Effects of Functional Edible Coatings and Storage on Bioactive Compounds, Antioxidant Properties and Sugars in Barhi Dates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating of Barhi Dates with Chitosan and Phytochemical-Rich Solutions
2.3. Total Flavonoids Determination
2.4. Total Carotenoids Determination
2.5. Tannins Determination
2.6. Ferric Reducing Antioxidant Power (FRAP)
2.7. ABTS Cation Radical Scavenging Activity
2.8. Flavonoids and Phenolic Acids Quantification
2.9. Determination of Sucrose, Fructose and Glucose
2.10. Determination of Invertase Activity
2.11. Experimental Design and Statistical Analyses
3. Results and Discussion
3.1. Bioactive Contents and Biological Properties of Barhi Dates
3.2. Chromatographic Evaluation of Bioactive Compounds in Barhi Dates
3.3. Content of Sucrose, Fructose and Glucose and Invertase Activity in Barhi Dates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vega-Galvez, A.; Miranda, M.; Puente-Diaz, L.; Lopez, L.; Uribe, E.; Rodriguez, K.; Di Scala, K. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour. Technol. 2010, 101, 7265–7270. [Google Scholar] [CrossRef] [PubMed]
- Uribe, E.; Lemus-Mondaca, R.; Vega-Galvez, A.; Zamorano, M.; Quispe-Fuentes, I.; Pasten, A.; Di Scala, K. Influence of process temperature on drying kinetics, physicochemical properties and antioxidant capacity of the olive-waste cake. Food Chem. 2014, 147, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Suarez, M.; Romero, M.P.; Motilva, M.J. Development of a phenol enriched olive oil with phenolic compounds from olive cake. J. Agric. Food Chem. 2010, 58, 10396–10403. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lo, C.Y.; Ho, C.T. Hydroxylated polymethoxy-flavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J. Agric. Food Chem. 2006, 54, 4176–4185. [Google Scholar] [CrossRef]
- Chen, Z.T.; Chu, H.L.; Chyau, C.C.; Chu, C.C.; Duh, P.D. Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress. Food Chem. 2012, 135, 2119–2127. [Google Scholar] [CrossRef]
- Huang, Y.S.; Ho, S.C. Polymethoxy flavones are responsible for the anti-inflammatory activity of citrus fruit peel. Food Chem. 2010, 119, 868–873. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Patel, J.S.; Patel, N.J.; Talati, J.G. Storage of fruits and vegetables in refrigerator increases their phenolic acids but decreases the total phenolics, anthocyanins and vitamin C with subsequent loss of their antioxidant capacity. Antioxidants 2017, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Alsawmahi, O.N.; Al-Juhaimi, F.; Alhamdan, A.M.; Ghafoor, K.; Ahmed, I.A.M.; Hassan, B.H.; Ehmed, K.A.; Babiker, E.E.; Abdelkarim, D.; Younis, M.; et al. Enzyme activity, sugar composition, microbial growth and texture of fresh Barhi dates as affected by modified atmosphere packaging. J. Food Sci. Technol. 2018, 55, 4492–4504. [Google Scholar] [CrossRef]
