Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum usitatissimum L. Sprouts and Microgreens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and UV-B Treatment
2.2. Determination of Biomass and Stem Length
2.3. Extraction and Determination of Total Phenolics, Flavonoids, and Antioxidant Activity
2.4. Determination of Chlorophylls and Carotenoids
2.5. Statystical Analysis
3. Results
3.1. Biomass Production
3.2. Total Phenolics, Flavonoids, and Antioxidant Activity
3.3. Chlorophylls and Carotenoids
3.4. Multivariate Analyses and Pearson’s Correlation
4. Discussion
4.1. The Growth Stage of Sprouts and Microgreens Influences Biomass Production and Phytochemical Content
4.2. UV-B Treatment Negatively Impacts the Productivity and the Photosynthetic Pigments of Sprouts, but Enhances the Phenolic Content and the Antioxidant Activity of Both Sprouts and Microgreens
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y.; di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; de Pascale, S.; Santamaria, P. Micro-Scale Vegetable Production and the Rise of Microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, Microgreens and “Baby Leaf” Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R.C., Eds.; Springer US: Boston, MA, USA, 2017; pp. 403–432. ISBN 978-1-4939-7018-6. [Google Scholar]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P. Blue Light Dosage Affects Carotenoids and Tocopherols in Microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Samuoliene, G.; Brazaityte, A.; Jankauskiene, J.; Viršile, A.; Sirtautas, R.; Novičkovas, A.; Sakalauskiene, S.; Sakalauskaite, J.; Duchovskis, P. LED Irradiance Level Affects Growth and Nutritional Quality of Brassica Microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Samuoliene, G.; Brazaityte, A.; Viršile, A.; Jankauskiene, J.; Sakalauskiene, S.; Duchovskis, P. Red Light-Dose or Wavelength-Dependent Photoresponse of Antioxidants in Herb Microgreens. PLoS ONE 2016, 11, e0163405. [Google Scholar] [CrossRef]
- Brazaityte, A.; Sakalauskiene, S.; Samuoliene, G.; Jankauskiene, J.; Viršile, A.; Novičkovas, A.; Sirtautas, R.; Miliauskiene, J.; Vaštakaite, V.; Dabašinskas, L.; et al. The Effects of LED Illumination Spectra and Intensity on Carotenoid Content in Brassicaceae Microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef]
- Samuoliene, G.; Brazaityte, A.; Sirtautas, R.; Sakalauskiene, S.; Jankauskiene, J.; Duchovskis, P.; Novičkovas, A. The Impact of Supplementary Short-Term Red LED Lighting on the Antioxidant Properties of Microgreens. Acta Hortic. 2012, 956, 649–655. [Google Scholar] [CrossRef]
- Kliebenstein, D.J.; Lim, J.E.; Landry, L.G.; Last, R.L. Arabidopsis UVR8 Regulates Ultraviolet-B Signal Transduction and Tolerance and Contains Sequence Similarity to Human Regulator of Chromatin Condensation 1. Plant Physiol. 2002, 130, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Rizzini, L.; Favory, J.J.; Cloix, C.; Faggionato, D.; O’Hara, A.; Kaiserli, E.; Baumeister, R.; Schäfer, E.; Nagy, F.; Jenkins, G.I.; et al. Perception of UV-B by the Arabidopsis UVR8 Protein. Science 2011, 332, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Cloix, C.; Jiang, G.H.; Kaiserli, E.; Herzyk, P.; Kliebenstein, D.J.; Jenkins, G.I. A UV-B-Specific Signaling Component Orchestrates Plant UV Protection. Proc. Natl. Acad. Sci. USA 2005, 102, 18225–18230. [Google Scholar] [CrossRef] [Green Version]
