Effect of Whey Protein Edible Coating Incorporated with Mango Peel Extract on Postharvest Quality, Bioactive Compounds and Shelf Life of Broccoli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Plant Materials
2.2. Preparation of Mango Peels Extract
2.3. Preparation of WPC–Mango Peel Extract Coatings
2.4. Phenolic Compounds Profile of Mango Peel Extract
2.5. Antimicrobial Activity of Whey Protein and Mango Peel Extract Coating Solutions
2.6. Physicochemical and Microbial Properties of Broccoli Fresh-Cut
2.6.1. Weight Loss
(initial weight)
2.6.2. Color Measurement
2.6.3. Respiration Rate
2.6.4. Ascorbic Acid Content
2.6.5. Sulforaphane Content
2.6.6. Total Phenolic Content
2.6.7. Antioxidant Activity
2.6.8. Microbiological Analysis
2.6.9. Sensory Evaluation
2.7. Statistical Analysis
3. Results
3.1. Chemical and Antimicrobial Properties of Used Coating Solutions
3.1.1. Total Phenolic Content and Antioxidant Activity
3.1.2. Antimicrobial Activity of WPC and WPC/–MPE Coating Solutions
3.2. Effect of Coatings on Physicochemical and Microbial Properties of Broccoli Fresh-Cut
3.2.1. Weight Loss
3.2.2. Color Measurement
3.2.3. Respiration Rate
3.2.4. Ascorbic Acid Content
3.2.5. Sulforaphane Content
3.2.6. Total Phenolic Content
3.2.7. Antioxidant Activity
3.2.8. Microbiological Analysis
3.2.9. Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, L.; Zhu, Y.; Wang, F. Calcium sulfate treatment enhances bioactive compounds and antioxidant capacity in broccoli sprouts during growth and storage. Postharvest Biol. Technol. 2018, 139, 12–19. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem. 2013, 143, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Gao, L.; Zuo, J.; Wang, Q.; Wang, Q.; Fan, L. Exogenous sodium nitroprusside treatment of broccoli florets extends shelf life, enhances antioxidant enzyme activity, and inhibits chlorophyll-degradation. Postharvest Biol. Technol. 2016, 116, 98–104. [Google Scholar] [CrossRef]
- Funamoto, Y.; Yamauchi, N.; Shigyo, M. Control of isoperoxidases involved in chlorophyll degradation of stored broccoli (Brassica oleracea) florets by heat treatment. J. Plant Physiol. 2006, 163, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Shehata, S.A.; Abdeldaym, E.A.; Ali, M.R.; Mohamed, R.M.; Bob, R.I.; AbdelGawad, K.F. Effect of Some Citrus Essential Oils on Post-Harvest Shelf Life and Physicochemical Quality of Strawberries during Cold Storage. Agronomy 2020, 10, 1466. [Google Scholar] [CrossRef]
- Muley, A.B.; Singhal, R.S. Extension of postharvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chem. 2020, 329, 127213. [Google Scholar] [CrossRef]
- Hernández-Guerrero, S.E.; Balois-Morales, R.; Palomino-Hermosillo, Y.A.; López-Guzmán, G.G.; Berumen-Varela, G.; Bautista-Rosales, P.U.; Alejo-Santiago, G. Novel Edible Coating of Starch-Based Stenospermocarpic Mango Prolongs the Shelf Life of Mango “Ataulfo” Fruit. J. Food Qual. 2020, 2020, 1320357. [Google Scholar] [CrossRef]
- Azevedo, V.M.; Dias, M.V.; de Siqueira Elias, H.H.; Fukushima, K.L.; Silva, E.K.; de Deus Souza Carneiro, J.; Borges S, V. Effect of whey protein isolate films incorporated with montmorillonite and citric acid on the preservation of fresh-cutapples. Food Res. Int. 2018, 107, 306–313. [Google Scholar] [CrossRef]