- Alhamdan, A.; Hassan, B.; Alkahtani, H.; Abdelkarim, D.; Younis, N. Cryogenic freezing of fresh date fruits for quality preservation during frozen storage. J. Saudi Soc. Agric. Sci. 2018, 17, 9–16. [Google Scholar] [CrossRef]
- Salehi, F. Edible coating of fruits and vegetables using natural gums: A review. Int. J. Fruit Sci. 2020, 20, S570–S589. [Google Scholar] [CrossRef]
- Murmu, S.B.; Mishra, H.N. Optimization of the Arabic gum based edible coating formulations with sodium caseinate and Tulsi extract for guava. LWT Food Sci. Technol. 2017, 80, 271–279. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Restuccia, C. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiol. 2018, 74, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Wang, X. Guar gum and ginseng extract coatings maintain the quality of sweet cherry. LWT Food Sci. Technol. 2018, 89, 117–122. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al-Juhaimi, F.Y.; Babiker, E.E.; Ahmed, I.A.M.; Shahzad, S.A.; Alsawmahi, O.N. Quality attributes of refrigerated Barhi dates coated with edible chitosan containing natural functional ingredients. Foods 2022, 11, 1584. [Google Scholar] [CrossRef]
- Biglari, F.; AlKarkhi, A.F.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar] [CrossRef]
- Ranjith, A.; Kumar, K.S.; Venugopalan, V.V.; Arumughan, C.; Sawhney, R.C.; Singh, V. Fatty acids, tocols, and carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoides, H. salicifolia, and H. tibetana) grown in the Indian Himalayas. J. Am. Oil Chem. Soc. 2006, 83, 359–364. [Google Scholar] [CrossRef]
- Benzie, I.F.; Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, I.S.; Rehman, S.U.; Na, C.S.; Yoo, H.H. HPLC determination of bioactive flavonoids in Hovenia dulcis fruit extracts. J. Chromatogr. Sci. 2016, 54, 130–135. [Google Scholar] [PubMed] [Green Version]
- Araujo, N.M.P.; Arruda, H.S.; Santos, F.N.; Morais, D.R.; Pereira, G.A.; Pastore, G.M. LC-MS/MS screening and identification of bioactive compounds in leaves, pulp and seed from Eugenia calycina Cambess. Food Res. Int. 2020, 137, 109556. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC Intl: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Hasegawa, S.; Smolensky, D.C. Date invertase: Properties and activity associated with maturation and quality. J. Agric. Food Chem. 1970, 18, 902–904. [Google Scholar] [CrossRef]
- Chaira, N.; Smaali, I.; Besbes, S.; Mrabet, A.; Lachiheb, B.; Ferchichi, A. Production of fructose-rich syrups using invertase from date palm fruits. J. Food Biochem. 2010, 35, 1576–1582. [Google Scholar] [CrossRef]