- Favory, J.J.; Stec, A.; Gruber, H.; Rizzini, L.; Oravecz, A.; Funk, M.; Albert, A.; Cloix, C.; Jenkins, G.I.; Oakeley, E.J.; et al. Interaction of COP1 and UVR8 Regulates UV-B-Induced Photomorphogenesis and Stress Acclimation in Arabidopsis. EMBO J. 2009, 28, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Santin, M.; Lucini, L.; Castagna, A.; Rocchetti, G.; Hauser, M.T.; Ranieri, A. Comparative “Phenol-Omics” and Gene Expression Analyses in Peach (Prunus Persica) Skin in Response to Different Postharvest UV-B Treatments. Plant Physiol. Biochem. 2019, 135, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Santin, M.; Lucini, L.; Castagna, A.; Chiodelli, G.; Hauser, M.-T.; Ranieri, A. Post-Harvest UV-B Radiation Modulates Metabolite Profile in Peach Fruit. Postharvest Biol. Technol. 2018, 139, 127–134. [Google Scholar] [CrossRef]
- Santin, M.; Ranieri, A.; Hauser, M.-T.; Miras-Moreno, B.; Rocchetti, G.; Lucini, L.; Strid, Å.; Castagna, A. The Outer Influences the Inner: Postharvest UV-B Irradiation Modulates Peach Flesh Metabolome Although Shielded by the Skin. Food Chem. 2021, 338, 127782. [Google Scholar] [CrossRef]
- Santin, M.; Ranieri, A.; Castagna, A. Anything New under the Sun? An Update on Modulation of Bioactive Compounds by Different Wavelengths in Agricultural Plants. Plants 2021, 10, 1485. [Google Scholar] [CrossRef]
- Wang, H.; Gui, M.; Tian, X.; Xin, X.; Wang, T.; Li, J. Effects of UV-B on Vitamin C, Phenolics, Flavonoids and Their Related Enzyme Activities in Mung Bean Sprouts (Vigna Radiata). Int. J. Food Sci. Technol. 2017, 52, 827–833. [Google Scholar] [CrossRef]
- Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts. Molecules 2017, 22, 1065. [Google Scholar] [CrossRef]
- Carletti, P.; Masi, A.; Wonisch, A.; Grill, D.; Tausz, M.; Ferretti, M. Changes in Antioxidant and Pigment Pool Dimensions in UV-B Irradiated Maize Seedlings. Environ. Exp. Bot. 2003, 50, 149–157. [Google Scholar] [CrossRef]
- Schreiner, M.; Mewis, I.; Huyskens-Keil, S.; Jansen, M.A.K.; Zrenner, R.; Winkler, J.B.; O’Brien, N.; Krumbein, A. UV-B-Induced Secondary Plant Metabolites—Potential Benefits for Plant and Human Health. Crit. Rev. Plant Sci. 2012, 31, 229–240. [Google Scholar] [CrossRef]
- Neugart, S.; Schreiner, M. UVB and UVA as Eustressors in Horticultural and Agricultural Crops. Sci. Hortic. 2018, 234, 370–381. [Google Scholar] [CrossRef]
- Carter, J.F. Potential of Flaxseed and Flaxseed Oil in Baked Goods and Other Products in Human Nutrition. Cereal Foods World 1993, 38, 753–759. [Google Scholar]
- Daun, J.K.; Barthet, V.J.; Chornick, T.L.; Duguid, S. Structure, Composition, and Variety Development of Flaxseed. In Flaxseed in Human Nutrition; AOCS Press: Champaign, IL, USA, 2003; pp. 1–40. ISBN 1893997383. [Google Scholar]