- Hammad, K.S.M.; Elsayed, N.; Elkashef, H. Development of a whey protein concentrate/apple pomace extract edible coating for shelf life extension of fresh-cut apple. Int. Food Res. J. 2021, 28, 377–385. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Parmar, A.; Ali, M.R.; Abdel-Aziz, M.E.; Abdeldaym, E.A. Improving postharvest storage of fresh artichoke bottoms by an edible coating of Cordia myxa gum. Postharvest Biol. Technol. 2020, 163, 111143. [Google Scholar] [CrossRef]
- Ansorena, M.R.; Marcovich, N.E.; Roura, S.I. Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biol. Technol. 2011, 59, 53–63. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Tawakkal, I.S.M.A.; Mohamed, M.T.M. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. J. Food Eng. 2012, 110, 208–213. [Google Scholar] [CrossRef]
- Breceda-Hernandez, T.; Martínez-Ruiz, N.; Serna-Guerra, L.; Hernandez-Carrillo, J.G. Effect of a pectin edible coating obtained from orange peels with lemon essential oil in the shelf life of table grapes (Vitis vinifera L. var. Red Globe). Int. Food Res. J. 2020, 27, 585–596. [Google Scholar]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Arrighi, V.; Campbell, L.; Lonchamp, J.; Euston, S.R. Properties of partially denatured whey protein products: Formation and characterisation of structure. Food Hydrocoll. 2016, 52, 95–105. [Google Scholar]
- Singh, H.; Li, S. Functional Properties of Caseins and Whey Proteins. In Encyclopedia of Dairy Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 579–585. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Selani, M.M.; Brazaca, S.G.C.; Dos Santos Dias, C.T.; Ratnayake, W.S.; Flores, R.A.; Bianchini, A. Characterization and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem. 2014, 163, 23–30. [Google Scholar] [CrossRef]
- Nguyen, H.H.D.; Savage, G.P. Properties of Pectin Extracted from Vietnamese Mango Peels. Foods 2019, 8, 629. [Google Scholar] [CrossRef]
- Shehata, S.A.; Abdelrahman, S.Z.; Megahed, M.M.A.; Abdeldaym, E.A.; El-Mogy, M.M.; Abdelgawad, K.F. Extending Shelf Life and Maintaining Quality of Tomato Fruit by Calcium Chloride, Hydrogen Peroxide, Chitosan, and Ozonated Water. Horticulturae 2021, 7, 309. [Google Scholar] [CrossRef]
- Elsayed, N.; Hasanin, M.S.; Abdelraof, M. Utilization of olive leaves extract coating incorporated with zinc/selenium oxide nanocomposite to improve the postharvest quality of green beans pods. Bioact. Carbohydr. Diet. Fibre 2022, 28, 100333. [Google Scholar] [CrossRef]
- Rudra, S.G.; Nishad, J.; Jakhar, N.; Kaur, C. Food industry waste: Mine of nutraceuticals. Int. J. Sci. Environ. Technol. 2015, 4, 205–229. [Google Scholar]
- Lopez-Cobo, A.; Verardo, V.; Diaz-de-Cerio, E.; Segura-Carretero, A.; Fernandez Gutiérrez, A.; Gomez-Caravaca, A.M. Use of HPLC-and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its by-products. Food Res. Int. 2017, 100, 423–434. [Google Scholar] [PubMed]
- De Ancos, B.; Sánchez-Moreno, C.; Zacarías, L.; Rodrigo, M.J.; Ayerdí, S.S.; Benítez, F.J.B.; Avila, J.A.D.; González-Aguilar, G.A. Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. J. Food Meas. Charact. 2018, 12, 2145–2157. [Google Scholar] [CrossRef]
