancy release in apricot flower buds (Prunus armeniaca L.) using several process-based phenological models. Agric. For. Meteorol. 2014, 184, 210–219. [Google Scholar] [CrossRef]
- Campoy, J.A.; Ruiz, D.; Nortes, M.D.; Egea, J. Temperature efficiency for dormancy release in apricot varies when applied at different amounts of chill accumulation. Plant Biol. 2013, 15, 28–35. [Google Scholar] [CrossRef]
- Kaya, O.; Kose, C. Cell death point in flower organs of some apricot (Prunus armeniaca L.) cultivars at subzero temperatures. Sci. Hortic. 2019, 249, 299–305. [Google Scholar] [CrossRef]
- Huang, W.; Bi, X.; Zhang, X.; Liao, X.; Hu, X.; Wu, J. Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov. Food Sci. Emerg. Technol. 2013, 18, 74–82. [Google Scholar] [CrossRef]
- Muzzaffar, S.; Bhat, M.M.; Wani, T.A.; Wani, I.A.; Masoodi, F.A. Postharvest biology and technology of apricot. In Postharvest Biology and Technology of Temperate Fruits; Springer: Cham, Switzerland, 2018; pp. 201–222. [Google Scholar]
- Durgac, C.; Bozkurt, S.; Odemis, B. Different irrigation intervals and water amount studies in young apricot trees (cv. Ninfa). Fresenius Environ. Bull. 2017, 26, 1469–1476. [Google Scholar]
- Bozkurt, S.; Ödemiş, B.; Durgaç, C. Effects of deficit irrigation treatments on yield and plant growth of young apricot trees. N. Z. J. Crop. Hortic. Sci. 2015, 43, 73–84. [Google Scholar] [CrossRef]
- Bartolini, S.; Massai, R.; Viti, R. The influence of autumn-winter temperatures on endodormancy release and blooming performance of apricot (Prunus armeniaca L.) in central Italy based on long-term observations. J. Hortic. Sci. Biotechnol. 2020, 95, 794–803. [Google Scholar] [CrossRef]
- Tresson, P.; Brun, L.; de Cortazar-Atauri, I.G.; Audergon, J.M.; Buléon, S.; Chenevotot, H.; Combe, F.; Dam, D.; Jacquot, M.; Labeyrie, B.; et al. Future development of apricot blossom blight under climate Change in Southern France. Eur. J. Agron. 2020, 112, 125960. [Google Scholar] [CrossRef]
- Downey, S.L.; Iezzoni, A.F. Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J. Am. Soc. Hortic. Sci. 2000, 125, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Chockchaisawasdee, S.; Golding, J.B.; Vuong, Q.V.; Papoutsis, K.; Stathopoulos, C.E. Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends Food Sci. Technol. 2016, 55, 72–83. [Google Scholar] [CrossRef]
- Pissard, A.; Lateur, M.; Baeten, V.; Magein, H.; Dupont, P.; Tabart, J.; Pincemail, J.; Kevers, C. Determination of total phenolic compound content and antioxidant activity in cherry species and cultivars. J. Berry Res. 2016, 6, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Çağlayan, K.; Roumi, V.; Gazel, M.; Elçi, E.; Acioğlu, M.; Mavric Plesko, I.; Reynard, J.S.; Maclot, F.; Massart, S. Identification and characterization of a novel Robigovirus species from sweet cherry in turkey. Pathogens 2019, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarisu, H.C. Change of Flowering and Harvest Dates of Cherry Varieties with Air Temperature. Pol. J. Environ. Stud. 2021, 30, 351–359. [Google Scholar] [CrossRef]
- Usenik, V.; Stampar, F. The effect of environmental temperature on sweet cherry phenology. Eur. J. Hortic. 2011, 76, 1–5. [Google Scholar]
- Paltineanu, C.; Chitu, E. Climate change impact on phenological stages of sweet and sour cherry trees in a continental climate environment. Sci. Hortic. 2020, 261, 109011. [Google Scholar] [CrossRef]