- Bekhit, A.E.D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Mohamed Ahmed, I.A.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, Detoxification, Utilization, and Opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Narina, S.S.; Hamama, A.A.; Bhardwaj, H.L. Nutritional and Mineral Composition of Flax Sprouts. J. Agric. Sci. 2012, 4, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qiu, C.; Abbasi, A.M.; Chen, G.; You, L.; Li, T.; Fu, X.; Wang, Y.; Guo, X.; Liu, R.H. Effect of Germination on Vitamin C, Phenolic Compounds and Antioxidant Activity in Flaxseed (Linum Usitatissimum L.). Int. J. Food Sci. Technol. 2015, 50, 2545–2553. [Google Scholar] [CrossRef]
- Wanasundara, P.K.J.P.D.; Wanasundara, U.N.; Shahidi, F. Changes in Flax (Linum Usitatissimum L.) Seed Lipids During Germination. J. Am. Oil Chem. Soc. 1999, 76, 41–48. [Google Scholar] [CrossRef]
- Puccinelli, M.; Maggini, R.; Angelini, L.G.; Santin, M.; Landi, M.; Tavarini, S.; Castagna, A.; Incrocci, L. Can Light Spectrum Composition Increase Growth and Nutritional Quality of Linum Usitatissimum L. Sprouts and Microgreens? Horticulturae 2022, 8, 98. [Google Scholar] [CrossRef]
- Tavarini, S.; Castagna, A.; Conte, G.; Foschi, L.; Sanmartin, C.; Incrocci, L.; Ranieri, A.; Serra, A.; Angelini, L.G. Evaluation of Chemical Composition of Two Linseed Varieties as Sources of Health-Beneficial Substances. Molecules 2019, 24, 729. [Google Scholar] [CrossRef] [Green Version]
- Alonso Borbalán, Á.M.; Zorro, L.; Guillén, D.A.; García Barroso, C. Study of the Polyphenol Content of Red and White Grape Varieties by Liquid Chromatography-Mass Spectrometry and Its Relationship to Antioxidant Power. J. Chromatogr. A 2003, 1012, 31–38. [Google Scholar] [CrossRef]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “‘Antioxidant Power’”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castagna, A.; di Baccio, D.; Tognetti, R.; Ranieri, A.; Sebastiani, L. Differential Ozone Sensitivity Interferes with Cadmium Stress in Poplar Clones. Biol. Plant. 2013, 57, 313–324. [Google Scholar] [CrossRef] [Green Version]
- di Bella, M.C.; Niklas, A.; Toscano, S.; Picchi, V.; Romano, D.; lo Scalzo, R.; Branca, F. Morphometric Characteristics, Polyphenols and Ascorbic Acid Variation in Brassica Oleracea L. Novel Foods: Sprouts, Microgreens and Baby Leaves. Agronomy 2020, 10, 782. [Google Scholar] [CrossRef]
- di Bella, M.C.; Toscano, S.; Arena, D.; Moreno, D.A.; Romano, D.; Branca, F. Effects of Growing Cycle and Genotype on the Morphometric Properties and Glucosinolates Amount and Profile of Sprouts, Microgreens and Baby Leaves of Broccoli (Brassica Oleracea L. Var. Italica Plenck) and Kale (B. Oleracea L. Var. Acephala Dc.). Agronomy 2021, 11, 1685. [Google Scholar] [CrossRef]
