Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods
Abstract
:1. Introduction
2. Nutritional Profile
2.1. Proximate Analysis of Tomato Seeds
2.2. Polysaccharides
2.3. Protein
2.4. Lipid and Oil Profile
2.5. Minerals and Vitamins
3. Functional Food Properties of Tomato Seeds
4. Applications as an Ingredient in Functional Foods
5. Safety Aspects of Tomato Seed Consumption
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Processing Tomato Council (WPTC). Available online: https://www.tomatonews.com/en/global-imports-of-tomato-products-updated-february-8-2022_2_1574.html (accessed on 8 February 2022).
- Flores, I.R.; Vásquez-Murrieta, M.S.; Franco-Hernández, M.O.; Márquez-Herrera, C.E.; Ponce-Mendoza, A.; del Socorro López-Cortéz, M. Bioactive compounds in tomato (Solanum lycopersicum) variety saladette and their relationship with soil mineral content. Food Chem. 2021, 344, 128608. [Google Scholar] [CrossRef]
- Stajčić, S.; Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Mandić, A.; Četojević-Simin, D. Tomato waste: Carotenoids content, antioxidant and cell growth activities. Food Chem. 2015, 172, 225–232. [Google Scholar] [CrossRef]
- O’Kennedy, N.; Crosbie, L.; van Lieshout, M.; Broom, J.I.; Webb, D.J.; Duttaroy, A.K. Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: A time-course cannulation study in healthy humans. Am. J. Clin. Nutr. 2006, 84, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Shao, D.; Atungulu, G.G.; Pan, Z.; Yue, T.; Zhang, A.; Fan, Z. Characteristics of isolation and functionality of protein from tomato pomace produced with different industrial processing methods. Food Bioprocess Technol. 2014, 7, 532–541. [Google Scholar] [CrossRef]
- Shao, D.; Venkitasamy, C.; Li, X.; Pan, Z.; Shi, J.; Wang, B. Thermal and storage characteristics of tomato seed oil. LWT Food Sci. Technol. 2015, 63, 191–197. [Google Scholar] [CrossRef]
- Vinha, A.F.; Alves, R.C.; Barreira, S.V.; Castro, A.; Costa, A.S.; Oliveira, M.B.P. Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT Food Sci. Technol. 2014, 55, 197–202. [Google Scholar] [CrossRef] [Green Version]
- García Herrera, P.; Sánchez-Mata, M.C.; Cámara, M. Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innov. Food Sci. Emerg. Technol. 2010, 11, 707–711. [Google Scholar] [CrossRef]
- Sarkar, A.; Kaul, P. Evaluation of tomato processing by-products: A comparative study in a pilot scale setup. J. Food Process Eng. 2014, 37, 299–307. [Google Scholar] [CrossRef]
- Ruiz Celma, A.; Cuadros, F.; López-Rodríguez, F. Characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 2009, 87, 282–291. [Google Scholar] [CrossRef]
- Gebeyew, K.; Animut, G.; Urge, M.; Feyera, T. The effect of feeding dried tomato pomace and concentrate feed on body weight change, carcass parameter and economic feasibility on Hararghe highland sheep, eastern Ethiopia. J. Vet. Sci. Technol. 2015, 6, 1. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Taveira, M.; Silva, L.R.; Vale-Silva, L.A.; Pinto, E.; Valentão, P.; Ferreres, F. Lycopersicon esculentum Seeds: An industrial byproduct as an antimicrobial agent. J. Agric. Food Chem. 2010, 58, 9529–9536. [Google Scholar] [CrossRef]
- Giannelos, P.N.; Sxizas, S.; Lois, E.; Zannikos, F.; Anastopoulos, G. Physical, chemical and fuel related properties of tomato seed oil for evaluating its direct use in diesel engines. Ind. Crops Prod. 2005, 22, 193–199. [Google Scholar] [CrossRef]