- Londoño-Londoño, J.; de Lima, V.R.; Lara, O.; Gil, A.; Pasa, T.B.C.; Arango, G.J.; José, R.; Pineda, R. Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chem. 2010, 119, 81–87. [Google Scholar] [CrossRef]
- Oboh, G.; Ademosun, A.O. Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J. Food Sci. Technol. 2012, 49, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unanma, H.C.; Anaduaka, E.G.; Uchendu, N.O.; Ononiwu, C.P.; Ogugua, V.N. Ananas comosus and Citrus sinensis peels ameliorate CCl4-induced liver injury in Wistar rats. Sci. Afr. 2021, 14, e01026. [Google Scholar] [CrossRef]
- Murador, D.C.; Braga, A.R.C.; Martins, P.L.G.; Mercadante, A.Z.; de Rosso, V.V. Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Res. Int. 2019, 126, 108653. [Google Scholar] [CrossRef]
- García, A.I.M.; Moumen, A.; Ruiz, D.R.Y.; Alcaide, E.M. Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Anim. Feed Sci. Technol. 2003, 107, 61–74. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Antioxidant capacity, antioxidant compounds and antioxidant enzyme activities in five date cultivars during development and ripening. Sci. Hortic. 2011, 129, 688–693. [Google Scholar] [CrossRef]
- AL-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef] [PubMed]
- Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fathy, H.M.; Abd El-Maksoud, A.A.; Cheng, W.; Elshaghabee, F.M.F. Value-added utilization of citrus peels in improving functional properties and probiotic viability of Acidophilusbifidus- thermophilus (ABT)-type synbiotic yoghurt during cold storage. Foods 2022, 11, 2677. [Google Scholar] [CrossRef]
- Hegde, P.; Agrawal, P.; Gupta, P.K. Extraction of Polyphenols from Orange Peel by Solvent Extraction and Microbial Assisted Extraction and Comparison of Extraction Efficiency. In Biotechnology and Biochemical Engineering; Prasanna, B.D., Gummadi, S.N., Vadlni, P.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 129–135. [Google Scholar]
- Alu’datt, M.H.; Alli, I.; Ereifej, K.; Alhamad, M.; Al-Tawaha, A.R.; Rababah, T. Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 2010, 123, 117–122. [Google Scholar] [CrossRef]
- Adiletta, G.; Di Matteo, M.; Petriccione, M. Multifunctional role of chitosan edible coatings on antioxidant systems in fruit crops: A review. Int. J. Mol. Sci. 2021, 22, 2633. [Google Scholar] [CrossRef] [PubMed]
- Villa-Rodriguez, J.A.; Palafox-Carlos, H.; Yahia, E.M.; Ayala-Zavala, J.F.; Gonzalez-Aguilar, G.A. Maintaining antioxidant potential of fresh fruits and vegetables after harvest. Crit. Rev. Food Sci. Nutr. 2015, 55, 806–822. [Google Scholar] [CrossRef]
- Memete, A.R.; Teusdea, A.C.; Timar, A.V.; Vuscan, A.N.; Mintas, O.S.; Cavalu, S.; Vicas, S.I. Effects of different edible coatings on the shelf life of fresh black mulberry fruits (Morus nigra L.). Agriculture 2022, 12, 1068. [Google Scholar] [CrossRef]