- Ebert, A.W.; Wu, T.H.; Yang, R.Y. Amaranth Sprouts and Microgreens-a Homestead Vegetable Production Option to Enhance Food and Nutrition Security in the Rural-Urban Continuum. In Proceedings of the Regional Symposium on Sustaining Small-Scale Vegetable Production and Marketing Systems for Food and Nutrition Security (SEAVEG 2014), Bangkok, Thailand, 25–27 February 2014. [Google Scholar]
- Wang, H.; Wang, J.; Guo, X.; Brennan, C.S.; Li, T.; Fu, X.; Chen, G.; Liu, R.H. Effect of Germination on Lignan Biosynthesis, and Antioxidant and Antiproliferative Activities in Flaxseed (Linum Usitatissimum L.). Food Chem. 2016, 205, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, H.; Wang, Y.; Brennan, C.S.; Anne Brennan, M.; Qiu, C.; Guo, X. Comparison of Lignans and Phenolic Acids in Different Varieties of Germinated Flaxseed (Linum Usitatissimum L.). Int. J. Food Sci. Technol. 2021, 56, 196–204. [Google Scholar] [CrossRef]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Kim, J.K.; Park, S.U. Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica Juncea Sprouts. Horticulturae 2020, 6, 77. [Google Scholar] [CrossRef]
- Niroula, A.; Khatri, S.; Khadka, D.; Timilsina, R. Total Phenolic Contents and Antioxidant Activity Profile of Selected Cereal Sprouts and Grasses. Int. J. Food Prop. 2019, 22, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Fanourakis, D.; Tsaniklidis, G.; Li, K.; Yang, Q.; Li, T. Contrary to Red, Blue Monochromatic Light Improves the Bioactive Compound Content in Broccoli Sprouts. Agronomy 2021, 11, 2139. [Google Scholar] [CrossRef]
- Puccinelli, M.; Pezzarossa, B.; Pintimalli, L.; Malorgio, F.; Colla, G.; de Pascale, S. Selenium Biofortification of Three Wild Species, Rumex Acetosa L., Plantago Coronopus L., and Portulaca Oleracea L., Grown as Microgreens. Agronomy 2021, 11, 1155. [Google Scholar] [CrossRef]
- Nam, T.G.; Kim, D.O.; Eom, S.H. Effects of Light Sources on Major Flavonoids and Antioxidant Activity in Common Buckwheat Sprouts. Food Sci. Biotechnol. 2018, 27, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; He, H.; Song, W. Application of Light-Emitting Diodes and the Effect of Light Quality on Horticultural Crops: A Review. HortScience 2019, 54, 1656–1661. [Google Scholar] [CrossRef] [Green Version]
- Vagiri, M.; Ekholm, A.; Öberg, E.; Johansson, E.; Andersson, S.C.; Rumpunen, K. Phenols and Ascorbic Acid in Black Currants (Ribes Nigrum L.): Variation Due to Genotype, Location, and Year. J. Agric. Food Chem. 2013, 61, 9298–9306. [Google Scholar] [CrossRef]
- Connor, A.M.; Luby, J.J.; Tong, C.B.S.; Finn, C.E.; Hancock, J.F. Genotypic and Environmental Variation in Antioxidant Activity, Total Phenolic Content, and Anthocyanin Content among Blueberry Cultivars. J. Am. Soc. Hortic. Sci. 2002, 127, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant Genotype Affects Total Antioxidant Capacity and Phenolic Contents in Fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Hoober, J.K.; Eggink, L.L. Assembly of Light-Harvesting Complex II and Biogenesis of Thylakoid Membranes in Chloroplasts. Photosynth. Res. 1999, 61, 197–215. [Google Scholar] [CrossRef]