- Shao, D.; Bartley, G.E.; Yokoyama, W.; Pan, Z.; Zhang, H.; Zhang, A. Plasma and hepatic cholesterol-lowering effects of tomato pomace, tomato seed oil and defatted tomato seed in hamsters fed with high-fat diets. Food Chem. 2013, 139, 589–596. [Google Scholar] [CrossRef]
- Savadkoohi, S.; Farahnaky, A. Dynamic rheological and thermal study of the heat-induced gelation of tomato-seed proteins. J. Food Eng. 2012, 113, 479–485. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Z.; Venkitasamy, C.; Ma, H.; Li, Y. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal. LWT Food Sci. Technol. 2015, 62, 1154–1161. [Google Scholar] [CrossRef]
- Knoblich, M.; Anderson, B.; Latshaw, D. Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. J. Sci. Food Agric. 2005, 85, 1166–1170. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato pomace. Food Bioproc. Technol. 2013, 6, 3499–3509. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Barreiro, M.F.; Carvalho, A.M.; Oliveira, M.B.P.; Curran, T.P.; & Ferreira, I.C. Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today’s society. IFSET 2017, 41, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V.T. Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT Food Sci. Technol. 2012, 49, 213–216. [Google Scholar] [CrossRef]
- Persia, M.E.; Parsons, C.M.; Schang, M.; Azcona, J. Nutritional evaluation of dried tomato seeds. Poult. Sci. 2003, 82, 141–146. [Google Scholar] [CrossRef]
- Botineştean, C.; Gruia, A.T.; Jianu, I. Utilization of seeds from tomato processing wastes as raw material for oil production. J. Mat. Cycles Waste Manag. 2015, 17, 118–124. [Google Scholar] [CrossRef]
- Eller, F.J.; Moser, J.K.; Kenar, J.A.; Taylor, S.L. Extraction and analysis of tomato seed oil. J. Am. Oil Chem. Soc. 2010, 87, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Sogi, D.S.; Bhatia, R.; Garg, S.K.; Bawa, A.S. Biological evaluation of tomato waste seed meals and protein concentrate. Food Chem. 2005, 89, 53–56. [Google Scholar] [CrossRef]
- Valdez-Morales, M.; Espinosa-Alonso, L.G.; Espinoza-Torres, L.C.; Delgado-Vargas, F.; Medina-Godoy, S. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. J. Agric. Food Chem. 2014, 62, 5281–5289. [Google Scholar] [CrossRef]
- Strazzullo, G.; Schiano Moriello, V.; Poli, A.; Immirzi, B.; Amazio, B.; Nicolaus, B. Solid wastes of tomato-processing industry (Lycopersicon esculentum ‘Hybrid Rome’) as renewable sources of polysaccharides. J. Food Technol. 2003, 1, 102–105. [Google Scholar]
- Grassino, A.N.; Brnčić, M.; Vikić-Topić, D.; Roca, S.; Dent, M.; Brnčić, S.R. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, X.; Gu, X.; Gong, S.; Wu, J.; Wang, Z. Emulsifying properties of pectic polysaccharides obtained by sequential extraction from black tomato pomace. Food Hydrocoll. 2020, 100, 105454. [Google Scholar] [CrossRef]
- Botineștean, C.; Hădărugă, N.G.; Hădărugă, D.I.; Jianu, I. Fatty acids composition by gas chromatography–mass spectrometry (GC-MS) and most important physical–chemicals parameters of tomato seed oil. J. Agroaliment. Processes Technol. 2012, 18, 89–94. [Google Scholar]
- Fuentes, E.; Carle, R.; Astudillo, L.; Guzman, L.; Gutierrez, M.; Carrasco, G. Antioxidant and antiplatelet activities in extracts from green and fully ripe tomato fruits (Solanum lycopersicum) and pomace from industrial tomato processing. Evid.-Based Complement. Altern. Med. 2013, 2013, 867578. [Google Scholar] [CrossRef] [Green Version]
