In Vitro Propagation of Pyracantha angustifolia (Franch.) C.K. Schneid.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Explants Disinfection
2.3. Establishment of In Vitro Culture
2.4. Shoot Proliferation
2.5. Root Induction on Microshoots
2.6. Acclimatization Process
2.7. Experimental Design and Data Analysis
3. Results
3.1. Micro-Shoot Establishment
3.2. Micro-Shoot Proliferation
3.3. Micro-Shoot Hyperhydricity
3.4. Micro-Shoot Rooting
3.5. Acclimatization Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Potter, D.; Eriksson, T.; Evans, R.C.; Oh, S.; Smedmark, J.; Morgan, D.R.; Kerr, M.; Robertson, K.R.; Arsenault, M.; Dickinson, T.A.; et al. Phylogeny and classification of Rosaceae. Plant Syst. Evol. 2007, 266, 5–43. [Google Scholar] [CrossRef]
- Chari, L.D.; Martin, G.D.; Steenhuisen, S.; Adams, L.D.; Clark, V.R. Biology of invasive plants 1. Pyracantha angustifolia (Franch.) CK Schneid. Invasive Plant Sci. Manag. 2020, 13, 120–142. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, J.A. Antioxidant and anti-inflammatory effect of Pyracantha angustifolia fruit extracts. J. Converg. Inf. Technol. 2019, 12, 294–301. [Google Scholar] [CrossRef]
- Jocou, A.I.; Gandullo, R. Synopsis of Pyracantha (Rosaceae, Maloideae) species naturalized in Argentina. Bol. Soc. Argent. Bot. 2019, 54, 599–616. [Google Scholar] [CrossRef]
- Retief, E.; Meyer, N.L. Plants of the Free State: Inventory and Identification Guide; South African National Biodiversity Institute: Pretoria, South Africa, 2017; p. 1236. ISBN 9781928224150. [Google Scholar]
- Weber, E. Invasive Plant Species of the World: A Reference Guide to Environmental Weeds; CABI Publishing: Wallingford, UK, 2017; p. 581. ISBN 9781780643861. [Google Scholar]
- Nunes, S.; Sousa, D.; Pereira, V.T.; Correia, S.; Marum, L.; Santos, C.; Dias, M.C. Efficient protocol for in vitro mass micropropagation of slash pine. Vitr. Cell. Dev. Biol. Plant 2018, 54, 175–183. [Google Scholar] [CrossRef]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.; Palazon, J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef] [Green Version]
- Sahari Moghaddam, A.; Kaviani, B.; Mohammadi Torkashvand, A.; Abdousi, V.; Eslami, A.R. Micropropagation of English yew, an ornamental-medicinal tree. J. Ornamen. Plants 2022, 12, 1–9. [Google Scholar]
- Gaidamashvili, M.; Benelli, C. Threatened woody plants of Georgia and micropropagation as a tool for in vitro conservation. Agronomy 2021, 11, 1082. [Google Scholar] [CrossRef]
- Adibi Baladeh, D.; Kaviani, B. Micropropagation of medlar (Mespilus germanica L.), a Mediterranean fruit tree. Intl. J. Fruit Sci. 2021, 21, 242–254. [Google Scholar] [CrossRef]
- Dong, C.; Li, X.; Xi, Y. Micropropagation of Pyracantha coccinea. HortScience 2017, 52, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Nasri, A.; Baklouti, E.; Ben Romdhane, A.; Maalej, M.; Schumacher, H.M.; Drira, N.; Fki, L. Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci. Hortic. 2019, 9, 144–153. [Google Scholar] [CrossRef]
- Felek, W.; Mekibib, F.; Admassu, B. Micropropagation of peach, Prunus persica (L.) Batsch. cv. Garnem. Afr. J. Biotechnol. 2017, 16, 490–498. [Google Scholar] [CrossRef]