- Hu, W.S.; Feng, K. Effect of edible coating on the quality and antioxidant enzymatic activity of postharvest sweet cherry (Prunus avium L.) during storage. Coatings 2022, 12, 581. [Google Scholar] [CrossRef]
- AlYammahi, J.; Hai, A.; Krishnamoorthy, R.; Arumugham, T.; Hasan, S.W.; Banat, F. Ultrasound-assisted extraction of highly nutritious date sugar from date palm (Phoenix dactylifera) fruit powder: Parametric optimization and kinetic modeling. Ultrasonic. Sonochem. 2022, 88, 106107. [Google Scholar] [CrossRef]
- Al-Asmari, F.; Nirmal, N.; Chaliha, M.; Williams, D.; Mereddy, R.; Shelat, K.; Sultanbawa, Y. Physico-chemical characteristics and fungal profile of four Saudi fresh date (Phoenix dactylifera L.) cultivars. Food Chem. 2017, 221, 644–649. [Google Scholar] [CrossRef]
- Fachin, D.; Van Loey, A.M.; Nguyen, B.L.; Verlent, I.; Indrawati; Hendrickx, M.E. Inactivation kinetics of polygalacturonase in tomato juice. Innov. Food Sci. Emerg. Technol. 2003, 4, 135–142. [Google Scholar] [CrossRef]
- Myrbäck, K. Invertases. In The Enzymes, 2nd ed.; Boyer, P.D., Lardy, H., Myrbäck, K., Eds.; Academic Press: New York, NY, USA, 1960; Volume 4, pp. 379–396. [Google Scholar]
- Neumann, N.P.; Lampen, J.O. Purification and properties of yeast invertase. Biochemistry 1967, 6, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Marouf, B.A.; Zeki, L. Invertase from date fruits. J. Agric. Food Chem. 1982, 30, 990–993. [Google Scholar] [CrossRef]
- Rai, A.; Prabhune, A.; Perry, C.C. Entrapment of commercially important invertase in silica particles at physiological pH and the effect of pH and temperature on enzyme activity. Mater. Sci. Eng. C 2012, 32, 785–789. [Google Scholar] [CrossRef]
Treatment | Storage Period (Days) | ||
---|---|---|---|
0 | 14 | 28 | |
Total flavonoids (mg QE/100 g) | |||
Uncoated | 96.38 ± 2.54 ep | 86.72 ± 3.24 fq | 80.36 ± 3.42 fr |
CH | 96.82 ± 1.86 ep | 91.58 ± 4.25 eq | 87.25 ± 4.18 er |
1% OCE+CH | 136.62 ± 4.31 dp | 112.45 ± 5.15 dq | 110.36 ± 3.69 dq |
2% OCE+CH | 156.32 ± 4.39 ap | 138.45 ± 4.63 aq | 118.67 ± 4.18 cr |
1%OPE+CH | 139.62 ± 6.24 cp | 129.45 ± 3.74 cq | 126.38 ± 5.18 br |
2%OPE+CH | 145.64 ± 5.17 bp | 136.47 ± 3.98 bq | 134.58 ± 5.47 aq |
Total tannins (mg CE/100 g) | |||
Uncoated | 1.89 ± 0.54 bp | 1.72 ± 0.39 bp | 1.66 ± 0.32 bp |
CH | 1.91 ± 0.36 bp | 1.85 ± 0.27 bp | 1.72 ± 0.24 bp |
1% OCE+CH | 2.32 ± 0.42 ap | 2.14 ± 0.46 ap | 2.08 ± 0.52 abp |
2% OCE+CH | 2.63 ± 0.23 ap | 2.35 ± 0.38 ap | 1.97 ± 0.39 abp |
1%OPE+CH | 2.45 ± 0.75 ap | 2.28 ± 0.43 ap | 2.17 ± 0.61 ap |
2%OPE+CH | 2.68 ± 0.39 ap | 2.49 ± 0.51 ap | 2.37 ± 0.57 ap |
Total carotenoids (mg BCE/100 g) | |||
Uncoated | 1.58 ± 0.23 bp | 0.93 ± 0.11 bq | 0.72 ± 0.17 cr |