- Isik, F.; Yapar, A. Effect of tomato seed supplementation on chemical and nutritional properties of tarhana. J. Food Meas. Charact. 2017, 11, 667–674. [Google Scholar] [CrossRef]
- Mechmeche, M.; Kachouri, F.; Chouabi, M.; Ksontini, H.; Setti, K.; Hamdi, M. Optimization of extraction parameters of protein isolate from tomato seed using response surface methodology. Food Anal. Methods 2017, 10, 809–819. [Google Scholar] [CrossRef]
- El Mashad, H.M.; Zhao, L.; Zhang, R.; Pan, Z. Tomato. In Integrated Processing Technologies for Food and Agricultural By-Products; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Sarkar, A.; Kamaruddin, H.; Bentley, A.; Wang, S. Emulsion stabilization by tomato seed protein isolate: Influence of pH, ionic strength and thermal treatment. Food Hydrocoll. 2016, 57, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci. Technol. 2020, 97, 170–184. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Roointan, A.; Kamle, M.; Kumar, P.; Martins, N.; Sharifi-Rad, J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019, 62, 201–208. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Zappia, C.; Capocasale, M. Tomato seed oil: A comparison of extraction systems and solvents on its biodiesel and edible properties. Rivista Italiana delle Sostanze Grasse 2017, 94, 149–160. [Google Scholar]
- Casa, M.; Prizio, C.; Miccio, M. Biodiesel Production from Tomato Seed by Transesterification with Alkaline and ‘green’ catalysts: Simulation and Discussion. Chem. Eng. Trans. 2021, 87, 451–456. [Google Scholar]
- Gonzalez, M.; Martín-Pedraza, L.; Somoza, M.L.; Blanca-López, N.; Macías, M.L.; Perez, D. Sensitisation patterns to tomato seed. Clin. Transl. Allergy 2015, 5, 120. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, A.M.; Capocasale, M.; Zappia, C. Tomato seed oil for edible use: Cold break, hot break, and harvest year effects. J. Food Process. Preserv. 2017, 41, e13309. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Capocasale, M. Policosanol in tomato (Solanum lycopersicum L.) seed oil: The effect of cultivar. J. Oleo Sci. 2015, 64, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Kostik, V.; Memeti, S.; Bauer, B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des. 2013, 4, 112–116. [Google Scholar]
- Fahimdanesh, M.; Bahrami, M.E. Evaluation of physicochemical properties of Iranian tomato seed oil. J. Nutr. Food Sci. 2013, 3, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Glick, N.R.; Fischer, M.H. The role of essential fatty acids in human health. Evid. Based Complement. Altern. Med. 2013, 18, 268–289. [Google Scholar] [CrossRef]
- Lazos, E.S.; Tsaknis, J.; Lalas, S. Characteristics and composition of tomato seed oil. Grasas y Aceites 1998, 49, 440–445. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, A.M.; Capocasale, M. Sterol composition of tomato (Solanum lycopersicum L.) seed oil: The effect of cultivar. Int. Food Res. J. 2016, 23, 116–122. [Google Scholar]
- Giuffrè, A.M.; Capocasale, M. n-Alkanes in tomato (Solanum lycopersicum L.) seed oil: The cultivar effect. Int. Food Res. J. 2016, 23, 979–985. [Google Scholar]
- Durante, M.; Montefusco, A.; Marrese, P.P.; Soccio, M.; Pastore, D.; Piro, G. Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J. Food Compos. Anal. 2017, 63, 65–72. [Google Scholar] [CrossRef]