- Fan, S.; Jian, D.; Wei, X.; Chen, J.; Beeson, R.C.; Zhou, Z.; Wang, X. Micropropagation of blueberry ‘Bluejay’ and ‘Pink Lemonade’ through in vitro shoot culture. Sci. Hortic. 2017, 226, 277–284. [Google Scholar] [CrossRef]
- Zare Khafri, A.; Solouki, M.; Zarghami, R.; Fakheri, B.; Mahdinezhad, N.; Naderpour, M. In vitro propagation of three Iranian apricot cultivars. Vitr. Cell. Dev. Biol. Plant 2021, 57, 102–117. [Google Scholar] [CrossRef]
- Kucharska, D.; Orlikowska, T.; Maciorowski, R.; Kunka, M.; Wójcik, D.; Pluta, S. Application of meta-Topolin for improving micropropagation of gooseberry (Ribes grossularia). Sci. Hortic. 2020, 272, 109529. [Google Scholar] [CrossRef]
- Kudělková, M.; Pavelková, R.; Ondrušiková, E.; Vachůn, M. The issues of apricot (Prunus armeniaca L.) micropropagation. Acta Univ. Agric. Silvic. Mendel. Brun. 2017, 65, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–479. [Google Scholar] [CrossRef]
- McCown, B.H.; Lloyd, G. Woody plant medium (WPM)—A mineral nutrient formation for microculture for woody plant species. Hort. Sci. 1981, 16, 453. [Google Scholar]
- Linsmaier, E.M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965, 18, 100–127. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT Software. Version 9.1 for Windows; SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- Teixeira da Silva, J.A.; Gulyás, A.; Magyar-Tábori, K.; Wang, M.-R.; Wang, Q.-C.; Dobránszki, J. In vitro tissue culture of apple and other Malus species: Recent advances and applications. Planta 2019, 249, 975–1006. [Google Scholar] [CrossRef] [Green Version]
- Gago, D.; Sánchez, C.; Aldrey, A.; Christie, C.B.; Bernal, M.Á.; Vidal, N. Micropropagation of plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic conditions. Horticulturae 2022, 8, 286. [Google Scholar] [CrossRef]
- Vujović, T.; Jevremović, D.; Marjanović, T.; Glišić, I. In vitro propagation and medium-term conservation of autochthonous plum cultivar ‘Crvena Ranka’. Acta Agric. Serbica 2020, 25, 141–147. [Google Scholar] [CrossRef]
- Jagiełło-Kubiec, K.; Nowakowska, K.; Ilczuk, A.; Łukaszewska, A. Optimizing micropropagation conditions for a recalcitrant ninebark (Physocarpus opulifolius L. maxim.) cultivar. Vitr. Cell. Dev. Biol. Plant 2021, 57, 281–295. [Google Scholar] [CrossRef]
- Lotfi, M.; Bayoudh, C.; Werbrouck, S.; Mars, M. Effects of meta–Topolin derivatives and temporary immersion on hyperhydricity and in vitro shoot proliferation in Pyrus communis. Plant Cell Tissue Organ Cult. 2020, 143, 499–505. [Google Scholar] [CrossRef]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An academic and technical overview on plant micropropagation challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Chu, C.C.; Wang, C.C.; Sun, C.S.; Hsu, C.; Yin, K.C.; BI, C.V. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci. Sin. 1975, 18, 659–668. [Google Scholar] [CrossRef]
- Mohseniazar, M.; Nazeri, S.; Ghadimzadeh, M.; Malboobi, M.A. Effect of medium type and some biochemical components on in vitro proliferation of dwarf rootstock of apple (Malus domestica Borkh cv Gami Almasi). Plant Prod. Technol. 2012, 1, 33–41. [Google Scholar]