- Noorazar, H.; Kalcsits, L.; Jones, V.; Jones, M.; Rajagopalan, K. The risk for insufficient chill accumulation: A climate Change perspective for apple and cherry production in the United States. bioRxiv 2020. [Google Scholar] [CrossRef]
- Nagai, S.; Saitoh, T.M.; Morimoto, H. Does global warming decrease the correlation between cherry blossom flowering date and latitude in Japan? Int. J. Biometeorol. 2020, 64, 2205–2210. [Google Scholar] [CrossRef]
- Drogoudi, P.; Kazantzis, K.; Kunz, A.; Blanke, M.M. Effects of climate change on cherry production in Naoussa, Greece and Bonn, Germany: Adaptation strategies. EMJE 2020, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, Z.; Li, H.; Jiu, S.; Qu, Y.; Wang, L.; Ma, C.; Xu, W.; Wang, S.; Zhang, C. Dormancy-associated MADS-Box (DAM) genes influence chilling requirement of sweet cherries and co-regulate flower development with SOC1 gene. Int. J. Mol. Sci. 2020, 21, 921. [Google Scholar] [CrossRef] [Green Version]
- Fadón, E.; Rodrigo, J.; Luedeling, E. Cultivar-specific responses of sweet cherry flowering to rising temperatures during dormancy. Agric. For. Meteorol. 2021, 307, 108486. [Google Scholar] [CrossRef]
- Sayğı, H. Adverse effects of climate Change on agriculture: An evaluation of fruit and honey bee farming. Asian J. Agric. Rural Dev. 2020, 10, 504–514. [Google Scholar] [CrossRef]
- Blanco, V.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Influence of regulated deficit Irrigation and environmental conditions on reproductive response of sweet cherry trees. Plants 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, V.; Martínez-Hernández, G.B.; Artés-Hernández, F.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Water relations and quality changes throughout fruit development and shelf life of sweet cherry grown under regulated deficit irrigation. Agric. Water Manag. 2019, 217, 243–254. [Google Scholar] [CrossRef]
- Torres Sánchez, R.; Blanco, V.; José Blaya Ros, P.; Pérez Pastor, A.; Domingo Miguel, R. Vegetative and reproductive response of’Prime Giant’sweet cherry trees to regulated deficit irrigation. Sci. Hortic. 2019, 249, 478–489. [Google Scholar] [CrossRef]
- Marsal, J.; Lopez, G.; Del Campo, J.; Mata, M.; Arbones, A.; Girona, J. Postharvest regulated deficit irrigation in ‘Summit’sweet cherry: Fruit yield and quality in the following season. Irrig. Sci. 2010, 28, 181–189. [Google Scholar] [CrossRef]
- Wheeler, W.; Black, B.; Bugbee, B. Water Stress in Dwarfing Cherry Rootstocks: Increased Carbon Partitioning to Roots Facilitates Improved Tolerance of Drought. Horticulturae 2021, 7, 424. [Google Scholar] [CrossRef]
- Tyagi, S.; Sahay, S.; Imran, M.; Rashmi, K.; Mahesh, S.S. Pre-harvest factors influencing the postharvest quality of fruits: A review. Curr. J. Appl. Sci. Technol. 2017, 23, 12. [Google Scholar] [CrossRef]
- Bustamante, M.; Muñoz, A.; Romero, I.; Osorio, P.; Mánquez, S.; Arriola, R.; Bustamante, M.; Muñoz, A.; Romero, I.; Osorio, P.; et al. Impact of potassium pre-harvest applications on fruit quality and condition of sweet cherry (Prunus avium L.) cultivated under plastic covers in southern chile orchards. Plants 2021, 10, 2778. [Google Scholar] [CrossRef]
- Mardinata, Z.; Edy Sabli, T.; Ulpah, S. Biochemical Responses and Leaf Gas ExChange of Fig (Ficus carica L.) to Water Stress, Short-Term Elevated CO2 Levels and Brassinolide Application. Horticulturae 2021, 7, 73. [Google Scholar] [CrossRef]
- Caliskan, O.; Polat, A.A. Effects of genotype and harvest year on phytochemical and fruit quality properties of Turkish fig genotypes. Span. J. Agric. Res. 2012, 4, 1048–1058. [Google Scholar] [CrossRef] [Green Version]