- Szabo, K.; Catoi, A.F.; Vodnar, D.C. Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients. Plant Foods Hum. Nutr. 2018, 73, 268–277. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Bhuyan, D.J.; Punia, S.; Grasso, S.; Sa, A.G.A.; Carciofi, B.A.M.; Arrutia, F.; Changan, S.; Singh, S.; et al. Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed. Pharmacotherap. 2021, 142, 112018. [Google Scholar] [CrossRef]
- Szabo, K.; Dulf, F.V.; Teleky, B.E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N. Evaluation of the bioactive compounds found in tomato seed oil and tomato peels influenced by industrial heat treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef]
- Combs, G.F.; McClung, J.P. The Vitamins: Fundamental Aspects in Nutrition and Health, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 2021, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Vats, S.; Bansal, R.; Rana, N.; Kumawat, S.; Bhatt, V.; Jadhav, P. Unexplored nutritive potential of tomato to combat global malnutrition. Crit. Rev. Food Sci. Nutr. 2020, 27, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Elbadrawy, E.; Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 2016, 9, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.P.; Coronel, J.; Amengual, J. The role of β-carotene and vitamin A in atherogenesis: Evidences from preclinical and clinical studies. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020, 1865, 158635. [Google Scholar] [CrossRef]
- Kirkland, A.E.; Sarlo, G.L.; Holton, K.F. The role of magnesium in neurological disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef] [Green Version]
- Mahavadi, S.; Nalli, A.D.; Wang, H.; Kendig, D.M.; Crowe, M.S.; Lyall, V. Regulation of gastric smooth muscle contraction via Ca2+-dependent and Ca2+-independent actin polymerization. PLoS ONE 2018, 13, 209359. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Torres, R.; Morales-Camacho, J.I.; López-Valdez, F.; Huerta-González, L.; Luna-Suárez, S. Assessment of techno-functional and nutraceutical potential of tomato (Solanum lycopersicum) seed meal. Molecules 2020, 25, 4235. [Google Scholar] [CrossRef]
- Albanese, D.; Adiletta, G.; D’Acunto, M.; Cinquanta, L.; Di Matteo, M. Tomato peel drying and carotenoids stability of the extracts. Int. J. Food Sci. Technol. 2014, 49, 2458–2463. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Tomović, V.; Kocić-Tanackov, S.; Đurović, S.; Zeković, Z. Tomato pomace extract and organic peppermint essential oil as effective sodium nitrite replacement in cooked pork sausages. Food Chem. 2020, 330, 127202. [Google Scholar] [CrossRef]
- Silva, P.A.; Borba, Y.; Pereira, B.C.; Reis, V.A.; Caliari, M.G.; Brooks, M. Characterization of tomato processing by-product for use as a potential functional food ingredient: Nutritional composition, antioxidant activity and bioactive compounds. Int. J. Food Sci. Nutr. 2019, 70, 150–160. [Google Scholar] [CrossRef]
- Abid, Y.; Azabou, S.; Jridi, M.; Khemakhem, I.; Bouaziz, M.; Attia, H. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. Food Chem. 2017, 233, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Concha-Meyer, A.A.; Durham, C.A.; Colonna, A.E.; Hasenbeck, A.; Saez, B.; Adams, M.R. Consumer response to tomato pomace powder as an ingredient in bread: Impact of sensory liking and benefit information on purchase intent. J. Food Sci. 2019, 84, 3774–3783. [Google Scholar] [CrossRef] [PubMed]