- Komakech, R.; Kim, Y.-G.; Kim, W.J.; Omujal, F.; Yang, S.; Moon, B.C.; Okello, D.; Rahmat, E.; Kyeyune, G.N.; Matsabisa, M.G.; et al. A micropropagation protocol for the endangered medicinal tree Prunus africana (Hook f.) Kalkman: Genetic fidelity and physiological parameter assessment. Front. Plant Sci. 2020, 11, 548003. [Google Scholar] [CrossRef]
- Cordeiro, S.Z.; Simas, N.K.; Henriques, A.B.; Sato, A. Micropropagation and callogenesis in Mandevilla guanabarica (Apocynaceae), an endemic plant from Brazil. CBAB 2014, 14, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Solle, H.R.L.; Semiarti, E. Micropropagation of sandalwood (Santalum album L.) endemic plant from East Nusa Tenggara, Indonesia. AIP Conf. Proc. 2016, 1744, 020026. [Google Scholar] [CrossRef] [Green Version]
- Sulusoglu, M.; Cavusoglu, A. Micropropagation of cherry laurel Prunus laurocerasus L. J. Food, Agric. Environ. 2013, 11, 576–579. [Google Scholar]
- Mahipal, S.; Shekhawat, N.S.; Manokari, M. In vitro propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis aubl.): A multipurpose threatened species. Physiol. Molecul. Biol. Plants 2016, 22, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Dinesh, R.M.; Patel, A.K.; Vibha, J.B.; Shekhawat, S.; Shekhawat, S.N. Cloning of mature pomegranate (Punica granatum) cv. Jalore seedless via in vitro shoot production and ex vitro rooting. Vegetos 2019, 32, 181–189. [Google Scholar] [CrossRef]
- Nand, N.; Drew, R.A.; Ashmore, S. Micropropagation of two Australian native fruit species, Davidsonia pruriens and Davidsonia jerseyana G. Harden and J.B. Williams. Plant Cell Tiss. Org. Cult. 2004, 77, 193–201. [Google Scholar] [CrossRef]
- Prakash, E.; Sha Valli Khan, P.S.; Vivek Sreenivasa Rao, T.J.; Meru, E.S. Micropropagation of red sanders (Pterocarpus santalinus L.) using mature nodal explants. J. For. Res. 2006, 11, 329–335. [Google Scholar] [CrossRef]
- Quoirin, M.; Lepoivre, P. Improved media for in vitro culture of Prunus sp. Acta Hortic. 1977, 78, 437–442. [Google Scholar] [CrossRef]
- Kwaśniewska, E.; Pawłowska, B. Efficient in vitro propagation of historical roses for biodiversity conservation. Propag. Ornam. Plants 2017, 17, 3–11. [Google Scholar]
Source of Variance | df | Multiplication Coefficient MS | Plantlet Length MS | Hyperhydricity MS |
---|---|---|---|---|
BAP | 3 | 0.379 ** | 0.598 ** | 2.259 * |
Culture medium | 2 | 2.943 ** | 0.874 ** | 19.704 ** |
BAP × culture medium | 6 | 0.173 * | 0.019 ** | 0.148 * |
Error | 24 | 0.053 | 0.04 | 0.481 |
CV (%) | - | 14.79 | 11.33 | 18.61 |
Treatment | Multiplication Coefficient | Plantlet Length (cm) | Hyperhydricity (%) | |
---|---|---|---|---|
Culture Medium | BAP (mg·L−1) | |||
MS | 0 | 1.213 d ± 0.220 | 1.624 cd ± 0.316 | 3.351 cd ± 0.751 |
2 | 1.516 c ± 0.075 | 1.645 c ± 0.119 | 3.269 d ± 0.635 | |
2.5 | 2.389 a ± 0.488 | 2.132 a ± 0.414 | 2.053 f ± 0.332 | |
3 | 1.061 de ± 0.193 | 1.614 c–e ± 0.329 | 3.422 b–d ± 0.564 | |
WPM | 0 | 0.960 e ± 0.174 | 1.523 g ± 0.296 | 3.541 a–c ± 0.489 |
2 | 1.082 de ± 0.196 | 1.543 fg ± 0.342 | 3.716 a ± 0.722 | |