- Hssaini, L.; Charafi, J.; Razouk, R.; Hernández, F.; Fauconnier, M.L.; Ennahli, S.; Hanine, H. Assessment of Morphological Traits and Fruit Metabolites in Eleven Fig Varieties (Ficus Carica L.). Int. J. Fruit Sci. 2020, 20, 8–28. [Google Scholar] [CrossRef]
- Byeon, S.E.; Lee, J. Fruit maturity differentially affects fruit quality and responses of targeted metabolites in cold-stored figs (Ficus carica L.). J. Sci. Food Agric. 2021, 101, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Lama, K.; Harlev, G.; Shafran, H.; Peer, R.; Flaishman, M.A. Anthocyanin accumulation is initiated by abscisic acid to enhance fruit color during fig (Ficus carica L.) ripening. J. Plant Physiol. 2020, 251, 153192. [Google Scholar] [CrossRef]
- Ammar, A.; Aissa, I.B.; Gouiaa, M.; Mars, M. Fig (Ficus carica L.) vulnerability to climate change: Combined effects of water stress and high temperature on ecophysiological behaviour of different cultivars. S. Afr. J. Bot. 2022, 147, 482–492. [Google Scholar] [CrossRef]
- Ammar, A.; Aissa, I.B.; Messaoud, M.; Gouiaa, M. Seasonal variation of fig tree (Ficus carica L.) physiological characteristics reveals its adaptation performance. S. Afr. J. Bot. 2020, 132, 30–37. [Google Scholar] [CrossRef]
- Doaa, A.D.; El-Berry, I.M.; Mustafa, N.S.; Moursy, F.S.; Hagagg, L.F. Detecting drought tolerance of fig (Ficus carica L.) cultivars depending on vegetative growth and peroxidase activity. Int. J. ChemTech Res. 2015, 8, 1520–1532. [Google Scholar]
- Abdolinejad, R.; Shekafandeh, A. Tetraploidy Confers Superior in vitro Water-Stress Tolerance to the Fig Tree (Ficus carica) by Reinforcing Hormonal, Physiological, and Biochemical Defensive Systems. Front. Plant Sci. 2022, 12, 796215. [Google Scholar] [CrossRef]
- González-Rodríguez, A.M.; Peters, J. Strategies of leaf expansion in Ficus carica under semiarid conditions. Plant Biol. 2010, 12, 469–474. [Google Scholar] [CrossRef]
- Gholami, M.; Rahemi, M.; Kholdebarin, B.; Rastegar, S. Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Sci. Hortic. 2012, 148, 109–117. [Google Scholar] [CrossRef]
- Mlinarić, S.; Dunić, J.A.; Štolfa, I.; Cesar, V.; Lepeduš, H. High irradiation and increased temperature induce different strategies for competent photosynthesis in young and mature fig leaves. S. Afr. J. Bot. 2016, 103, 25–31. [Google Scholar] [CrossRef]
- Francini, A.; Sodini, M.; Vicario, G.; Raffaelli, A.; Gucci, R.; Caruso, G.; Sebastiani, L. Cations and phenolic compounds concentrations in fruits of fig plants exposed to moderate levels of salinity. Antioxidants 2021, 10, 1865. [Google Scholar] [CrossRef] [PubMed]
- Mascellani, A.; Natali, L.; Cavallini, A.; Mascagni, F.; Caruso, G.; Gucci, R.; Bernardi, R. Moderate salinity stress affects expression of main sugar metabolism and transport genes and soluble carbohydrate content in ripe fig fruits (Ficus carica L. cv. Dottato). Plants 2021, 10, 1861. [Google Scholar] [CrossRef]
- Guan, C.; Che, Q.; Zhang, P.; Huang, J.; Chachar, S.; Ruan, X.; Yang, Y. Codification and description of growth stages in persimmon (Diospyros kaki Thunb.) using the extended BBCH scale. Sci. Hortic. 2021, 280, 109895. [Google Scholar] [CrossRef]
- Domínguez Díaz, L.; Dorta, E.; Maher, S.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Sánchez-Mata, M.C. Potential Nutrition and Health Claims in Deastringed Persimmon Fruits (Diospyros kaki L.), Variety ‘Rojo Brillante’, PDO’Ribera del Xúquer’. Nutrients 2020, 12, 1397. [Google Scholar] [CrossRef]