- Elsayed, N.; Marrez, D.A.; Ali, M.A.; El-Maksoud, A.A.A.; Cheng, W.; Abedelmaksoud, T.G. Phenolic Profiling and In-Vitro Bioactivities of Corn (Zea mays L.) Tassel Extracts by Combining Enzyme-Assisted Extraction. Foods 2022, 11, 2145. [Google Scholar] [CrossRef] [PubMed]
- Darwish, O.S.; Ali, M.R.; Khojah, E.; Samra, B.N.; Ramadan, K.M.A.; El-Mogy, M.M. Pre-harvest application of salicylic acid, abscisic acid, and methyl jasmonate conserve bioasctive compounds of strawberry fruits during refrigerated storage. Horticulturae 2021, 7, 568. [Google Scholar] [CrossRef]
- Olivas, G.I.; Mattinson, D.S.; Barbosa-Cánovas, G.V. Alginate coatings for preservation of minimally processed ‘Gala’ apples. Postharvest Biol. Technol. 2007, 45, 89–96. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Ali, M.R.; Darwish, O.S.; Rogers, H.J. Impact of salicylic acid, abscisic acid, and methyl jasmonate on postharvest quality and bioactive compounds of cultivated strawberry fruit. J. Berry Res. 2019, 9, 333–348. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemistry (AOAC). Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemistry (AOAC): Gaithersburg, MD, USA, 2000. [Google Scholar]
- Liang, H.; Yuan, Q.; Dong, H.; Liu, Y. Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J. Food Compos. Anal. 2006, 19, 473–476. [Google Scholar] [CrossRef]
- Dávila-Aviña, J.E.; Villa-Rodriguez, J.A.; Villegas-Ochoa, M.A.; Tortoledo-Ortiz, O.; Olivas, G.I.; Ayala-Zavala, J.F.; Gonzalez-Aguilar, G.A. Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages. J. Food Sci. Technol. 2012, 51, 2706–2712. [Google Scholar] [CrossRef]
- Elsayed, N.; El-Din, H.; Altemimi, A.; Ahmed, H.; Pratap-Singh, A.; Abedelmaksoud, T. In Vitro Antimicrobial, Antioxidant and Anticancer Activities of Egyptian Citrus Beebread. Molecules 2021, 26, 2433. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.V.; Ponce, A.; Moreira, M.R. Antimicrobial efficiency of chitosan film enriched with bioactive compounds to improve the safety of fresh cutbroccoli. LWT-Food Sci. Technol. 2013, 50, 78–87. [Google Scholar] [CrossRef]
- Martínez, K.; Ortiz, M.; Albis, A.; Castañeda, C.G.G.; Valencia, M.E.; Grande Tovar, C.D. The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-L.; Lee, J.-H.; Choi, D.-H.; Wang, L.-X.; Kang, H.-M. Evaluation of the Storage Characteristics in Maintaining the Overall Quality of Whole and Fresh-Cut Romaine Lettuce during MA Storage. Horticulturae 2021, 7, 461. [Google Scholar] [CrossRef]
- Tian, M.; Downs, C.; Lill, R.; King, G. A Role for Ethylene in the Yellowing of Broccoli after Harvest. J. Am. Soc. Hortic. Sci. 1994, 119, 276–281. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Mahmoud, A.W.M.; El-Sawy, M.B.I.; Parmar, A. Pre-Harvest Foliar Application of Mineral Nutrients to Retard Chlorophyll Degradation and Preserve Bio-Active Compounds in Broccoli. Agronomy 2019, 9, 711. [Google Scholar] [CrossRef]
- Lacroix, M.; Vu, K.D. Edible Coating and Film Materials. In Innovations in Food Packaging, 2nd ed.; A Volume in Food Science and Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 277–304. ISBN 9780123946010. [Google Scholar]