- Isik, F.; Topkaya, C. Effects of tomato pomace supplementation on chemical and nutritional properties of crackers. Ital. J. Food Sci. 2016, 28, 525–535. [Google Scholar] [CrossRef]
- Mehta, D.; Prasad, P.; Sangwan, R.S.; Yadav, S.K. Tomato processing byproduct valorization in bread and muffin: Improvement in physicochemical properties and shelf-life stability. J. Food Sci. Technol. 2018, 55, 2560–2568. [Google Scholar] [CrossRef] [PubMed]
- Mironeasa, S.; Codina, G.G. Dough rheological behavior and microstructure characterization of composite dough with wheat and tomato seed flours. Foods 2019, 8, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mironeasa, S.; Codina, G.G.; Oroian, M.A. Bread quality characteristics as influenced by the addition of tomato seed flour. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2016, 73, 77. [Google Scholar] [CrossRef] [Green Version]
- Mironeasa, S.; Codină, G.G.; Mironeasa, C. Effect of composite flour made from tomato seed and wheat of 650 type of a strong quality for bread making on bread quality and alveograph rheological properties. Int. J. Food Eng. 2018, 4, 22–26. [Google Scholar] [CrossRef]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. J. Food Sci. Technol. 2015, 52, 8260–8267. [Google Scholar] [CrossRef] [Green Version]
- Djeghim, F.; Bourekoua, H.; Różyło, R.; Bieńczak, A.; Tanaś, W.; Zidoune, M.N. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Appl. Sci. 2021, 11, 4605. [Google Scholar] [CrossRef]
- Hashmi, M.S.; Akhtar, S.; Ismail, T. Biochemical characterization of vegetables wastes and development of functional bread: Vegetables’ wastes based functional bread. J. Microbiol. BioTechnol. Food Sci. 2021, 10, 691–696. [Google Scholar]
- Karthika, D.; Kuriakose, S.; Krishnan, A.; Choudhary, P.; Rawson, A. Utilization of by-product from tomato processing industry for the development of new product. J. Food Process. Technol. 2016, 7, 608. [Google Scholar] [CrossRef]
- Bendini, A.; Di Lecce, G.; Valli, E.; Barbieri, S.; Tesini, F.; Gallina Toschi, T. Olive oil enriched in lycopene from tomato by-product through a co-milling process. Int. J. Food Sci. Nutr. 2015, 66, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Belovic, M.; Torbica, A.; Lijakovic, I.P.; Tomic, J.; Loncarevic, I.; Petrovic, J. Tomato pomace powder as a raw material for ketchup production. Food Biosci. 2018, 26, 193–199. [Google Scholar] [CrossRef]
- Previtera, L.; Fucci, G.; De Marco, A.; Romanucci, V.; Di Fabio, G.; Zarrelli, A. Chemical and organoleptic characteristics of tomato purée enriched with lyophilized tomato pomace. J. Sci. Food Agric. 2016, 96, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, U.; Mushtaq, Z.; Ahmad, R.S.; Asghar, N. Characterization, oxidative perspectives and consumer acceptability of tomato waste powder supplemented cookies. J. Anim. Plant Sci. 2017, 27, 2045–2055. [Google Scholar]
- Bhat, M.; Hafiza, A. Physico-chemical characteristics of cookies prepared with tomato pomace powder. J. Food Process. Technol. 2016, 7, 1000543. [Google Scholar] [CrossRef]
- Chouaibi, M.; Rezig, L.; Boussaid, A.; Hamdi, S. Insoluble tomato-fiber effect on wheat dough rheology and cookies’ quality. Ital. J. Food Sci. 2019, 31, 1–18. [Google Scholar]
- Laza, V. Tomatoes and lycopene in the athletes’ diet. Palestrica Third Millenn. Civiliz. Sport 2014, 15, 72–79. [Google Scholar]