CH | 1.47 ± 0.19 bp | 1.24 ± 0.17 bp | 1.05 ± 0.12 bq |
1% OCE+CH | 1.59 ± 0.16 bp | 1.34 ± 0.21 bp | 0.95 ± 0.21 bcq |
2% OCE+CH | 1.52 ± 0.27 bp | 1.38 ± 0.16 bp | 1.27 ± 0.22 bp |
1%OPE+CH | 2.36 ± 0.32 ap | 2.11 ± 0.15 bp | 1.87 ± 0.15 bq |
2%OPE+CH | 2.98 ± 0.33 ap | 2.62 ± 0.32 bp | 2.38 ± 0.26 aq |
FRAP (mmol TE/100 g) | |||
Uncoated | 3.65 ± 0.72 cp | 2.45 ± 0.42 cq | 2.18 ± 0.14 cq |
CH | 3.78 ± 0.35 cp | 3.52 ± 0.27 bp | 3.05 ± 0.25 bq |
1% OCE+CH | 4.36 ± 1.24 bp | 3.91 ± 0.19 bp | 3.75 ± 0.21 bp |
2% OCE+CH | 4.89 ± 1.22 bp | 4.57 ± 0.34 ap | 4.09 ± 0.52 aq |
1%OPE+CH | 4.65 ± 0.72 bp | 4.25 ± 0.46 ap | 4.17 ± 0.51 ap |
2%OPE+CH | 5.24 ± 0.82 ap | 4.73 ± 0.38 ap | 4.28 ± 0.63 ap |
ABTS (μmol TE/100 g) | |||
Uncoated | 569.38 ± 20.42 ep | 487.25 ± 33.65 eq | 395.24 ± 18.37 fr |
CH | 621.45 ± 31.25 dp | 574.19 ± 27.62 dq | 462.75 ± 17.29 er |
1% OCE+CH | 668.14 ± 24.36 cp | 627.17 ± 35.62 cq | 487.65 ± 24.32 dr |
2% OCE+CH | 669.42 ± 18.47 cp | 631.52 ± 29.86 bq | 514.23 ± 15.48 cr |
1%OPE+CH | 689.51 ± 33.69 bp | 654.25 ± 35.12 aq | 582.45 ± 24.36 br |
2%OPE+CH | 692.67 ± 41.28 ap | 654.28 ± 25.45 aq | 627.36 ± 35.67 ar |
Phytochemical | Storage (Days) | Treatment | |||||
---|---|---|---|---|---|---|---|
Uncoated | CH | 1% OCE + CH | 2% OCE + CH | 1% OPE + CH | 2% OPE + CH | ||
Apigenin | 0 | 0.23 ± 0.0 ar | 0.26 ± 0.01 aq | 0.35 ± 0.02 ap | 0.47 ± 0.06 ap | 0.33 ± 0.04 ap | 0.37 ± 0.07 ap |
14 | 0.18 ± 0.01 br | 0.24 ± 0.01 bq | 0.31 ± 0.05 ap | 0.45 ± 0.08 ap | 0.28 ± 0.06 aq | 0.35 ± 0.09 ap | |
Caffeic acid | 0 | 2.08 ± 0.59 aq | 2.10 ± 0.36 aq | 2.68 ± 0.43 aq | 3.18 ± 1.05 ap | 3.17 ± 0.62 ap | 3.26 ± 1.13 ap |
14 | 1.23 ± 0.35 bq | 1.69 ± 0.21 aq | 2.14 ± 0.53 ap | 2.75 ± 0.31 ap | 2.85 ± 0.29 ap | 2.71 ± 0.23 ap | |
Catechin | 0 | 0.91 ± 0.15 aq | 0.88 ± 0.13 aq | 1.35 ± 0.41 ap | 1.48 ± 0.23 ap | 1.39 ± 0.17 ap | 1.42 ± 0.23 ap |
14 | 0.82 ± 0.13 aq | 0.83 ± 0.21 aq | 1.24 ± 0.42 ap | 1.37 ± 0.36 ap | 1.08 ± 0.13 aq | 1.13 ± 0.11 apq | |
Chlorogenic acid | 0 | 0.38 ± 0.02 aq | 0.39 ± 0.14 apq | 0.45 ± 0.06 ap | 0.46 ± 0.07 ap | 0.42 ± 0.11 ap | 0.44 ± 0.18 ap |
14 | 0.27 ± 0.05 aq | 0.31 ± 0.03 apq | 0.37 ± 0.08 ap | 0.36 ± 0.10 ap | 0.39 ± 0.09 ap | 0.41 ± 0.15 ap | |
Cinnamic acid | 0 | 18.54 ± 3.52 aq | 18.62 ± 2.98 aq | 18.62 ± 3.75 aq | 19.34 ± 4.16 aq | 19.06 ± 2.65 apq | 20.63 ± 3.93 ap |
14 | 16.35 ± 3.43 br | 17.62 ± 4.25 bq | 17.36 ± 3.69 bq | 18.16 ± 2.73 bq | 18.13 ± 3.92 bq | 19.67 ± 4.31 bp | |
p-Coumaric acid | 0 | 21.43 ± 5.46 bt | 24.36 ± 4.32 as | 27.14 ± 2.98 ar | 28.67 ± 4.19 ap | 26.58 ± 4.37 ar | 27.69 ± 3.92 aq |
14 | 22.01 ± 5.32 aq | 21.87 ± 3.64 bq | 22.48 ± 4.61 bq | 25.12 ± 4.12 bp | 24.38 ± 2.71 bp | 25.19 ± 4.06 bp | |
Epicatechin | 0 | 4.87 ± 1.31 ap | 4.92 ± 1.58 ap | 5.26 ± 2.32 ap | 5.89 ± 1.67 ap | 4.77 ± 2.07 ap | 5.16 ± 1.87 ap |