- Jilani, A.; Kar, S.; Bose, S.; Jilani, B.C.T.; Kar, A.; Bose, S.; Tripathy, S.; Jilani, N.A.; Kar, S.; Tripathy, B.C. Regulation of the Carotenoid Content and Chloroplast Development by Levulioic Acid. Physiol. Plant. 1996, 96, 139–145. [Google Scholar] [CrossRef]
- Nishio, J.N. Why Are Higher Plants Green Evolution of the Higher Plant Photosynthetic. Plant Cell Environ. 2000, 23, 539–548. [Google Scholar] [CrossRef]
- Robson, T.M.; Klem, K.; Urban, O.; Jansen, M.A.K. Re-Interpreting Plant Morphological Responses to UV-B Radiation. Plant Cell Environ. 2015, 38, 856–866. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Changing scenario in plant UV-B research: UV-B from a generic stressor to a specific regulator. J. Photochem. Photobiol. B Biol. 2015, 153, 334–343. [Google Scholar] [CrossRef]
- Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Tenango, M.P.; Valderrama-Bravo, C.; Hernández, M.S.; Cruz-Orea, A.; Ordonez-Miranda, J. Characterization of Bean Seeds, Germination, and Phenolic Compounds of Seedlings by UV-C Radiation. J. Plant Growth Regul. 2021, 40, 642–655. [Google Scholar] [CrossRef]
- Dotto, M.; Casati, P. Developmental Reprogramming by UV-B Radiation in Plants. Plant Sci. 2017, 264, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Robson, T.M.; Aphalo, P.J. Species-Specific Effect of UV-B Radiation on the Temporal Pattern of Leaf Growth. Physiol. Plant. 2012, 144, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Klem, K.; Ač, A.; Holub, P.; Kováč, D.; Špunda, V.; Robson, T.M.; Urban, O. Interactive Effects of PAR and UV Radiation on the Physiology, Morphology and Leaf Optical Properties of Two Barley Varieties. Environ. Exp. Bot. 2012, 75, 52–64. [Google Scholar] [CrossRef]
- Hectors, K.; Prinsen, E.; de Coen, W.; Jansen, M.A.K.; Guisez, Y. Arabidopsis Thaliana Plants Acclimated to Low Dose Rates of Ultraviolet B Radiation Show Specific Changes in Morphology and Gene Expression in the Absence of Stress Symptoms. New Phytol. 2007, 175, 255–270. [Google Scholar] [CrossRef]
- Mannucci, A.; Mariotti, L.; Castagna, A.; Santin, M.; Trivellini, A.; Reyes, T.H.; Mensuali-Sodi, A.; Ranieri, A.; Quartacci, M.F. Hormone Profile Changes Occur in Roots and Leaves of Micro-Tom Tomato Plants When Exposing the Aerial Part to Low Doses of UV-B Radiation. Plant Physiol. Biochem. 2020, 148, 291–301. [Google Scholar] [CrossRef]
- Hofmann, R.W.; Campbell, B.D. Response of Trifolium Repens to UV-B Radiation: Morphological Links to Plant Productivity and Water Availability. Plant Biol. 2011, 13, 896–901. [Google Scholar] [CrossRef]
- Germ, M.; Breznik, B.; Dolinar, N.; Kreft, I.; Gaberšcik, A. The Combined Effect of Water Limitation and UV-B Radiation on Common and Tartary Buckwheat. Cereal Res. Commun. 2012, 41, 97–110. [Google Scholar] [CrossRef]
- Furness, N.H.; Jolliffe, P.A.; Upadhyaya, M.K. Competitive Interactions in Mixtures of Broccoli and Chenopodium Album Grown at Two UV-B Radiation Levels under Glasshouse Conditions. Weed Res. 2005, 45, 449–459. [Google Scholar] [CrossRef]