- Chakravartula, S.S.N.; Soccio, M.; Lotti, N.; Balestra, F.; Rosa, M.D.; Siracusa, V. Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Materials 2019, 12, 2454. [Google Scholar] [CrossRef]
- Lastra Ripoll, S.E.; Quintana Martinez, S.E.; Garcia Zapateiro, L.A. Rheological and microstructural properties of xanthan gum-based coating solutions enriched with phenolic mango (Mangifera indica) peel extracts. ACS Omega 2021, 6, 16119–16128. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Fernandes, L.M.; Guimarães, J.T.; Pimentel, T.C.; Esmerino, E.A.; Freitas, M.Q.; Carvalho, C.W.P.; Cruz, A.G.; Silva, M.C. Edible whey protein films and coatings added with prebiotic ingredients. In Agri-Food Industry Strategies for Healthy Diets and Sustainability; Elsevier: Amsterdam, The Netherlands, 2020; pp. 177–193. [Google Scholar]
- Cagri, A.; Ustunol, Z.; Ryser, E.T. Antimicrobial Edible Films and Coatings. J. Food Prot. 2004, 67, 833–848. [Google Scholar] [CrossRef]
- Susmitha, A.; Sasikumar, K.; Rajan, D.; Padmakumar M, A.; Nampoothiri, K.M. Development and characterization of corn starch-gelatin based edible films incorporated with mango and pineapple for active packaging. Food Biosci. 2021, 41, 100977. [Google Scholar] [CrossRef]
- Ribeiro, A.C.B.; Cunha, A.P.; da Silva, L.M.R.; Mattos, A.L.A.; de Brito, E.S.; de Souza, M.D.S.M.; de Azeredo, H.M.C.; Ricardo, N.M.P.S. From mango by-product to food packaging: Pectin-phenolic antioxidant films from mango peels. Int. J. Biol. Macromol. 2021, 193, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Thambi, P.A.; John, S.; Lydia, E.; Iyer, P.; Monica, S.J. Antimicrobial efficacy of mango peels powder and formulation of recipes using mango peel powder (Mangifera indica L.). Int. J. Home Sci. 2016, 2, 155–161. [Google Scholar]
- Adilah, A.N.; Noranizan, M.; Jamilah, B.; Hanani, Z.N. Development of polyethylene films coated with gelatin and mango peel extract and the effect on the quality of margarine. Food Packag. Shelf Life 2020, 26, 100577. [Google Scholar] [CrossRef]
- Istúriz-Zapata, M.A.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Acosta-Rodríguez, J.L.; Hernández-López, M.; Barrera-Necha, L.L. Efficacy of extracts of mango residues loaded in chitosan nanoparticles and their nanocoatings on in vitro and in vivo postharvest fungal. J. Phytopathol. 2022. [Google Scholar] [CrossRef]
- Mazza, G.; Brouillard, R. The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry 1990, 29, 1097–1102. [Google Scholar] [CrossRef]
- Bhat, R.; Stamminger, R. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice. Food Sci. Technol. Int. 2014, 21, 354–363. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, G.; Liu, C.; Li, D.; Jiang, B.; Zhang, X. Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning. Food Hydrocoll. 2018, 79, 179–188. [Google Scholar] [CrossRef]
- Marquez, G.R.; Di Pierro, P.; Mariniello, L.; Esposito, M.; Giosafatto, C.V.; Porta, R. Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT-Food Sci. Technol. 2017, 75, 124–130. [Google Scholar] [CrossRef]
- Kaewsuksaeng, S.; Yamauchi, N.; Funamoto, Y.; Shigyo, M.; Kanlavanarat, S. Effect of Mg-dechelation activity on chlorophyll degradation in stored broccoli florets. In Proceedings of the IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality in Chains MQUIC 2006, Bangkok, Thailand, 7–10 August 2006; International Society for Horticultural Science: Leuven, Belgium, 2006; Volume 712, pp. 705–710. [Google Scholar]