- Butt, M.S.; Sultan, M.T.; Aziz, M.; Naz, A.; Ahmed, W.; Kumar, N.; Imran, M. Persimmon (Diospyros kaki) fruit: Hidden phytochemicals and health claims. EXCLI J. 2015, 14, 542. [Google Scholar] [CrossRef]
- Ferreira da Vinha, A.; Soares, M.O.; Machado, M. Recent advances regarding the phytochemical and therapeutic benefits of diospyros kaki fruit. Curr. Adv. Chem. Biochem. 2021, 5, 147–155. [Google Scholar] [CrossRef]
- Akagi, T.; Tsujimoto, T.; Ikegami, A.; Yonemori, K. Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon (Diospyros kaki Thunb.) fruit. Planta 2011, 233, 883–894. [Google Scholar] [CrossRef]
- Buesa, I.; Badal, E.; Guerra, D.; Ballester, C.; Bonet, L.; Intrigliolo, D.S. Regulated deficit irrigation in persimmon trees (Diospyros kaki) cv. ‘Rojo Brillante’. Sci. Hortic. 2013, 159, 134–142. [Google Scholar] [CrossRef]
- Bardi, L. Early Kiwifruit Decline: A Soil-Borne Disease Syndrome or a Climate Change Effect on Plant–Soil Relations? Front. Agron. 2020, 2, 3. [Google Scholar] [CrossRef]
- Tacconi, G.; Paltrinieri, S.; Mejia, J.F.; Fuentealba, S.P.; Bertaccini, A.; Tosi, L.; Giacopini, A.; Mazzucchi, U.; Favaron, F.; Sella, L.; et al. Vine decline in kiwifruit: Climate change and effect on waterlogging and Phytophthora in North Italy. Acta Hortic. 2015, 1096, 93–97. [Google Scholar] [CrossRef]
- Donati, I.; Cellini, A.; Sangiorgio, D.; Caldera, E.; Sorrenti, G.; Spinelli, F. Pathogens associated to kiwifruit vine decline in Italy. Agriculture 2020, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- Savian, F.; Ginaldi, F.; Musetti, R.; Sandrin, N.; Tarquini, G.; Pagliari, L.; Ermacora, P. Studies on the aetiology of kiwifruit decline: Interaction between soil-borne pathogens and waterlogging. Plant Soil 2020, 456, 113–128. [Google Scholar] [CrossRef]
- Calderón-Orellana, A.; Silva, D.I.; Bastías, R.M.; Bambach, N.; Aburto, F. Late-season plastic covering delays the occurrence of severe water stress and improves intrinsic water use efficiency and fruit quality in kiwifruit vines. Agric. Water Manag. 2021, 249, 106795. [Google Scholar] [CrossRef]
- Bardi, L.; Nari, L.; Morone, C.; Faga, M.G.; Malusà, E. Possible Role of High Temperature and Soil Biological Fertility on Kiwifruit Early Decline Syndrome. Front. Agron. 2020, 2, 13. [Google Scholar] [CrossRef]
- Richardson, A.C.; Marsh, K.B.; Boldingh, H.L.; Pickering, A.H.; Bulley, S.M.; Frearson, N.J.; Macrae, E.A. High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ. 2004, 27, 423–435. [Google Scholar] [CrossRef]
- Bieniek, A.; Draganska, E. Content of macroelements in fruits of ukrainian cultivars of hardy kiwifruit and actinidia charta depending on the weather conditions during the phenological phases. J. Elem. 2013, 18, 23–38. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Verma, S.K.; Arya, R.R.; Tyagi, R.K. Variability in morpho-physiological traits and antioxidant potential of kiwifruit (Atinidia chinensis Planch) in Central Himalayan Region. J. Environ. Biol. 2015, 36, 1051–1056. [Google Scholar]
- Vico, G.; Brunsell, N.A. Tradeoffs between water requirements and yield stability in annual vs. perennial crops. Adv. Water Resour. 2018, 112, 16–230. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Jiang, L.; Tian, C.; Li, J.; Xiao, Z. Potential of perennial crop on environmental sustainability of agriculture. Procedia Environ. Sci. 2011, 10, 1141–1147. [Google Scholar] [CrossRef] [Green Version]