- Biever, J.J.; Brinkman, D.; Gardner, G. UV-B Inhibition of Hypocotyl Growth in Etiolated Arabidopsis Thaliana Seedlings Is a Consequence of Cell Cycle Arrest Initiated by Photodimer Accumulation. J. Exp. Bot. 2014, 65, 2949–2961. [Google Scholar] [CrossRef] [Green Version]
- Rajabbeigi, E.; Eichholz, I.; Beesk, N.; Ulrichs, C.; Kroh, L.W.; Rohn, S.; Huyskens-Keil, S. Interaction of Drought Stress and UV-B Radiation—Impact on Biomass Production and Flavonoid Metabolism in Lettuce (Lactuca Sativa L.). J. Appl. Bot. Food Qual. 2013, 86, 190–197. [Google Scholar] [CrossRef]
- Chen, M.; Huang, Y.; Liu, G.; Qin, F.; Yang, S.; Xu, X. Effects of Enhanced UV-B Radiation on Morphology, Physiology, Biomass, Leaf Anatomy and Ultrastructure in Male and Female Mulberry (Morus Alba) Saplings. Environ. Exp. Bot. 2016, 129, 85–93. [Google Scholar] [CrossRef]
- Singh, S.; Kumari, R.; Agrawal, M.; Agrawal, S.B. Modification in Growth, Biomass and Yield of Radish under Supplemental UV-B at Different NPK Levels. Ecotoxicol. Environ. Saf. 2011, 74, 897–903. [Google Scholar] [CrossRef]
- Teramura, A.H.; Ziska, L.H.; Sztein Teramura, A.E.; Ziska, A.H.; Sztein, L.H. Changes in Growth and Photosynthetic Capacity of Rice with Increased UV-B Radiation. Physiol. Plant. 1991, 83, 373–380. [Google Scholar] [CrossRef]
- Allen, D.J.; Nogués, S.; Morison, J.I.L.; Greenslade, P.D.; McLeod, A.R.; Baker, N.R. A Thirty Percent Increase in UV-B Has No Impact on Photosynthesis in Well-Watered and Droughted Pea Plants in the Field. Glob. Chang. Biol. 1999, 5, 235–244. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, D.; Lingwan, M.; Yadukrishnan, P.; Masakapalli, S.K.; Datta, S. Light Signaling and UV-B-Mediated Plant Growth Regulation. J. Integr. Plant Biol. 2020, 62, 1270–1292. [Google Scholar] [CrossRef]
- Mosadegh, H.; Trivellini, A.; Ferrante, A.; Lucchesini, M.; Vernieri, P.; Mensuali, A. Applications of UV-B Lighting to Enhance Phenolic Accumulation of Sweet Basil. Sci. Hortic. 2018, 229, 107–116. [Google Scholar] [CrossRef]
- Nascimento, L.B.D.S.; Brunetti, C.; Agati, G.; lo Iacono, C.; Detti, C.; Giordani, E.; Ferrini, F.; Gori, A. Short-Term Pre-Harvest Uv-b Supplement Enhances the Polyphenol Content and Antioxidant Capacity of Ocimum Basilicum Leaves during Storage. Plants 2020, 9, 797. [Google Scholar] [CrossRef]
- Assumpção, C.F.; Assis, R.Q.; Hermes Poletto, V.S.; Castagna, A.; Ranieri, A.; Neugart, S.; Flôres, S.H.; de Oliveira Rios, A. Application of Supplemental UV-B Radiation in Pre-Harvest to Enhance Health-Promoting Compounds Accumulation in Green and Red Lettuce. J. Food Processing Preserv. 2019, 43, e14213. [Google Scholar] [CrossRef]