- Vélez-Terreros, P.Y.; Romero-Estévez, D.; Yánez-Jácome, G.S.; Simbaña-Farinango, K.; Navarrete, H. Comparison of major nutrients and minerals between organic and conventional tomatoes: A review. J. Food Compos. Anal. 2021, 100, 103922. [Google Scholar] [CrossRef]
- Rehman, R.; Kinza, W.; Haq, N.; Muhammad, A.H. Medicinal Plants of South Asia; Elsevier: Amsterdam, The Netherlands, 2020; 631p. [Google Scholar]
- Añibarro-Ortega, M.; Pinela, J.; Ćirić, A.; Martins, V.; Rocha, F.; Soković, M.D.; Barata, A.M.; Carvalho, A.M.; Barros, L.; Ferreira, I.C. Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food Bioprod. Process. 2020, 124, 307–319. [Google Scholar] [CrossRef]
Variety and Region | Group | Composition | References |
---|---|---|---|
Black tomato pomace; Nanjing, China | Fiber | 28.3–34.7% | [29] |
TSM; Romania | Fiber | 16% | [30] |
TSM; Denizli, Turkey | Total dietary fiber | 34.65% | [31] |
TSM; Denizli, Turkey | Soluble dietary fiber | 4.11% | [31] |
TSM; Denizli, Turkey | Insoluble dietary fiber | 30.54% | [31] |
Pectin | 243–280 µg/g | [4] | |
Crude tomato seed meal; Tunisia | Total sugar content | 2.99% | [32] |
Defatted tomato seed meal; Tunisia | Total sugar content | 3.28% | [32] |
Variety and Region | Group | Composition | References |
---|---|---|---|
TSM | Protein/Amino acids | 22.2–40% 23.60–24.38% | [5,32,33] [4] |
Tomato seeds; Tunisia | 35–41% 23.6–40.9 g/100 g | [32] [36] | |
Defatted TSM | 26.7–27.5% (DMB) | [30] | |
TSM; Denizli, Turkey | 30.66–32% | [24,31] | |
Tomato seeds; Tunisia | Histidine (His) | 2.58 mg/100 g | [32] |
TSM; Denizli, Turkey | 713 mg/100 g | [30] | |
Defatted tomato seeds | 23.4 mg/100 g 0.52 mg/100 g | [28] [37] | |
Tomato seeds; Tunisia | Isoleucine (Ile) | 2.93 mg/100 g | [32] |
TSM; Denizli, Turkey | 1186 mg/100 g 0.78 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Leucine (Leu) | 6.38 mg/100 g | [32] |
TSM; Denizli, Turkey | 1692 mg/100 g 1.5 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Lysine (Lys) | 5.88 mg/100 g | [32] |
TSM; Denizli, Turkey | 1670 mg/100 g 1.7 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Threonine (Thr) | 4.32 mg/100 g 1048 mg/100 g | [32] [25] |
TSM; Denizli, Turkey | 1.3 mg/100 g | [31] | |
Tomato seeds; Tunisia | Valine (Val) | 3.61 mg/100 g | [32] |
TSM; Denizli, Turkey | 1394 mg/100 g 1.2 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Total sulfur amino acids (Met + Cys) | 3.07 mg/100 g | [32] |
TSM; Denizli, Turkey | 941 mg/100 g 0.49 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Total aromatic amino acids (Phe + Tyr) | 9.02 mg/100 g | [32] |
TSM; Denizli, Turkey | 2385 mg/100 g 2.5 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Alanine (Ala) | 4.67 mg/100 g | [32] |
TSM; Denizli, Turkey | 2036 mg/100 g 1 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Arginine (Arg) | 10.62 mg/100 g | [32] |
TSM; Denizli, Turkey | 2696 mg/100 g 1.8 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Aspartic acid (Asp) | 10.32 mg/100 g | [32] |
TSM; Denizli, Turkey | 2894 mg/100 g 2.41 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Glutamic acid (Glu) | 19.44 mg/100 g | [32] |
TSM; Denizli, Turkey | 4839 mg/100 g 14.3 mg/100 g 5.4 mg/100 g | [31] [28] [37] | |
Tomato seeds; Tunisia | Glycine (Gly) | 4.80 mg/100 g | [32] |
TSM; Denizli, Turkey | 1418 mg/100 g 14.2 mg/100 g | [31] [28] | |
Tomato seeds; Tunisia | Proline (Pro) | 4.26 mg/100 g | [32] |