14 | 4.39 ± 2.11 ap | 4.56 ± 1.65 ap | 4.75 ± 1.92 ap | 4.87 ± 1.32 bp | 4.52 ± 2.11 ap | 4.67 ± 1.63 ap | |
Ferulic acid | 0 | 78.46 ± 4.99 au | 82.96 ± 7.24 ar | 79.35 ± 6.33 at | 80.35 ± 5.69 as | 90.35 ± 5.36 aq | 96.42 ± 10.09 ap |
14 | 73.87 ± 6.82 bt | 76.38 ± 5.66bs | 78.62 ± 6.38 ar | 79.36 ± 5.12 ar | 84.32 ± 4.59 bq | 87.65 ± 3.84 bp | |
Gallic acid | 0 | 0.73 ± 0.15 aq | 0.72 ± 0.31 aq | 0.84 ± 0.26 aq | 0.91 ± 0.33 apq | 1.06 ± 0.29 ap | 1.31 ± 0.35 ap |
14 | 0.72 ± 0.14 aq | 0.71 ± 0.23 aq | 0.75 ± 0.09 aq | 0.85 ± 0.17 apq | 1.05 ± 0.13 ap | 1.07 ± 0.09 ap | |
Kaempferol | 0 | 1.85 ± 0.32 aq | 1.84 ± 0.33 aq | 2.13 ± 0.56 ap | 2.32 ± 0.49 ap | 1.96 ± 0.63 apq | 2.25 ± 0.68 ap |
14 | 1.79 ± 0.36 ap | 1.81 ± 0.29 ap | 2.07 ± 0.63 ap | 2.06 ± 0.37 ap | 1.80 ± 0.24 ap | 1.99 ± 0.35 ap | |
Luteolin | 0 | 0.87 ± 0.09 ar | 0.91 ± 0.08 aqr | 1.07 ± 0.19 aqr | 1.63 ± 0.09 apq | 2.42 ± 0.31 ap | 2.53 ± 0.42 ap |
14 | 0.76 ± 0.16 ar | 0.75 ± 0.22 ar | 1.34 ± 0.35 aq | 1.08 ± 0.18 aqr | 2.36 ± 0.24 ap | 2.18 ± 0.19 ap | |
Naringenin | 0 | 0.78 ± 0.15 ar | 0.83 ± 0.13 ar | 1.13 ± 0.24 aqr | 1.36 ± 0.36 ap | 1.46 ± 0.33 ap | 1.63 ± 0.27 ap |
14 | 0.63 ± 0.16 aq | 0.72 ± 0.35 aq | 0.83 ± 0.26 apq | 1.08 ± 0.19 ap | 1.12 ± 0.22 ap | 1.36 ± 0.42 ap | |
Procyanidin B2 | 0 | 0.47 ± 0.06 aq | 0.53 ± 0.06 aq | 1.32 ± 0.16 apq | 1.53 ± 0.23 ap | 1.39 ± 0.17 ap | 1.64 ± 0.36 ap |
14 | 0.52 ± 0.14 aq | 0.39 ± 0.09 aq | 0.86 ± 0.11 apq | 1.04 ± 0.17 ap | 1.17 ± 0.25 ap | 1.29 ± 0.09 ap | |
Protocatechuic acid | 0 | 54.79 ± 6.32 ar | 55.62 ± 5.42 ar | 57.36 ± 4.23 aq | 60.38 ± 6.25 ap | 59.69 ± 4.68 ap | 60.92 ± 4.61 ap |
14 | 54.36 ± 5.78 aq | 54.98 ± 3.62 aq | 55.46 ± 4.21 aq | 55.33 ± 3.98 aq | 54.43 ± 4.76 aq | 56.81 ± 5.72 ap | |
Quercetin-3-glucoside | 0 | 42.16 ± 6.27 aq | 43.65 ± 5.78 apq | 44.36 ± 8.42 apq | 45.19 ± 6.24 apq | 46.92 ± 5.39 ap | 50.74 ± 6.27 ap |
14 | 39.68 ± 2.57 ap | 40.37 ± 3.95 ap | 41.73 ± 4.27 ap | 43.49 ± 4.18 ap | 44.18 ± 3.95 ap | 46.93 ± 5.74 ap | |
Quercetin | 0 | 0.88 ± 0.21 ar | 0.93 ± 0.17 ar | 1.29 ± 0.17 aq | 1.68 ± 0.33 aq | 2.11 ± 0.39 ap | 2.74 ± 0.33 ap |
14 | 0.71 ± 0.07 ar | 0.79 ± 0.11 ar | 1.24 ± 0.06 aq | 1.13 ± 0.16 aq | 1.76 ± 0.24 aq | 2.57 ± 0.27 ap | |
Rutin | 0 | 29.87 ± 3.98 at | 29.71 ± 4.12 at | 30.78 ± 2.91 as | 33.63 ± 3.07 ar | 35.64 ± 2.77 aq | 37.61 ± 3.66 ap |
14 | 28.36 ± 5.21 brs | 27.63 ± 4.36 bs | 28.75 ± 6.74 br | 31.72 ± 5.36 bq | 32.47 ± 4.87 bpq | 33.29 ± 4.08 bp | |
Syringic acid | 0 | 128.74 ± 13.69 as | 129.47 ± 7.25 as | 127.69 ± 6.37 at | 130.67 ± 4.96 ar | 140.98 ± 7.32 aq | 157.39 ± 4.87 ap |
14 | 127.86 ± 14.36 br | 128.53 ± 13 ar | 125.63 ± 6.27 bs | 127.69 ± 10.69 br | 137.29 ± 9.42 bq | 138.47 ± 12.15 bp | |