- Arenas-Castro, S.; Gonçalves, J.F.; Moreno, M.; Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 2020, 709, 136161. [Google Scholar] [CrossRef] [PubMed]
- Treder, W.; Mika, A.; Buler, Z.; Klamkowski, K. Effects of hail nets on orchard light microclimate, apple tree growth, fruiting and fruit quality. Acta Sci. Pol. Hortorum. Cultus. 2016, 15, 17–27. [Google Scholar]
- Brglez Sever, M.; Tojnko, S.; Breznikar, A.; Skendrović Babojelić, M.; Ivančič, A.; Sirk, M.; Unuk, T. The influence of differently coloured anti-hail nets and geomorphologic characteristics on microclimatic and light conditions in apple orchards. J. Cent. Eur. Agric. 2020, 21, 386–397. [Google Scholar] [CrossRef]
- Milivojević, J.; Radivojević, D.; Ruml, M.; Dimitrijević, M.; Maksimović, J.D. Does microclimate under grey hail protection net affect biological and nutritional properties of ‘Duke’ highbush blueberry (Vaccinium corymbosum L.). Fruits 2016, 71, 161–170. [Google Scholar] [CrossRef]
- Manja, K.; Aoun, M. The use of nets for tree fruit crops and their impact on the production: A review. Sci. Hortic. 2019, 246, 110–122. [Google Scholar] [CrossRef]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate change fingerprints in recent European plant phenology. Glob. Chang. Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef] [Green Version]
- Fitchett, J.M.; Grab, S.W.; Thompson, D.I. Plant phenology and climate change: Progress in methodological approaches and application. Prog Phys. Geogr. 2015, 39, 460–482. [Google Scholar] [CrossRef]
- Schierhorn, F.; Hofmann, M.; Adrian, I.; Bobojonov, I.; Müller, D. Spatially varying impacts of climate change on wheat and barley yields in Kazakhstan. J. Arid. Environ. 2020, 178, 104164. [Google Scholar] [CrossRef]
- Xiao, D.; Li Liu, D.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate Change impact on yields and water use of wheat and maize in the North China Plain under future climate Change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Fei, L.; Meijun, Z.; Jiaqi, S.; Zehui, C.; Xiaoli, W.; Jiuchun, Y. Maize, wheat and rice production potential changes in China under the background of climate change. Agric. Syst. 2020, 182, 102853. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmad, B.; Boote, K.; Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 2020, 115, 126040. [Google Scholar] [CrossRef]
- Feeley, K.J.; Rehm, E.M.; Machovina, B. Perspective: The responses of tropical forest species to global climate change: Acclimate, adapt, migrate, or go extinct? Front. Biogeogr. 2012, 4, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Miles, L.; Grainger, A.; Phillips, O. The impact of global climate Change on tropical forest biodiversity in Amazonia. Glob. Ecol. Biogeogr. 2004, 13, 553–565. [Google Scholar] [CrossRef]
- Sthapit, B.R.; Ramanatha Rao, V.; Sthapit, S.R. Tropical Fruit Tree Species and Climate Change; Bioversity International: New Delhi, India, 2012. [Google Scholar]
- Giannini, T.C.; Acosta, A.L.; da Silva, C.I.; de Oliveira, P.E.A.M.; Imperatriz-Fonseca, V.L.; Saraiva, A.M. Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric. Ecosyst Environ. 2013, 171, 39–46. [Google Scholar] [CrossRef]