- Faseela, P.; Puthur, J.T. The Imprints of the High Light and UV-B Stresses in Oryza Sativa L. ‘Kanchana’ Seedlings Are Differentially Modulated. J. Photochem. Photobiol. B Biol. 2018, 178, 551–559. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, Y.; Weng, Y.; Yang, R.; Gu, Z.; Wang, P. Effects of UV-B Radiation on Phenolic Accumulation, Antioxidant Activity and Physiological Changes in Wheat (Triticum Aestivum L.) Seedlings. Food Biosci. 2019, 30, 100409. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.; Sun, M.; Li, Y.; Kawabata, S. UV-A Light Induces Anthocyanin Biosynthesis in a Manner Distinct from Synergistic Blue + UV-B Light and UV-A/Blue Light Responses in Different Parts of the Hypocotyls in Turnip Seedlings. Plant Cell Physiol. 2012, 53, 1470–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariz-Ponte, N.; Mendes, R.J.; Sario, S.; Melo, P.; Santos, C. Moderate UV-A Supplementation Benefits Tomato Seed and Seedling Invigoration: A Contribution to the Use of UV in Seed Technology. Sci. Hortic. 2018, 235, 357–366. [Google Scholar] [CrossRef]
- Tilbrook, K.; Arongaus, A.B.; Binkert, M.; Heijde, M.; Yin, R.; Ulm, R. The UVR8 UV-B Photoreceptor: Perception, Signaling and Response. Arab. Book/Am. Soc. Plant Biol. 2013, 11, e0164. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, G.I. The UV-B Photoreceptor UVR8: From Structure to Physiology. Plant Cell 2014, 26, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Hideg, É.; Jansen, M.A.K.; Strid, Å. UV-B Exposure, ROS, and Stress: Inseparable Companions or Loosely Linked Associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, C.R.; Britz, S.J. Effect of Supplemental Ultraviolet Radiation on the Carotenoid and Chlorophyll Composition of Green House-Grown Leaf Lettuce (Lactuca Sativa L.) Cultivars. J. Food Compos. Anal. 2006, 19, 637–644. [Google Scholar] [CrossRef]
- Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int. J. Mol. Sci. 2017, 18, 2330. [Google Scholar] [CrossRef] [Green Version]
- Mewis, I.; Schreiner, M.; Nguyen, C.N.; Krumbein, A.; Ulrichs, C.; Lohse, M.; Zrenner, R. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors. Plant Cell Physiol. 2012, 53, 1546–1560. [Google Scholar] [CrossRef] [Green Version]
Time (min) | Solvent A (%) | Solvent B (%) |
---|---|---|
0 | 100 | 0 |
15 | 100 | 0 |
17.5 | 0 | 100 |
32 | 0 | 100 |
34 | 100 | 0 |
40 | 100 | 0 |
Stage | Treatment | FW (kg m−2) | DW (kg m−2) | DW/FW (%) |
---|---|---|---|---|
Sprouts | CTR | 0.080 ± 0.002 c | 0.017 ± 0.001 | 21.085 ± 1.311 |
UV-B | 0.060 ± 0.001 c | 0.015 ± 0.001 | 24.802 ± 1.181 | |
Microgreens | CTR | 0.233 ± 0.010 a | 0.042 ± 0.003 | 17.878 ± 0.634 |
UV-B | 0.178 ± 0.003 b | 0.031 ± 0.003 | 17.497 ± 1.577 | |
Mean effect | ||||
Sprouts | 0.070 ± 0.005 b | 0.016 ± 0.001 b | 22.943 ±1.148 a | |
Microgreens | 0.206 ± 0.013 a | 0.037 ± 0.003 a | 17.687 ± 0.765 b | |
CTR | 0.157 ± 0.034 a | 0.029 ± 0.006 a | 19.481 ± 0.971 | |
UV-B | 0.119 ± 0.022 b | 0.023 ± 0.004 b | 21.149 ± 3.929 | |
ANOVA | ||||
Stage (A) | *** | *** | ** | |
Treatment (B) | *** | * | n.s. | |
A × B | * | n.s. | n.s. |
Stage | Treatment | Neoxanthin (mg g−1 FW) | Violaxanthin (mg g−1 FW) | Antheraxanthin (mg g−1 FW) | Lutein (mg g−1 FW) | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | β-carotene (mg g−1 FW) |
---|---|---|---|---|---|---|---|---|
Sprouts | CTR | 0.038 ± 0.004 ab | 0.082 ± 0.010 b | 0.009 ± 0.001 a | 0.163 ± 0.007 b | 0.217 ± 0.009 b | 0.111 ± 0.006 bc | 0.333 ± 0.011 b |