- Pinzon, M.I.; Sanchez, L.T.; Garcia, O.R.; Gutierrez, R.; Luna, J.C.; Villa, C.C. Increasing shelf life of strawberries (Fragaria ssp) by using a banana starch-chitosan-Aloe vera gel composite edible coating. Int. J. Food Sci. Technol. 2019, 55, 92–98. [Google Scholar] [CrossRef]
- Perez-Gago, M.B.; Serra, M.; del Río, M.A. Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol.Technol. 2006, 39, 84–92. [Google Scholar] [CrossRef]
- Hu, W.; Feng, K. Effect of edible coating on the quality and antioxidant enzymatic activity of postharvest sweet cherry (Prunusavium L.) during Storage. Coatings 2022, 12, 581. [Google Scholar] [CrossRef]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, W.; Zhu, B.; Chen, H.; Chi, H.; Li, L.; Qin, Y.; Xue, J. The quality evaluation of post harvest strawberries stored in nano-ag packages at refrigeration temperature. Polymers 2018, 10, 894. [Google Scholar] [CrossRef]
- EL-Bauome, H.A.; Abdeldaym, E.A.; Abd El-Hady, M.A.M.; Darwish, D.B.E.; Alsubeie, M.S.; El-Mogy, M.M.; Basahi, M.A.; Al-Qahtani, S.M.; Al-Harbi, N.A.; Alzuaibr, F.M.; et al. Exogenous Proline, Methionine, and Melatonin Stimulate Growth, Quality, and Drought Tolerance in Cauliflower Plants. Agriculture 2022, 12, 1301. [Google Scholar] [CrossRef]
- Ajila, C.; Naidu, K.; Bhat, S.; Rao, U. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- Chatterton, D.E.; Smithers, G.; Roupas, P.; Brodkorb, A. Bioactivity of β-lactoglobulin and α-lactalbumin—Technological implications for processing. Int. Dairy J. 2006, 16, 1229–1240. [Google Scholar] [CrossRef]
- Farvin, K.S.; Baron, C.P.; Nielsen, N.S.; Otte, J.; Jacobsen, C. Antioxidant activity of yoghurt peptides: Part 2–Characterisation of peptide fractions. Food Chem. 2010, 123, 1090–1097. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C. Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocoll. 2010, 24, 49–59. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Tirado-Kulieva, V.; Atoche-Dioses, S.; Hernández-Martínez, E. Phenolic compounds of mango (Mangifera indica) by-products: Antioxidant and antimicrobial potential, use in disease prevention and food industry, methods of extraction and microencapsulation. Sci. Agropecu. 2021, 12, 283–293. [Google Scholar] [CrossRef]
- Cheng, J.; Lin, X.; Wu, X.; Liu, Q.; Wan, S.; Zhang, Y. Preparation of a multifunctional silver nanoparticles polylactic acid food packaging film using mango peel extract. Int. J. Biol. Macromol. 2021, 188, 678–688. [Google Scholar] [CrossRef] [PubMed]
Edible Coating Solutions | Total Phenolic Content (mg GAE/g film) | Antioxidant Activity (%) |
---|---|---|
WPC | 3.52 ± 0.53 c | 67.25 ± 0.48 c |
WPC + 1%MPE | 22.29 ± 1.00 b | 90.25 ± 0.64 b |
WPC + 3%MPE | 36.96 ± 0.39 a | 98.15 ± 0.53 a |
Phenolic Compound | Retention Time (min) | Concentration (µg/g) |
---|---|---|
Pyrogallol | 2.919 | 212.40 ± 1.053 |
Gallic acid | 3.478 | 64.51 ± 0.202 |
Catechol | 5.633 | 9.616 ± 0.005 |
p-hydroxybenzoic acid | 7.562 | 40.65 ± 0.608 |
Catechin | 8.799 | 4.64 ± 0.055 |
Chlorogenic acid | 9.025 | 10.3188 ± 0.006 |