TSM; Denizli, Turkey | 1381 mg/100 g 0.92 mg/100 g | [31] [37] | |
Tomato seeds; Tunisia | Serine (Ser) | 4.51 mg/100 g | [32] |
TSM; Denizli, Turkey | 1357 mg/100 g 1 mg/100 g | [31] [37] |
Variety and Region | Group | Composition | References |
---|---|---|---|
Tomato seeds; Tarhana, Turkey Tomato seeds, San Marzano cultivar; Lecce, Italy | Lipids/Fatty acid profile | 19.9–36.9% 27% | [31,32,38] [33] |
TSO; Timis county, Romania Tomato seeds, San Marzano cultivar; Lecce, Italy Tomato seeds; Greece | SFA | 27.9% 16.19–18.59% 20% | [22] [33] [49,50] |
TSO; Timis county, Romania Tomato seeds, San Marzano cultivar; Lecce, Italy Tomato seeds; Greece | MUFA | 23.6% 30% 17.79–18.26% | [22] [33] [50,51] |
TSO; Timis county, Romania Tomato seeds, San Marzano cultivar; Lecce, Italy Tomato seeds; Greece | PUFA | 48.5% 85% 63.23–66.02% | [29] [33] [46,51] |
Tomato seeds; Greece | n-3 PUFA | 1.39–1.5% | [46] |
Tomato seeds; Greece | n-6 PUFA | 61.73–64.63% | [50,52] |
Tomato seeds, San Marzano cultivar; Lecce, Italy Tomato pomace; Greece Tomato seeds; Illinois, USA TSO; Timis county, Romania Tomato seeds; Greece | Linoleic acid (C18:2 n-6) | 44.8% 50% 48.22% 47–73% 53.7% | [33] [46] [22] [29] [50,52] |
Tomato seeds, San Marzano; Lecce, Italy cultivar Tomato seeds; Illinois, USA TSO; Timis county, Romania TSO; Greece Tomato seeds; Greece | Oleic acid (C18:1 n-9) | 23.1% 9.2% 8–21% 23.8% 17.33–17.88% | [33] [22] [29] [45] [50,52] |
Tomato seeds, San Marzano cultivar; Lecce, Italy Tomato seeds; Illinois, USA TSO; Timis county, Romania Tomato seeds; Tarhana, Turkey Tomato seeds; Greece | Palmitic acid (C16:0) | 18.8% 17.18% 14–25% 13.7% 12.43–14.42% | [33] [22] [29] [32] [46,51] |
Tomato seeds, San Marzano cultivar; Lecce, Italy TSO; Timis county, Romania Tomato seeds; Tarhana, Turkey Tomato seeds; Greece | Stearic acid (C18:0) | 7.4% 0.5–1% 5.4% 3.59–3.95% | [33] [22,28] [32] [44,45] |
Tomato seeds, San Marzano cultivar; Lecce, Italy TSO; Timis county, Romania Tomato seeds; Tarhana, Turkey Tomato seeds; Greece | Linolenic acid (C18:3 n-3) | 3.7% 2–6% 2.1% 1.39–1.5% | [33] [23,29] [32] [44,45] |
Variety and Region | Group | Composition | References |
---|---|---|---|
Minerals | |||
TSM; Denizli, Turkey | Phosphorus (P) | 1074 mg/100 g 24 mg/100 g | [31] [32,54] |
TSM; Denizli, Turkey | Potassium (K) | 977 mg/100 g 650 mg/100 g 237 mg/100 g | [31] [37] [32] |
TSM; Denizli, Turkey | Magnesium (Mg) | 504 mg/100 g 400 mg/100 g 11 mg/100 g | [31] [37] [32] |
TSM; Denizli, Turkey | Calcium (Ca) | 135 mg/100 g 10 mg/100 g 153 mg/100 g | [31] [32] [37] |
TSM; Denizli, Turkey | Iron (Fe) | 24 mg/100 g 0.3 mg/100 g 25 mg/100 g | [31] [32] [37] |
TSM; Denizli, Turkey | Zinc (Zn) | 9.7 mg/100 g 0.2 mg/100 g 12 mg/100 g | [31] [32] [37] |
TSM; Denizli, Turkey | Sodium (Na) | 5 mg/100 g | [32] |
TSM; Denizli, Turkey | Manganese (Mn) | 7.8 mg/100 g 13 mg/100 g | [31] [37] |
TSM; Denizli, Turkey | Copper (Cu) | 1.9 mg/100 g 1.10 mg/100 g | [31] [37] |
Vitamins | |||
Tomato seeds, San Marzano cultivar; Lecce, Italy | Vitamin E (α-tocopherol) | 148 µg/g | [34] |
Vitamin A | 282 µg/g | [50,54] | |
Phytosterol | 50 µg/g 11 µg/g | [32] [54,56] | |
Gallic acid | 315.9 mg/100 g | [32] | |
Total carotenoids | 252.3 µg/g 13.59–47.61 mg/100 g | [32] [51,53] | |
Tomato seeds; Greece | β-carotene | 3.41–5.03 mg/100 g 4.5 µg/g | [53,54] [54,56] |