- Hidalgo-Galvez, M.D.; García-Mozo, H.; Oteros, J.; Mestre, A.; Botey, R.; Galán, C. Phenological behaviour of early spring flowering trees in Spain in response to recent cli-mate changes. Theor. Appl. Climatol. 2018, 132, 263–273. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Carreira, E.; Pereira, A.; Carvalho, M. Climate changes challenges to the management of Mediterranean montado ecosystem: Perspectives for use of precision agriculture technologies. Agronomy 2020, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Cartier, L.; Lembke, S. British Columbia Tree Fruit Industry: Preparing for Precision Agriculture and Climate Change; 2019. Available online: https://library-1.okanagan.bc.ca/vwebv/ocir/bc_tree_fruit2019.pdf (accessed on 7 February 2022).
- Hirpo, F.H.; Gebeyehu, M.N. Review on the effects of climate Change variability on horticultural productivity. Int. J. Environ. Sci. Nat. Res. 2019, 17, 555969. [Google Scholar] [CrossRef]
- Tixier, A.; Gambetta, G.A.; Godfrey, J.; Orozco, J.; Zwieniecki, M.A. Non-structural carbohydrates in dormant woody perennials; the tale of winter survival and spring arrival. Front. For. Glob. Chang. 2019, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Beauvieux, R.; Wenden, B.; Dirlewanger, E. Bud dormancy in perennial fruit tree species: A pivotal role for oxidative cues. Front. Plant Sci. 2018, 9, 657. [Google Scholar] [CrossRef]
- Anderson, J.V.; Horvath, D.P.; Chao, W.S.; Foley, M.E. Bud dormancy in perennial plants: A mechanism for survival. In Dormancy and Resistance in Harsh Environments; Lubzens, E., Cerda, J., Clark, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 69–90. [Google Scholar]
- Fadón, E.; Rodrigo, J. Unveiling winter dormancy through empirical experiments. Environ. Exp. Bot. 2018, 152, 28–36. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Blümel, K.; Pálešová, I. Climate Change and shifts in dormancy release for deciduous fruit crops in Germany. Clim. Res. 2012, 54, 209–219. [Google Scholar] [CrossRef]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Int. Food Res. J. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Mattos, L.M.; Moretti, C.L.; Jan, S.; Sargent, S.A.; Lima, C.E.P.; Fontenelle, M.R. Climate changes and potential impacts on quality of fruit and vegetable crops. In Emerging technologies and management of crop stress tolerance. Acad. Press. 2014, 1, 467–486. [Google Scholar]
- Hribar, J.; Vidrih, R. Impacts of climate change on fruit physiology and quality. In Proceedings of the 50th Croatian and 10th International Symposium on Agriculture, Opatija, Croatia, 16–20 February 2015; pp. 42–45. [Google Scholar]
- Haokip, S.W.; Shankar, K.; Lalrinngheta, J. Climate Change and its impact on fruit crops. J. Pharmacogn. Phytochem. 2020, 9, 435–438. [Google Scholar]
- IPPC Secretariat. Scientific review of the impact of climate Change on plant pests—A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Rome. FAO Behalf IPPC Secr. 2021. [Google Scholar] [CrossRef]
- Lake, I.R.; Barker, G.C. Climate change, foodborne pathogens and illness in higher-income countries. Curr. Environ. Health Rep. 2018, 5, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Hamann, E.; Denney, D.; Day, S.; Lombardi, E.; Jameel, M.I.; MacTavish, R.; Anderson, J.T. Plant eco-evolutionary responses to climate change: Emerging directions. Plant Sci. 2021, 304, 110737. [Google Scholar] [CrossRef]
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Water stress |
| [72] |
| [62] | |
Drought stress |
| [63] |
| [64] | |
| [71,81] | |
High temperature stress |
| [67] |
| [68] | |
| [70] | |
| [71] | |
| [79] | |
| [87] | |
| [90] | |
| [95] | |
High temperatures with low relative humidity |
| [88] |
Low air temperature |
| [72,73] |
| [94] | |
Excess light and high fluctuation densities of solar radiation |