Vanillic acid | 9.555 | 49.24 ± 0.554 |
Syringic acid | 10.715 | 9.62 ± 0.100 |
p-Coumaric acid | 12.933 | 3.5198 ± 0.577 |
Benzoic acid | 14.286 | 87.91 ± 0.152 |
Ferulic acid | 15.355 | 3.5818 ± 0.0115 |
Rutin | 16.096 | 92.58 ± 0.571 |
O-Coumaric acid | 17.308 | 128.39 ± 1.040 |
Mangiferin | 18.630 | 235.96 ± 0.586 |
Resvertol | 19.878 | 1278 ± 1.527 |
Cinnamic acid | 20.498 | 21.304 ± 0.001 |
Quercetin | 21.416 | 318.58 ± 0.563 |
Rosemarinic | 21.893 | 259.22 ± 1.154 |
Pathogenic Bacteria | Zones of Inhibition (mm) | |
---|---|---|
WPC | MPE | |
Escherichia coli ATCC 35218 | 20.7 ± 0.896 a | No inhibition |
Salmonella typhimurium ATCC 14028 | 14.3 ± 0.450 b | 15 ± 1.25 a |
Staphylococcus aureus MRSA | No inhibition | 20 ± 0.09 a |
Listeria monocytogenes | No inhibition | 23 ± 1.15 a |
Staphylococcus aureus ATCC 25923 | 19.6 ± 0.321 b | 22 ± 0.57 a |
Bacilluscereus ATCC 33018 | No inhibition | 18 ± 0.00 a |
Aspergilus niger nrrl 326 | No inhibition | No inhibition |
Aspergilus flavus nrrl 1957 | 29 ± 0.57 a | 20 ± 1.15 b |
Psychrotrophic Bacterial Count (Log CFU/g) | Storage Period (Day) | ||||
---|---|---|---|---|---|
Treatments | 0 | 7 | 14 | 21 | 28 |
Control | ND * | 2.95 ± 0.16 a | 4.04 ± 0.32 a | 4.05 ± 0.29 a | 4.34 ± 0.18 a |
WPC | ND | 2.67 ± 0.11 b | 2.67 ± 0.12 b | 2.67 ± 0.11 b | 2.72 ± 0.06 b |
WPC + 1%MPE | ND | ND | 2.20 ± 0.07 c | 2.25 ± 0.12 c | 2.29 ± 0.01 c |
WPC + 3%MPE | ND | ND | ND | ND | 1.84 ± 0.01 d |
Fungal Count (Log CFU/g) | Storage Period (Day) | ||||
---|---|---|---|---|---|
Treatments | Zero | 7 days | 14 days | 21 days | 28 days |
Control | 2.20 ± 0.00 a | 2.34 ± 0.18 a | 2.73 ± 0.03 a | 3.8 ± 0.25 a | 3.89 ± 0.11 a |
WPC | 1.07 ± 0.00 b | 2.00 ± 0.13 b | 2.07 ± 0.00 b | 2.34 ± 0.18 b | 3.46 ± 0.17 ab |
WPC +1% MPE | ND * | 1.30 ± 0.02 c | 1.84 ± 0.02 c | 2.00 ± 0.10 c | 2.23 ± 0.04 c |
WPC +3% MPE | ND | ND | ND | 1.47 ± 0.11 c | 1.47 ± 0.03 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsayed, N.; Hassan, A.A.-m.; Abdelaziz, S.M.; Abdeldaym, E.A.; Darwish, O.S. Effect of Whey Protein Edible Coating Incorporated with Mango Peel Extract on Postharvest Quality, Bioactive Compounds and Shelf Life of Broccoli. Horticulturae 2022, 8, 770. https://doi.org/10.3390/horticulturae8090770
Elsayed N, Hassan AA-m, Abdelaziz SM, Abdeldaym EA, Darwish OS. Effect of Whey Protein Edible Coating Incorporated with Mango Peel Extract on Postharvest Quality, Bioactive Compounds and Shelf Life of Broccoli. Horticulturae. 2022; 8(9):770. https://doi.org/10.3390/horticulturae8090770
Chicago/Turabian StyleElsayed, Nesren, Ashwak Abdel-moneim Hassan, Suzy M. Abdelaziz, Emad A. Abdeldaym, and Omaima S. Darwish. 2022. "Effect of Whey Protein Edible Coating Incorporated with Mango Peel Extract on Postharvest Quality, Bioactive Compounds and Shelf Life of Broccoli" Horticulturae 8, no. 9: 770. https://doi.org/10.3390/horticulturae8090770
APA StyleElsayed, N., Hassan, A. A. -m., Abdelaziz, S. M., Abdeldaym, E. A., & Darwish, O. S. (2022). Effect of Whey Protein Edible Coating Incorporated with Mango Peel Extract on Postharvest Quality, Bioactive Compounds and Shelf Life of Broccoli. Horticulturae, 8(9), 770. https://doi.org/10.3390/horticulturae8090770