Tomato seeds; Greece | Vitamin C (ascorbic acid) Thiamine Niacin | 9.5 µg/g 13.7–23.4 mg/100 g 0.6 mg/100 g | [32] [26] [32] |
Compound | Major Effects | References |
---|---|---|
Carotenoids | ||
Lycopene | Anti-oxidant Anti-inflammatory Positive effects in case of colitis Positive effects in case of cardiovascular diseases | [30,44] |
β-carotene | Anti-cancerous Prevention of atherosclerosis Prevention of photooxidative processes Prevention of congestive heart disease | [34,48,54] |
β-lutein | Preservation of eye sight Role in atrophic age-related muscular degeneration Positive effects in case of cardiovascular diseases Anti-oxidant; enforces DNA against damages | [34,48] |
Vitamins | ||
Folates | Regulation of metabolism homocysteine; anemia alleviation Decreases the risk of prostate cancer | [48] |
Vitamin E | Prevention of type II diabetes Prevention of cardiovascular diseases Anti-inflammatory Role in atrophic age-related muscular degenration Antiatherogen | [34,43] |
Vitamin C | Regulation of inflammation Anti-cancerous Insulin metabolism | [43,49] |
Minerals | Blood pressure maintenance Muscle contraction Neuro-muscular coordination Prevents excitotoxicity Vasodilator Bone formation and maintenance | [50,60] |
Disease | Reasons | References |
---|---|---|
Allergies | Β-fructofuranosidase, Lyc e 2, Lyc e 3, profilin, superoxide dismutase, pectin esterase, polygalacturonase, lipid transfer protein cyclophilin | [37,38] |
Gastrointestinal reflux disease (heartburn) | Organic acids (citric and malic acids) are the most potent triggers of acid reflux in prone individuals and higher tomato consumers | [37] |
Kidney problems | High potassium and oxalate concentrations; oxalate can react with calcium, increasing risk of kidney stones (calcium oxalate) | [37,81] |
Irritable bowel syndrome (IBS) | High amount consumption of skin and seeds of tomato | [37,81] |
Lycopenodermia | High amount of lycopene in blood | [37,65] |
Urinary probelms | Organic acids | [37] |
Body aches, arthritis | Glycoalkaloids (tomatine and solanine), tomato and its derived products | [71] |
Migraine | Tomato and its derived products | [43,71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Chandran, D.; Tomar, M.; Bhuyan, D.J.; Grasso, S.; Sá, A.G.A.; Carciofi, B.A.M.; Radha; Dhumal, S.; Singh, S.; et al. Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods. Horticulturae 2022, 8, 265. https://doi.org/10.3390/horticulturae8030265
Kumar M, Chandran D, Tomar M, Bhuyan DJ, Grasso S, Sá AGA, Carciofi BAM, Radha, Dhumal S, Singh S, et al. Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods. Horticulturae. 2022; 8(3):265. https://doi.org/10.3390/horticulturae8030265
Chicago/Turabian StyleKumar, Manoj, Deepak Chandran, Maharishi Tomar, Deep Jyoti Bhuyan, Simona Grasso, Amanda Gomes Almeida Sá, Bruno Augusto Mattar Carciofi, Radha, Sangram Dhumal, Surinder Singh, and et al. 2022. "Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods" Horticulturae 8, no. 3: 265. https://doi.org/10.3390/horticulturae8030265
APA StyleKumar, M., Chandran, D., Tomar, M., Bhuyan, D. J., Grasso, S., Sá, A. G. A., Carciofi, B. A. M., Radha, Dhumal, S., Singh, S., Senapathy, M., Changan, S., Dey, A., Pandiselvam, R., Mahato, D. K., Amarowicz, R., Rajalingam, S., Vishvanathan, M., Saleena, L. A. K., & Mekhemar, M. (2022). Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods. Horticulturae, 8(3), 265. https://doi.org/10.3390/horticulturae8030265