| [66] |
| [75,86] | |
Low light exposition |
| [89] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Warm temperatures |
| [101] |
| [102] | |
| [112] | |
| [119] | |
Drought stress |
| [110] |
Water stress |
| [31] |
| [86] | |
Low temperatures with high rainfalls |
| [114] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Water stress |
| [126,128,131] |
Low temperatures (below 5 °C) |
| [124] |
| [125] | |
Sunlight exposure and low temperatures |
| [127] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Warm temperatures |
| [141] |
| [136] | |
| [145,146] | |
| [136] | |
| [29] | |
Low leaf water potential |
| [142] |
Water stress |
| [143,144] |
| [149] | |
| [150] | |
Drought |
| [136] |
| [148] | |
| [38] | |
High atmospheric CO2 concentration and elevated temperatures |
| [29] |
| [20] | |
| [150] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Water stress |
| [270] |
| [274] | |
| [264,273] | |
| [269] | |
| [269,271] | |
| [272] | |
High CO2 concentration |
| [264] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
High temperature and sun exposure |
| [281] |
| [282] | |
Water stress |
| [283] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Increasing air temperature |
| [284,285,286,287] |
| [289] | |
| [290] | |
Waterlogging |
| [287] |
| [291] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Water stress |
| [201] |
| [201] | |
| [209] | |
Warmer temperatures |
| [202,203] |
| [200] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Increasing temperatures |
| [248] |
| [251,252] | |
| [256] | |
| [249,253] | |
| [250] | |
| [262] | |
Insufficient chill accumulation |
| [163,164,259] |
Water stress |
| [259,260] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
High precipitations |
| [227] |
High temperature during chill period |
| [227,230,231,232] |
| [225,227] | |
Frost |
| [228,229] |
| [237] | |
Water stress |
| [240,241] |
| ||
| [242] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
High temperature during chill period |
| [211] |
| [213,216] | |
| [227,236] | |
Water stress |
| [216,217] |
| [219] | |
| [219] | |
| [220] | |
Warm temperatures |
| [221] |
| [222] | |
| [223,224] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
High temperature during chill period |
| [3,152] |
| [153] | |
| [155] | |
| [158] | |
| [161] | |
| [162] | |
| [160] | |
| [39,164] | |
| [173] | |
| [174] | |
Water stress |
| [167] |
UV-B radiation |
| [168] |
Variation of Environmental Parameters Due to Climate Change | Main Effects on Crops Physiology and Fruit Production | References |
---|---|---|
Drought stress |
| [179,180] |
Temperatures |
| [185] |
| [192] | |
| [194,195,196] | |
Light |
| [194,197] |
Water stress |
| [175,176,177] |
| [177] | |
| [178] | |
| [176] | |
| [178] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medda, S.; Fadda, A.; Mulas, M. Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. Horticulturae 2022, 8, 273. https://doi.org/10.3390/horticulturae8040273
Medda S, Fadda A, Mulas M. Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. Horticulturae. 2022; 8(4):273. https://doi.org/10.3390/horticulturae8040273
Chicago/Turabian StyleMedda, Silvia, Angela Fadda, and Maurizio Mulas. 2022. "Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment" Horticulturae 8, no. 4: 273. https://doi.org/10.3390/horticulturae8040273
APA StyleMedda, S., Fadda, A., & Mulas, M. (2022). Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. Horticulturae, 8(4), 273. https://doi.org/10.3390/horticulturae8040273