UV-B | 0.026 ± 0.006 b | 0.051 ± 0.003 c | 0.003 ± 0.000 b | 0.121 ± 0.007 c | 0.170 ± 0.008 c | 0.088 ± 0.005 c | 0.245 ± 0.033 b | |
Microgreens | CTR | 0.045 ± 0.002 a | 0.109 ± 0.005 ab | 0.007 ± 0.001 ab | 0.207 ± 0.006 a | 0.260 ± 0.001 a | 0.134 ± 0.003 b | 0.468 ± 0.007 a |
UV-B | 0.050 ± 0.004 a | 0.119 ± 0.005 a | 0.010 ± 0.013 a | 0.227 ± 0.013 a | 0.280 ± 0.018 a | 0.160 ± 0.011 a | 0.547 ± 0.051 a | |
Mean effect | ||||||||
Sprouts | 0.032 ± 0.004 b | 0.066 ± 0.008 b | 0.006 ± 0.001 b | 0.142 ± 0.010 b | 0.194 ± 0.012 b | 0.100 ± 0.006 b | 0.289 ± 0.024 b | |
Microgreens | 0.048 ± 0.002 a | 0.114 ± 0.004 a | 0.008 ± 0.001 a | 0.217 ± 0.006 a | 0.270 ± 0.009 a | 0.147 ± 0.008 a | 0.507 ± 0.033 a | |
CTR | 0.042 ± 0.003 | 0.095 ± 0.008 | 0.008 ± 0.001 | 0.185 ± 0.011 | 0.238 ± 0.010 | 0.122 ± 0.006 | 0.400 ± 0.031 | |
UV-B | 0.038 ± 0.006 | 0.085 ± 0.015 | 0.007 ± 0.002 | 0.174 ± 0.025 | 0.225 ± 0.026 | 0.124 ± 0.017 | 0.396 ± 0.073 | |
ANOVA | ||||||||
Stage (A) | ** | *** | * | *** | *** | *** | *** | |
Treatment (B) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |
A × B | *** | * | *** | ** | ** | ** | ** |
Parameter | Pearson’s Coefficient | |
---|---|---|
Can 1 | Can 2 | |
Total phenolics | 0.37 | 0.79 * |
Flavonoids | −0.57 | 0.70 * |
Antioxidant activity (ABTS) | 0.36 | 0.76 * |
Antioxidant activity (FRAP) | 0.22 | 0.93 * |
Fresh biomass | −0.91 * | −0.40 |
Dry matter content | 0.73 * | 0.22 |
Chlorophyll a | −0.82 * | −0.12 |
Chlorophyll b | −0.82 * | 0.07 |
β-carotene | −0.86 * | 0.00 |
Lutein | −0.85 * | −0.10 |
Violaxanthin | −0.82 * | −0.18 |
Neoxanthin | −0.69 | −0.11 |
Antheraxanthin | −0.36 | −0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santin, M.; Sciampagna, M.C.; Mannucci, A.; Puccinelli, M.; Angelini, L.G.; Tavarini, S.; Accorsi, M.; Incrocci, L.; Ranieri, A.; Castagna, A. Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum usitatissimum L. Sprouts and Microgreens. Horticulturae 2022, 8, 213. https://doi.org/10.3390/horticulturae8030213
Santin M, Sciampagna MC, Mannucci A, Puccinelli M, Angelini LG, Tavarini S, Accorsi M, Incrocci L, Ranieri A, Castagna A. Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum usitatissimum L. Sprouts and Microgreens. Horticulturae. 2022; 8(3):213. https://doi.org/10.3390/horticulturae8030213
Chicago/Turabian StyleSantin, Marco, Maria Calogera Sciampagna, Alessia Mannucci, Martina Puccinelli, Luciana Gabriella Angelini, Silvia Tavarini, Mattia Accorsi, Luca Incrocci, Annamaria Ranieri, and Antonella Castagna. 2022. "Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum usitatissimum L. Sprouts and Microgreens" Horticulturae 8, no. 3: 213. https://doi.org/10.3390/horticulturae8030213
APA StyleSantin, M., Sciampagna, M. C., Mannucci, A., Puccinelli, M., Angelini, L. G., Tavarini, S., Accorsi, M., Incrocci, L., Ranieri, A., & Castagna, A. (2022). Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum usitatissimum L. Sprouts and Microgreens. Horticulturae, 8(3), 213. https://doi.org/10.3390/horticulturae8030213