Vanillic acid | 0 | 432.54 ± 36.25 as | 442.68 ± 34.63 ar | 428.67 ± 23.56 at | 419.37 ± 22.14 au | 517.36 ± 15.92 aq | 536.78 ± 16.25 ap |
14 | 382.61 ± 45.25 bu | 399.45 ± 52.36 bt | 412.87 ± 28.87 bs | 408.24 ± 49.26 br | 435.98 ± 50.45 bq | 507.19 ± 38.23 bp |
Treatment | Storage Period (Days) | ||
---|---|---|---|
0 | 14 | 28 | |
Sucrose (%) | |||
Uncoated | 24.67 ± 1.26 ap | 14.65 ± 0.59 dq | 12.47 ± 1.19 dr |
CH | 24.71 ± 1.32 ap | 18.66 ± 1.21 cq | 12.79 ± 0.52 dr |
1% OCE+CH | 23.97 ± 0.69 ap | 20.48 ± 0.62 bq | 14.47 ± 0.63 cr |
2% OCE+CH | 23.74 ± 2.45 ap | 21.26 ± 0.35 aq | 18.52 ± 0.57 br |
1%OPE+CH | 24.53 ± 1.35 ap | 22.17 ± 0.18 aq | 19.45 ± 0.49 ar |
2%OPE+CH | 24.19 ± 1.39 ap | 21.89 ± 0.31 aq | 19.76 ± 0.28 ar |
Fructose (%) | |||
Uncoated | 23.45 ± 1.55 ar | 29.45 ± 0.79 aq | 39.45 ± 3.47 ap |
CH | 23.78 ± 2.63 ar | 27.47 ± 0.63 bq | 35.68 ± 2.74 bp |
1% OCE+CH | 23.74 ± 1.42 ar | 27.33 ± 0.72 bq | 32.57 ± 2.45 cp |
2% OCE+CH | 24.05 ± 0.78 ar | 27.18 ± 1.63 bq | 31.45 ± 3.18 dp |
1%OPE+CH | 23.69 ± 0.69 ar | 26.87 ± 1.75 bq | 30.66 ± 2.83 ep |
2%OPE+CH | 23.53 ± 0.82 ar | 25.87 ± 0.96 cq | 30.78 ± 1.76 ep |
Glucose (%) | |||
Uncoated | 21.89 ± 1.72 ar | 32.58 ± 2.48 aq | 38.92 ± 1.34 aq |
CH | 22.47 ± 2.54 ar | 25.98 ± 1.65 bq | 33.78 ± 2.53 bq |
1% OCE+CH | 21.63 ± 3.61 ar | 25.27 ± 1.87 bq | 29.67 ± 1.93 eq |
2% OCE+CH | 22.08 ± 1.12 ar | 23.68 ± 2.67 dq | 28.55 ± 2.72 fq |
1%OPE+CH | 22.31 ± 3.14 ar | 24.37 ± 1.63 cq | 31.62 ± 1.58 cq |
2%OPE+CH | 21.55 ± 0.73 ar | 24.06 ± 0.69 cq | 30.83 ± 2.07 dq |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafoor, K.; Al-Juhaimi, F.Y.; Babiker, E.E.; Sarker, M.Z.I.; Ahmed, I.A.M. Effects of Functional Edible Coatings and Storage on Bioactive Compounds, Antioxidant Properties and Sugars in Barhi Dates. Horticulturae 2022, 8, 1185. https://doi.org/10.3390/horticulturae8121185
Ghafoor K, Al-Juhaimi FY, Babiker EE, Sarker MZI, Ahmed IAM. Effects of Functional Edible Coatings and Storage on Bioactive Compounds, Antioxidant Properties and Sugars in Barhi Dates. Horticulturae. 2022; 8(12):1185. https://doi.org/10.3390/horticulturae8121185
Chicago/Turabian StyleGhafoor, Kashif, Fahad Y. Al-Juhaimi, Elfadil E. Babiker, Md. Zaidul Islam Sarker, and Isam A. Mohamed Ahmed. 2022. "Effects of Functional Edible Coatings and Storage on Bioactive Compounds, Antioxidant Properties and Sugars in Barhi Dates" Horticulturae 8, no. 12: 1185. https://doi.org/10.3390/horticulturae8121185
APA StyleGhafoor, K., Al-Juhaimi, F. Y., Babiker, E. E., Sarker, M. Z. I., & Ahmed, I. A. M. (2022). Effects of Functional Edible Coatings and Storage on Bioactive Compounds, Antioxidant Properties and Sugars in Barhi Dates. Horticulturae, 8(12), 1185. https://doi.org/10.3390/horticulturae8121185