2.5 | 1.971 b ± 0.358 | 1.838 b ± 0.157 | 2.741 e ± 0.533 | |
3 | 1.041 e ± 0.189 | 1.513 g ± 0.294 | 3.615 ab ± 0.702 | |
LS | 0 | 1.021 e ± 0.185 | 1.553 e–g ± 0.302 | 3.532 a–c ± 0.687 |
2 | 1.617 c ± 0.294 | 1.594 c–f ± 0.409 | 3.564 a–c ± 0.692 | |
2.5 | 2.002 b ± 0.364 | 2.081 a ± 0.391 | 2.132 f ± 0.414 | |
3 | 1.092 de ± 0.198 | 1.564 d–g ± 0.537 | 3.553 a–c ± 0.690 |
Source of Variance | df | Rooting Effectiveness MS | Root Number MS | Root Length MS | Acclimatization MS |
---|---|---|---|---|---|
IBA | 4 | 6066.93 ** | 325.30 * | 0.490 ns | 425.80 ** |
Culture medium | 2 | 845.48 ** | 14.40 * | 7.941 ** | 26.63 ns |
IBA × culture medium | 8 | 159.98 * | 23.50 ** | 0.189 * | 169.95 ** |
Error | 30 | 38.96 | 15.8 | 0.191 | 15.7 |
CV (%) | - | 15.67 | 16.2 | 13.11 | 8.34 |
Treatment | Rooting Effectiveness (%) | Root Number | Root Length (cm) | Acclimatization (%) | |
---|---|---|---|---|---|
Culture medium | IBA (mg·L−1) | ||||
0 | 73.30 d ± 13.34 | 0.875 e ± 0.14 | 3.790 b ± 0.639 | 96.29 ab ± 4.17 | |
0.1 | 76.09 cd ± 13.85 | 1.75 d ± 0.34 | 3.840 b ± 0.447 | 96.29 ab ± 3.17 | |
MS | 0.5 | 80.10 bc ± 14.58 | 2.25 bc ± 0.36 | 3.952 b ± 0.367 | 97.2 ab ± 3.27 |
1 | 88.76 a ± 16.16 | 2.625 b ± 0.57 | 4.297 a ± 0.725 | 97.2 ab ± 5.27 | |
1.5 | 81.21 b ± 11.78 | 3.5 a ± 0.39 | 4.155 a ± 0.704 | 100 a ± 2.56 | |
0 | 32.71 j ± 5.95 | 0.375 i ± 0.11 | 1.817 i ± 0.307 | 84.08 e ± 1.88 | |
0.1 | 35.59 ij ± 6.48 | 0.5 h ± 0.12 | 1.962 hi ± 0.132 | 86.11 de ± 4.04 | |
WPM | 0.5 | 39.69 hi ± 10.22 | 0.61 g ± 0.14 | 2.162 gh ± 0.364 | 86.11 de ± 4.04 |
1 | 44.88 g ± 4.17 | 0.625 fg ± 0.11 | 2.397 f ± 0.405 | 88.10 c–e ± 2.14 | |
1.5 | 41.59 gh ± 7.39 | 0.68 f ± 0.13 | 2.225 fg ± 0.377 | 91.11 b–d ± 2.33 | |
0 | 41.76 gh ± 9.60 | 0.625 fg ± 0.12 | 3.172 e ± 0.596 | 93.46 bc ± 3.42 | |
0.1 | 42.70 gh ± 6.78 | 0.725 ef ± 0.12 | 3.215 e ± 0.440 | 93.46 bc ± 6.41 | |
LS | 0.5 | 49.91 f ± 9.09 | 1.75 cd ± 0.26 | 3.335 de ± 0.665 | 94.46 a–c ± 3.53 |
1 | 55.03 e ± 10.01 | 1.80 cd ± 0.31 | 3.540 c ± 0.390 | 94.46 a–c ± 5.52 | |
1.5 | 50.82 ef ± 8.25 | 1.84 c ± 0.33 | 3.440 cd ± 0.481 | 95.82 ab ± 4.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaviani, B.; Deltalab, B.; Kulus, D.; Tymoszuk, A.; Bagheri, H.; Azarinejad, T. In Vitro Propagation of Pyracantha angustifolia (Franch.) C.K. Schneid. Horticulturae 2022, 8, 964. https://doi.org/10.3390/horticulturae8100964
Kaviani B, Deltalab B, Kulus D, Tymoszuk A, Bagheri H, Azarinejad T. In Vitro Propagation of Pyracantha angustifolia (Franch.) C.K. Schneid. Horticulturae. 2022; 8(10):964. https://doi.org/10.3390/horticulturae8100964
Chicago/Turabian StyleKaviani, Behzad, Bahareh Deltalab, Dariusz Kulus, Alicja Tymoszuk, Hamideh Bagheri, and Taha Azarinejad. 2022. "In Vitro Propagation of Pyracantha angustifolia (Franch.) C.K. Schneid." Horticulturae 8, no. 10: 964. https://doi.org/10.3390/horticulturae8100964
APA StyleKaviani, B., Deltalab, B., Kulus, D., Tymoszuk, A., Bagheri, H., & Azarinejad, T. (2022). In Vitro Propagation of Pyracantha angustifolia (Franch.) C.K. Schneid. Horticulturae, 8(10), 964. https://doi.org/10.3390/horticulturae8100964